static-content.springer.com10.1007... · web viewdescription of physical parameterization schemes...

17
Supplementary Material Cloud cover climatologies in the Mediterranean obtained from satellites, surface observations, reanalyses, and CMIP5 simulations: validation and future scenarios Aaron Enriquez-Alonso 1 , Arturo Sanchez-Lorenzo 2 , Josep Calbó 1 , Josep-Abel González 1 , Joel R. Norris 3 1 Department of Physics, University of Girona, Girona, Spain 2 Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE-CSIC), Zaragoza, Spain 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA Climate Dynamics Corresponding author: [email protected]

Upload: phamcong

Post on 28-Mar-2018

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Supplementary Material

Cloud cover climatologies in the Mediterranean obtained from

satellites, surface observations, reanalyses, and CMIP5 simulations:

validation and future scenarios

Aaron Enriquez-Alonso1, Arturo Sanchez-Lorenzo2, Josep Calbó1, Josep-Abel

González1, Joel R. Norris3

1Department of Physics, University of Girona, Girona, Spain

2 Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas

(IPE-CSIC), Zaragoza, Spain

3Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA,

USA

Climate Dynamics

Corresponding author: [email protected]

Page 2: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Tables

Table S1. Description of Physical Parameterization Schemes in the GCMs (updated from

Zhang et al., 2005). Models highlighted with (*) provide results with the ISCCP simulator.

Models highlighted with (--) do not provide future projections for the scenarios considered at

the end of our paper.

GCM Stratiform Clouds Convective Clouds Convection Cloud Microphysics

ACCESS 1.0 Uses HadGEM2 atmospheric physics.

ACCESS 1.3 Uses atmospheric physics similar to that of the Met Office GA1.0 model configuration (Hewitt et al. 2011), including the PC2 prognostic cloud scheme (Wilson et al. 2008)

BCC-CSM 1.1 Atmospheric module is BCC-AGCM2.1. Convection: Mass flux (Wu 2012)

BCC-CSM 1.1(m) Atmospheric module is BCC-AGCM2.2. Convection: Mass flux (Wu 2012)

BNU-ESM

The atmospheric module is CAM 3.5:Diagnostic (Klein and

Hartmann 1993; Kiehl et al. 1996; Collins et al. 2006)

(Xu and Krueger 1991; Hack 1994)

(Zhang and McFarlane 1995) and convective momentum

transport (Richter and Rasch 2008)

(Rasch and Kristjánsson 1998; Zhang et al. 2003)

CanESM2 (*) Fractional cloud cover is evaluated from the prognostic moisture and temperature fields through relative humidity (McFarlane et al. 1992)

CCSM4

The atmospheric module is CAM 4:As CAM 3.5, modified for polar clouds (Vavrus and

Waliser 2008)As CAM 3.5 As CAM 3.5 As CAM 3.5

CESM1-BGCThe atmospheric module is CAM 5:

CESM1-CAM5

CESM1-FASTCHEM (--)As CAM 4 (Park and Bretherton

2009) As CAM 3.5 (Morrison and Gettelman 2008)

CESM1-WACCM (--)

CMCC-CESM (--)

Uses atmospheric module ECHAM5 (as MPI models)CMCC-CM

CMCC-CMS

CNRM-CM5 Diagnostic (Ricard and Royer 1993) (Bougeault 1985)

Sub-grid condensation parameterization from

(Bougeault 1981; Bougeault 1982)

CSIRO-Mk 3.6.0. Uses atmospheric physics very similar to HadCM/HadGEM models

Page 3: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

FGOALS-g2.0Diagnostic (Rasch and Kristjánsson

1998)

Mass flux (Zhang and McFarlane 1995)

(Rasch and Kristjánsson 1998)

FGOALS-s2.0 (--) Diagnostic RH based (Liu and Wu 1997) Mass flux (Tiedtke 1989)

FIO-ESM The atmospheric module is CAM 3.5 (see BNU-ESM)

GFDL-CM3 Prognostic (Tiedtke 1993; Geophysical Fluid

Dynamics Laboratory Global Atmospheric Model Development Team (GFDL

GAMDT) 2004)

Prognostic; (Tiedtke 1993; GFDL

GAMDT 2004)

