stascalanalysiswith msstats%choi67/ushupo2016_short... · 2016. 3. 13. · iii. volcano)plot iv....

39
Meena Choi Department of Sta-s-cs, Purdue University Group of Prof. Olga Vitek Sta,s,cal analysis with MSstats Design and analysis of quan0ta0ve proteomic experiment US HUPO short course

Upload: others

Post on 06-Jun-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Meena  Choi  Department  of  Sta-s-cs,  Purdue  University  Group  of  Prof.  Olga  Vitek  

Sta,s,cal  analysis  with  MSstats  

Design  and  analysis  of  quan0ta0ve  proteomic  experiment  US  HUPO  short  course  

Page 2: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

2  

MSstats : statistical tool for quantitative MS proteomics

Open-source R-based package for statistical relative quantification of peptides and proteins in mass spectrometry-based proteomic experiments.

*  Test  proteins    for  differen-al  abundance  

Design  of  follow-­‐up  study  

Data  processing  and  Quality  control  

Experimental  design  

Group  comparison  

I.  Sta-s-cal  model  II.  Results  table  III.  Volcano  plot  IV.  Heatmap  V.  Comparison  plot  

I.  Power  analysis  II.  Sta-s-cal  power  III.  Sample  size  

I.  Data  transforma-on  II.  Intensity  normaliza-on  III.  QC  Plot  IV.  Feature  selec-on  V.  Missing  values  imputa-on  VI.  Run-­‐level  summariza-on  VII. Profile  Plot  VIII. Condi-on  Plot  

I.  MSstats  compa-ble  experiments  

II.  MSstats  input  

MSstats  

Page 3: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

MS  acquisi,on  •  DDA  or  shotgun  •  SRM  •  DIA  or  SWATH    Workflows  •  label-­‐free  •  label-­‐based  

•  With  isotope-­‐labeled  reference  pep-des  

   

Experimental  designs  •  Case-­‐control    •  Time  course  •  Paired  analysis  •  More  than  2  condi-ons  •  Linear  combina-on  of  condi-ons  

Not  supported  •  mul--­‐labelling  •  iTRAQ  

   

MSstats compatible experiments

Page 4: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

4  

MSstats input : 10 columns are required

Run  Condi-on  Protein   Pep-de  Precursor  charge   Fragment  

Product  charge   Label   Subject   Intensity  

For  DDA,  ‘Fragment’,  ‘ProductCharge’  can  be  any  one  value,  such  as  NA  

Design  of  follow-­‐up  study  

Data  processing  and  Quality  control  

Experimental  design  

Group  comparison  

•  Results  from  any  spectral  processing  tool:                                    e.g.  Skyline,  MaxQuant,  Progenesis,  OpenSWATH,  Spectronaut  

•  Tabular  .csv  format    

Page 5: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

II.  Intensity  normaliza,on  –  None  :  no  normaliza-on  is  performed.  –  equalizeMedians  :  make  the  same  median  of    

•  reference  intensi-es  across  runs  for  label-­‐based  experiments  •  Endogenous  intensi-es  across  runs  for  label  free  experiments  

–  Quan,le  :  equalize  the  distribu-on  of  •  reference  intensi-es  across  runs  for  label-­‐based  experiments  •  Endogenous  intensi-es  across  runs  for  label  free  experiments  

–  Global  Standards  :  applied  to  endogenous  intensi-es.  Equalize  endogenous  intensi-es  of  global  standard  protein  across  runs.  Then  apply  the  same  between-­‐run  shi\s  to  the  remaining  endogenous  proteins.  

5  

I.  Data  transforma,on    –  Import  the  data  for  analysis  –  Log  2  or  10  transforma-on  of  intensi-es    

1. Data processing and quality control (QC)

Design  of  follow-­‐up  study  

Data  processing  and  Quality  control  

Experimental  design  

Group  comparison  

Page 6: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Quality control plots

Reference Endogenous

1 2 3 4 5 6 7 8 9 10

● ● ●

● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9 10

0

10

20

30

3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30MS runs

Log2−i

nten

sitie

s

All proteinsReference Endogenous

● ●

●●

● ●

1 2 3 4 5 6 7 8 9 10

● ● ●●

● ●●

●●

●● ●

1 2 3 4 5 6 7 8 9 10

0

10

20

30

3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30MS runs

Log2−i

nten

sitie

sAll proteins

Reference Endogenous

● ●

● ● ● ●

1 2 3 4 5 6 7 8 9 10

● ●

● ●

● ●

●●

1 2 3 4 5 6 7 8 9 10

0

10

20

30

3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30MS runs

Log2−i

nten

sitie

s

All proteins

6  

MS  runs  

Log2-­‐In

tensi,es  

Reference   Endogenous  

No  normaliza,on   Equalize  medians  normaliza,on   Quan,le  normaliza,on  

MS  runs   MS  runs  

Log2-­‐In

tensi,es  

Log2-­‐In

tensi,es  

Reference   Endogenous   Reference   Endogenous  

ü  Distribu-on  of  intensi-es  per  run  ü  Show  poten-al  systema-c  biases  between  mass  spectrometry  runs  ü  Show  how  the  normaliza-on  works  for  all  the  proteins  combined  