RAS (Moorthi and Suarez 1992)

(Rotstayn 1997; GFDL GAMDT 2004)

GFDL-ESM2G

GFDL-ESM2M

GISS-E2-H

RH based, Sundqvist type (Del Genio et al. 2005)

Diagnostic (Del Genio et al. 2005)

Mass flux (Del Genio and Yao 1993) (Del Genio et al. 2005)

GISS-E2-H-CC

GISS-E2-R

GISS-E2-R-CC

HadCM3 (--) Statistical (Smith 1990) Diagnostic (Gregory and Rowntree 1990)

Mass flux (Gregory and Rowntree 1990; Gregory and

Allen 1991)(Smith 1990)

HadGEM2-AOStatistical (Smith 1990)

with modifications (Cusack et al. 1999; Webb et al.

2001)

Diagnostic (Gregory and Rowntree 1990) with modifications

(Gregory 1999)

Mass flux (Gregory and Rowntree 1990; Gregory and

Allen 1991)

(Wilson and Ballard 1999)HadGEM2-CC

HadGEM2-ES (*)

INM-CM4Diagnostic based on RH, temperature and vertical

temperature gradient(Betts 1986) (Betts 1986)

IPSL-CM5A-LR (*)

Statistical (Le Trent and Li 1991)

Statistical (Bony and Emanuel 2001) (Emanuel 1991) (Le Trent and Li 1991)IPSL-CM5A-MR (*)

IPSL-CM5B-LR

MIROC-ESM (*)

(Le Trent and Li 1991)MIROC-ESM-CHEM (*)

MIROC4h (--)

MIROC5 (*) (Watanabe et al. 2009). Convective clouds (Chikira and Sugiyama 2010)

MPI-ESM-LR (*)

Prognostic (Tompkins 2002)

Diagnostic; (Roeckner et al.

1996)

Mass flux (Tiedtke 1989; Nordeng 1994)

(Lohmann and Roeckner 1996)MPI-ESM-MR

MPI-ESM-P (--)

MRI-CGCM3 (*) New two-moment bulk cloud scheme (Tiedtke 1993; Jakob 2000). Convective clouds: mass-flux (Tiedtke 1989; Yoshimura et al. 2014)

NorESM1-M The atmospheric module is CAM 4 (see CCSM4)

Page 4: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

NorESM1-ME

Table S2. Values of the different metrics used to compare the TCC from the CMIP5 models

and multi-model mean (MMM) against PATMOS-x. The metrics are the Mean Difference

(MD), the Mean Absolute Difference (MAD), the Skill Score (SS), the Annual Range (AR)

difference, this latter being defined as the AR (i.e. mean winter TCC minus mean summer

TCC) for a particular GCM minus the AR for the PATMOS-x, and the coefficient of spatial

and temporal correlation (R). Units are % of sky cover for MD, MAD and AR difference,

while SS and R are dimensionless values between 0 and 1. In parentheses, the ordinal

position of each model for each metric.PATMOS-x

Models MD MAD SS AR difference RACCESS1.0 -8.9 (24) 14.3 (18) 0.69 (17) 2.1 (11) 0.72 (10)ACCESS1.3 -0.2 (2) 13.8 (15) 0.72 (13) 1.4 (8) 0.68 (26)

BCC-CSM1.1 -4.8 (14) 13.2 (8) 0.72 (13) -2.0 (10) 0.69 (23)BCC-CSM-1.1(m) -12.1 (36) 17.8 (40) 0.56 (40) -5.4 (23) 0.60 (35)

BNU-ESM -10.0 (29) 14.8 (21) 0.65 (25) -0.8 (5) 0.72 (10)CanESM2 -8.9 (24) 15.2 (25) 0.69 (17) 0.0 (1) 0.68 (26)CCSM4 -18.5 (42) 21.7 (42) 0.44 (42) -17.4 (39) 0.55 (39)

CESM1-BGC -18.5 (42) 21.8 (43) 0.43 (44) -18.5 (43) 0.55 (39)CESM1-CAM5 -5.1 (16) 13.0 (4) 0.78 (1) 2.9 (16) 0.74 (2)