Page 7: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Normalization method should be changed based on your design of experiment

7  

Assume  label-­‐free  SRM  :  -­‐    most  features  are  differently  abundant    

!!      equalizeMedians  and  Quan,le  normaliza-on  assume  constant  protein  abundance  across  all  samples  

Only  true  if  you  a)  have  a  labeled  reference  or  protein  standards  b)  expect  the  majority  of  your  proteins  to  be  constant  

 

Reference Endogenous

●●

●●

●●●

●●

●●

●●

●●

● ●●

● ●●

●●

● ● ●

A−0 B−60 C−175D−513E−1500F−2760G−4980H−9060I−16500J−30000

●●

●● ●

● ●

●●

●●

A−0 B−60 C−175D−513E−1500F−2760G−4980H−9060I−16500J−30000

0

10

20

30

4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40

MS runs

Log2−i

nten

sitie

s

All proteins

7  

Equalize  medians  normaliza,on  

MS  runs  

Reference   Endogenous   Endogenous

●●

●●

● ●

●●

●●

A−0 B−60 C−175 D−513 E−1500 F−2760 G−4980 H−9060 I−16500 J−30000

0

10

20

30

4 8 12 16 20 24 28 32 36 40

MS runs

Log2−i

nten

sitie

s

All proteins

Endogenous

●●

● ● ●

●●

● ●

● ●

A−0 B−60 C−175 D−513 E−1500 F−2760 G−4980 H−9060 I−16500 J−30000

0

10

20

30

4 8 12 16 20 24 28 32 36 40

MS runs

Log2−i

nten

sitie

s

All proteins

All  proteins  

Equalize  medians  normaliza,on  No  normaliza,on  

Page 8: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Reference Endogenous

●●

●●

●●●

●●

●●

●●

●●

● ●●

● ●●

●●

● ● ●

A−0 B−60 C−175D−513E−1500F−2760G−4980H−9060I−16500J−30000

●●

●● ●

● ●

●●

●●

A−0 B−60 C−175D−513E−1500F−2760G−4980H−9060I−16500J−30000

0

10

20

30

4 8 12 16 20 24 28 32 36 40 4 8 12 16 20 24 28 32 36 40

MS runs

Log2−i

nten

sitie

s

All proteins

Normalization method should be changed based on your design of experiment

8  

Equalize  medians  normaliza,on  

MS  runs  

Reference   Endogenous   Endogenous

●●

●●

● ●

●●

●●

A−0 B−60 C−175 D−513 E−1500 F−2760 G−4980 H−9060 I−16500 J−30000

0

10

20

30

4 8 12 16 20 24 28 32 36 40

MS runs

Log2−i

nten

sitie

s

All proteins

Endogenous

●●

● ● ●

●●

● ●

● ●

A−0 B−60 C−175 D−513 E−1500 F−2760 G−4980 H−9060 I−16500 J−30000

0

10

20

30

4 8 12 16 20 24 28 32 36 40

MS runs

Log2−i

nten

sitie

s

All proteins

All  proteins  

!!      equalizeMedians  and  Quan,le  normaliza-on  assume  constant  protein  abundance  across  all  samples  

Only  true  if  you  a)  have  a  labeled  reference  or  protein  standards  b)  expect  the  majority  of  your  proteins  to  be  constant  

 

Equalize  medians  normaliza,on  No  normaliza,on  

Assume  label-­‐free  SRM  :  -­‐  Need  to  concern  normaliza,on  method  in  design  stage  

Page 9: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

How  to  detect  features  with  interference?  Quan-fy  how  parallel  features    

 

Which  features  are  used  for  rela-ve  quan-fica-on  and  differen-al  expression  analysis?  •  all  features    •  Top3  features  :  highest  average  of  log2(intensity)  across  runs  •  Features  without  interference  

Feature selection

MS  runs  

Log2  -­‐  intensi-es  

MS  runs  

Log2  -­‐  intensi-es  

•  Clear  peaks  have  almost  parallel  profiles  

 •  Features  with  interference  has  unparalleled  profiles  

9  

Page 10: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Log2  -­‐  intensi-es  

How to detect interference

10  

Step  1:  Summarize  abundance  of  each  pep-de  

Step  2:  Es-mate  the  degree  of  interference  =  variance  of  residuals  

Step  3:  Remove  features  with  highest  interference  un-l  no  further  improvement  

1

2 3

4

Low  degree  of  interference  

1 2

3

4

High  degree  of  interference  

MS  runs  

Log2  -­‐  intensi-es  

MS  runs  

Step  1   Step  2   Step  3  

Page 11: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Feature selection removes the features with interference

11  

Example  DIA  data  

All  features   AOer  feature  selec,on  

MS  runs  

Log2  -­‐  intensi-es  

Log2  -­‐  intensi-es  

MS  runs  

Page 12: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Impute censored missing values

12  

Missing  values  •  Random  :  technical  variability  •  Censored  :  below  limit  of  detec-on  è  Impute  censored  missing  values  by  accelerated  failure  model  

ü  Only  endogenous  intensi-es  ü  Cut  off  is  minimum  value  for  each  feature    

Page 13: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

•  Es-mate  rela-ve  abundance  for  each  protein  per  run  •  Subplot:  only  consider  feature  +  run  •  Tukey’s  median  polish:  Robust  parameter  es-ma-on  method  with  median  

across  rows  and  columns    

yijkl = µ+Runijk + Featurel + ϵijkl , where

medianijk(Runijk) = 0, medianl(Featurel) = 0, and medianijk(ϵijkl) = medianl(ϵijkl) = 0

13  

Run-level subplot summarization

Page 14: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Reference Endogenous

●● ●

●●

●●

●●

●●

●●●

●●

●●

●●

●● ●

●●

●●

●● ●

●●

●●

●●

●●

●●

●● ●

●●

●●●

●●

●●

●●

●● ●

●●

●●●

●● ●

●●

●●

1 2 3 4 5 6 7 8 9 10

●● ●

●●

●●

●●

●●●

●●

●●

●●

●● ●

●●

●●

●● ●

●●

●●

●●

●●

●●

● ●

●●

●●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

● ●●

●● ●

● ● ●

● ● ● ● ●

● ● ● ● ●

●●

● ● ●

1 2 3 4 5 6 7 8 9 10

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

● ●

●●

● ●●

●● ●

● ● ●

● ● ● ● ●● ● ● ● ●

●● ●

● ● ●

0

10

20

30

3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30MS runs

Log2−i

nten

sitie

s

●● ●●Processed feature−level data Run summary

ACH1Reference Endogenous

●● ●

●●●

●●●

●●●

●●

●●●

●●●

●●

●●

●● ●

●●

●●

●● ●

●●

●●

●●●

●●

●●

●● ●

●●●

●● ●

●●

●●

●●

●● ●

●●

●●●

●● ●

●●

●●

1 2 3 4 5 6 7 8 9 10

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●● ●

●●

1 2 3 4 5 6 7 8 9 10

0

10

20

30

3 6 9 12 15 18 21 24 27 30 3 6 9 12 15 18 21 24 27 30MS runs

Log2−i

nten

sitie

s

ACH1

•  Visualize  individual  observa-ons  •  Show  the  poten-al  source  of  varia-on,  such  as  Run,  Transi-on,  Condi-on  •  Check  missing  values  

14  

Profile Plot

MS  runs  

Log2-­‐In

tensi,es  

Reference   Endogenous  

Good  quality  Profile  plot.  It  shows  the  source  of  varia,on  (Run,  Condi,on,  Transi,on)  

Color  :  pep-de  Linetype  :  transi-on  Condi-on  

Reference   Endogenous  

MS  runs  

Log2-­‐In

tensi,es  

Summarized  intensi-es  

Page 15: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Reference Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Disease Healthy

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

● ●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

Disease Healthy

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

● ●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

● ●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

0

10

20

30

66 81 66 81MS runs

Log2−i

nten

sitie

s

# peptide: 3●●

●●

●●

●●

●●

●●

●●

●●

●●

FSPATHPSEGLEENYCR_3_b11_2

FSPATHPSEGLEENYCR_3_y3_1

FSPATHPSEGLEENYCR_3_y6_1

HSIFTPETNPR_2_y6_1

HSIFTPETNPR_2_y7_1

HSIFTPETNPR_2_y8_1

QLGAGSIEECAAK_2_y6_1

QLGAGSIEECAAK_2_y7_1

QLGAGSIEECAAK_2_y9_1

PLMN

Reference Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Disease Healthy

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

Disease Healthy

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0

10

20

30

66 81 66 81MS runs

Log2−i

nten

sitie

s

# peptide: 3●●

●●

●●

●●

●●

●●

●●

●●

●●

AGALNSNDAFVLK_2_y3_1

AGALNSNDAFVLK_2_y7_1

AGALNSNDAFVLK_2_y8_1

EVQGFESATFLGYFK_2_y4_1

EVQGFESATFLGYFK_2_y7_1

EVQGFESATFLGYFK_2_y8_1

HVVPNEVVVQR_3_b5_1

HVVPNEVVVQR_3_b6_1

HVVPNEVVVQR_3_y4_1

GELS

15  

Profile Plot

Detect  the  problema,cal  Run  or  Transi,on     Show  the  missing  values  (Disconnec,on)  