CESM1-FASTCHEM -19.0 (44) 21.9 (44) 0.44 (42) -17.7 (41) 0.56 (38)CESM1-WACCM -14.4 (41) 18.2 (41) 0.53 (41) -13.1 (34) 0.64 (34)

CMCC-CESM -2.3 (4) 13.7 (13) 0.75 (8) 4.5 (20) 0.70 (22)CMCC-CM -3.3 (9) 12.5 (1) 0.76 (5) -3.9 (17) 0.71 (16)

CMCC-CMS 0.1 (1) 12.5 (1) 0.78 (1) -1.1 (7) 0.71 (16)CNRM-CM5 -11.8 (33) 16.4 (34) 0.64 (30) -6.2 (24) 0.66 (31)

CSIRO-Mk3.6.0. -0.2 (2) 13.0 (4) 0.71 (15) 16.9 (37) 0.77 (1)FGOALS-g20 3.5 (11) 13.1 (7) 0.65 (25) -10.9 (33) 0.66 (31)FGOALS-s20 -14.1 (40) 17.4 (39) 0.66 (23) 9.2 (30) 0.73 (6)

FIO-ESM -9.1 (26) 14.6 (20) 0.64 (30) -9.1 (29) 0.68 (26)GFDL-CM3 7.2 (21) 13.7 (13) 0.73 (12) -0.1 (2) 0.74 (2)

GFDL-ESM2G 2.3 (4) 12.9 (3) 0.77 (3) 6.5 (25) 0.74 (2)GFDL-ESM2M 3.1 (7) 13.3 (10) 0.76 (5) 5.1 (22) 0.72 (10)

GISS-E2-H 5.5 (18) 15.7 (29) 0.60 (34) -17.5 (40) 0.50 (43)GISS-E2-H-CC 4.5 (13) 15.3 (26) 0.61 (33) -18.2 (42) 0.52 (41)

GISS-E2-R 4.9 (15) 15.7 (29) 0.60 (34) -18.6 (44) 0.49 (44)GISS-E2-R-CC 4.9 (15) 15.5 (27) 0.60 (34) -17.0 (38) 0.51 (42)

HadCM3 -7.6 (22) 15.5 (27) 0.65 (25) -13.7 (35) 0.59 (37)HadGEM2-AO -9.7 (28) 14.9 (22) 0.67 (21) 2.4 (14) 0.71 (16)HadGEM2-CC -8.4 (23) 14.2 (17) 0.69 (17) 2.2 (12) 0.72 (10)HadGEM2-ES -9.1 (26) 14.4 (19) 0.68 (20) 2.2 (12) 0.72 (10)

INM-CM4 -5.9 (19) 13.4 (11) 0.75 (8) 10.4 (32) 0.74 (2)IPSL-CM5A-LR -12.1 (36) 16.4 (34) 0.66 (23) 9.5 (31) 0.72 (10)IPSL-CM5A-MR -11.3 (30) 16.6 (36) 0.67 (21) 8.1 (27) 0.69 (23)IPSL-CM5B-LR -3.2 (8) 13.9 (16) 0.75 (8) 2.6 (15) 0.68 (26)

MIROC4h -13.8 (39) 16.8 (38) 0.60 (34) -4.5 (20) 0.71 (16)MIROC5 -11.7 (32) 15.1 (24) 0.64 (30) -1.0 (6) 0.73 (6)

MIROC-ESM -12.0 (35) 16.1 (32) 0.65 (25) 4.3 (19) 0.73 (6)MIROC-ESM-CHEM -11.6 (31) 15.8 (31) 0.65 (25) 3.9 (17) 0.73 (6)

MPI-ESM-LR -3.0 (6) 13.0 (4) 0.77 (3) 0.1 (2) 0.71 (16)MPI-ESM-MR -3.3 (9) 13.4 (11) 0.75 (8) -1.9 (9) 0.69 (23)

MPI-ESM-P -3.6 (12) 13.2 (8) 0.76 (5) 0.3 (4) 0.71 (16)MRI-CGCM3 -6.9 (20) 15.0 (23) 0.70 (16) -13.8 (36) 0.60 (35)NorESM1-M -12.1 (36) 16.7 (37) 0.59 (39) -8.4 (28) 0.65 (33)

NorESM1-ME -11.9 (34) 16.3 (33) 0.60 (34) -7.2 (26) 0.67 (30)Multimodel Annual -6.4 11.2 0.56 -3.0 0.81

Multimodel DJF -6.6 12.4 - - 0.67Multimodel MAM -9.4 12.3 - - 0.71

Page 5: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Multimodel JJA -3.6 9.3 - - 0.81Multimodel SON -6.0 10.7 - - 0.78

Figures

Figure S1. Annual Mean Absolute Difference (MAD, %) of the CMIP5 models and multi-

model mean (bottom row, fifth column) with respect to ISCCP.

Page 6: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Figure S2. Annual Mean Difference (MD, %) of the CMIP5 models and multi-model mean

(bottom row, fifth column) with respect to PATMOS-x.

Page 7: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Figure S3. Annual Mean Absolute Difference (MAD, %) of the CMIP5 models and multi-

model mean (bottom row, fifth column) with respect to PATMOS-x.

Page 8: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Figure S4. Annual Skill Score (SS) of the CMIP5 models and multi-model mean (bottom

row, fifth column) with respect PATMOS-x. The best SS correspond to whitish colors. By

contrast, warmer colors show the worst agreements according to the SS.

Page 9: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Figure S5. Annual and seasonal (left) MD (%) and (right) MAD (%) between of the multi-

model mean with respect to PATMOS-x.

Page 10: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

References

Betts K (1986) A New Convective Adjustment Scheme. Part I. Observational and Theoretical Basis. Q J R Meteorol Soc 112:677–691.

Bony S, Emanuel KA (2001) A Parameterization of the Cloudiness Associated with Cumulus Convection ; Evaluation Using TOGA COARE Data. J Atmos Sci 58:3158–3183.

Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121.

Bougeault P (1981) Modeling the Trade-Wind Cumulus Boundary Layer. Part I: Testing the Ensemble Cloud Relations Against Numerical Data. J Atmos Sci 38:2414–2428.

Bougeault P (1982) Cloud-Ensemble Relations Based on the Gamma Probability Distribution for the Higher-Order Models of the Planetary Boundary Layer. J Atmos Sci 39:2691–2700.

Chikira M, Sugiyama M (2010) A Cumulus Parameterization with State-Dependent Entrainment Rate. Part I: Description and Sensitivity to Temperature and Humidity Profiles. J Atmos Sci 67:2171–2193. doi: 10.1175/2010JAS3316.1

Collins WD, Bitz CM, Blackmon ML, et al. (2006) The Community Climate System Model Version 3 ( CCSM3 ). J Clim 19:2122–2143.

Cusack S, Edwards JM, Kershaw R (1999) Estimating subgrid variance of saturation and its parameterization for use in a GCM cloud scheme. Q J R Meteorol Soc 125:3057–3076.

Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335.

Del Genio A, Yao M-S (1993) Efficient cumulus parameterization for long-term climate studies: The GISS scheme. Represent. Cumulus Convect. Numer. Model. American Meteorlogical Society, pp 181–184

Del Genio AD, Kovari W, Yao M-S, Jonas J (2005) Cumulus Microphysics and Climate Sensitivity. J Clim 18:2376–2387.

Geophysical Fluid Dynamics Laboratory Global Atmospheric Model Development Team (2004) The New GFDL Global Atmosphere and Land Model AM2-LM2 : Evaluation with Prescribed SST Simulations. J Clim 17:4641–4673.

Gregory D, Allen S (1991) The effect of convective scale downdrafts upon NWP and climate simulations. 9th Conf. Numer. Weather Predict. American Meteorological Society, Boston, Massachusett, pp 122–123

Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon Weather Rev 118:1483–1506.

Page 11: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Gregory J (1999) Representation of the radiative effect of convective anvils. Exeter, UK

Hack JJ (1994) Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2). J Geophys Res Atmos 99:5551–5568. doi: 10.1029/93JD03478

Hewitt HT, Copsey D, Culverwell ID, et al. (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4:223–253. doi: 10.5194/gmd-4-223-2011

Jakob C (2000) The representation of cloud cover in atmospheric general circulation models. 194.

Kiehl JT, James J, Gordon B, et al. (1996) Description of the NCAR Community Climate Model ( CCM3 ). 152.

Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606.

Liu H, Wu GX (1997) Impacts of Land Surface on Climate of July and Onset of Summer Monsoon : A Study with an A G C M plus SSiB. Adv Atmos Sci 14:289–308.

Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. 12:557–572.

McFarlane SA, Boer GJ, Blanchet J-P, Lazare M (1992) The Canadian Climate Centre Second-Generation General Circulation Model and Its Equilibrium Climate. J Clim 5:1013–1044.

Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert: A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002.

Morrison H, Gettelman A (2008) A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and Numerical Tests. J Clim 21:3642–3659. doi: 10.1175/2008JCLI2105.1

Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, Research D. Reading, UK

Park S, Bretherton CS (2009) The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model. J Clim 22:3449–3469. doi: 10.1175/2008JCLI2557.1

Rasch PJ, Kristjánsson JE (1998) A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations. J Clim 11:1587–1614.

Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115.

Page 12: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Richter JH, Rasch PJ (2008) Effects of Convective Momentum Transport on the Atmospheric Circulation in the Community Atmosphere Model, Version 3. J Clim 21:1487–1499. doi: 10.1175/2007JCLI1789.1

Roeckner E, Arpe K, Bengtsson L, et al. (1996) The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Hamburg, Germany

Rotstayn LD (1997) A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of microphysical processes. Q J R Meteorol Soc 123:1227–1282.

Smith RNB (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116:435–460. doi: 10.1002/qj.49711649210

Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large scale models. Mon Weather Rev 117:1779–1800.

Tiedtke M (1993) Representation of Clouds in Large-Scale Models. Mon Weather Rev 121:3040–3061.

Tompkins AM (2002) A Prognostic Parameterization for the Subgrid-Scale Variability of Water Vapor and Clouds in Large-Scale Models and Its Use to Diagnose Cloud Cover. J Atmos Sci 59:1917–1942.

Le Trent H, Li Z-X (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim Dyn 5:175–187. doi: 10.1007/BF00251808

Vavrus S, Waliser D (2008) An Improved Parameterization for Simulating Arctic Cloud Amount in the CCSM3 Climate Model. J Clim 21:5673–5687. doi: 10.1175/2008JCLI2299.1

Watanabe M, Emori S, Satoh M, Miura H (2009) A PDF-based hybrid prognostic cloud scheme for general circulation models. Clim Dyn 33:795–816. doi: 10.1007/s00382-008-0489-0

Webb M, Senior C, Bony S, Morcrette J-J (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim Dyn 17:905–922. doi: 10.1007/s003820100157

Wilson DR, Ballard SP (1999) A microphysical based precipitation scheme for the UK Meteorological Office numerical weather prediction model. Q J R Meteorol Soc 125:1607–1636.

Wilson DR, Bushell AC, Kerr-Munslow AM, et al. (2008) PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Q J R Meteorol Soc 134:2093–2107. doi: 10.1002/qj.333

Page 13: static-content.springer.com10.1007... · Web viewDescription of Physical Parameterization Schemes in the GCMs (updated from Zhang et al., 2005). Models highlighted with (*) provide

Wu T (2012) A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations. Clim Dyn Geophys Res 107:4220. doi: 10.1029/2001JD001005

Xu K-M, Krueger SK (1991) Evaluation of cloudiness parameterizations using a cumulus ensemble model. Mon Weather Rev 119:342–367.

Yoshimura H, Mizuta R, Murakami H (2014) A Spectral Cumulus Parameterization Scheme Interpolating Between Two Convective Updrafts with Semi-Lagrangian Calculation of Transport by Compensatory Subsidence. Mon Weather Rev. doi: 10.1175/MWR-D-14-00068.1

Zhang GJ, McFarlane N a. (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmosphere-Ocean 33:407–446. doi: 10.1080/07055900.1995.9649539

Zhang M, Lin W, Bretherton CS, et al. (2003) A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2). J Geophys Res 108:4035. doi: 10.1029/2002JD002523

Zhang MH, Lin WY, Klein SA, et al. (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110:D15S02. doi: 10.1029/2004JD005021