Reference   Endogenous   Reference   Endogenous  

Page 16: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

•  Hypothesis  :  Is  there  a  difference  in  abundance  between  condi-on1  and  condi-on2?    H0  :  log  fold  change  =  0  vs.  Ha  :  log  fold  change  ≠  0  

•  Comparisons  between  condi-ons  are  es-mated  by  linear  mixed  effect  models  

 

16  

2. Group Comparison : Test for differential abundance

Design  of  follow-­‐up  study  

Data  processing  and  Quality  control  

Experimental  design  

Group  comparison  

log(peak  intensity)  

expected  reference  abundance  

condi-on   biological  replicate  

random  meas.  error  =   +   +   +  

Group  comparison  

yijk = µ+ Conditioni + Subject(Condition)j(i) + ψijk,where∑

i

Conditioni = 0, Subject(Condition)j(i)iid∼ N (0,σ2Subject), ψijk

iid∼ N (0,σ2ψ)

yijk = µ+ Conditioni + Subject(Condition)j(i) + ψijk,where∑

i

Conditioni = 0, Subject(Condition)j(i)iid∼ N (0,σ2Subject), ψijk

iid∼ N (0,σ2ψ)

Page 17: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

•  Log2  fold  change:  provides  an  es-mate  for  the  difference  between  the  two  condi-ons  

•  Adjusted  p-­‐value:  probability  that  your  conclusion  is  false  (adjusted  =  corrected  for  mul-ple  tes-ng)  

17  

Results table for inference

Page 18: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

●●

●●

●●

●●

●●●

CISY2

DHSB

DHSD

ENO1HXKG

SUCB

0.0

2.5

5.0

7.5

10.0

−2 0 2Log2 fold change

−Log

10 (a

djus

ted

p−va

lue)

Fold change cutoff (1.5) Adj p−value cutoff (0.05)

● ● ●No regulation Down−regulated Up−regulated

T3−T1

18  

More  significant  

Less  significant  

Prac-cal  significance  

Sta-s-cal  significance  

•  Per  comparison  •  All  proteins  •  Adjusted  p-­‐value  and  log  fold  change  

Volcano plot

Page 19: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

19  

•  With  all  comparisons  •  All  proteins  •  Adjusted  p-­‐value  and  cut-­‐off  log  fold  change  

Heatmap

Proteins  

T3-­‐T1  

T5-­‐T1  

T7-­‐T1  

Based  on  adjusted  p-­‐values,  •  nega-ve  p-­‐value  :  In  cases  of  a  nega-ve  fold  change  below  a  specified  cutoff        

•  posi-ve  p-­‐value  :  In  case  of  posi-ve  fold  change  above  a  a  specified  cutoff            

(sign)  Adjust  p-­‐value  

1   0.5  -­‐0.5  

Page 20: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

20  

Comparison plot

Represents  log  fold  changes  for  mul-ple  comparisons  per  protein  •  With  all  comparisons  •  Per  protein  •  Log  fold  change  and  CI  

Log2-­‐Fold  Ch

ange  

Comparison  

T3-­‐T1   T7-­‐T1  T5-­‐T1  

Page 21: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

21  

3. Design sample size : Design of future experiment

Use  informa-on  (variance  es-ma-on)  from  current  study  to  a)   es-mate  the  power  of  your  analysis  b)   calculate  the  required  sample  size  for  follow-­‐up  experiments  

Parameters:  •  Power  (sensi-vity):    probability  of  detec-ng  the  effect  (usually  ≥  0.80)  •  Sample  size:  number  of  biological  replicates  •  FDR:  probability  of  rejec-ng  the  null  hypothesis  even  though  it  is  true  (usually  ≤  0.05)  •  Variance:  sample  variance  es-mated  from  current  experiment  •  Effect  size:  minimum  devia-on  from  the  null  hypothesis  that  you  hope  to  detect  (log  fold  change)  

Design  of  follow-­‐up  study  

Data  processing  and  Quality  control  

Experimental  design  

Group  comparison  

Page 22: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

22  

Statistical power estimation

Sta,

s,cal  pow

er  =  

Prob

ability(detec,n

g  true

 FC)  

Visualizes  the  power  of  an  analysis  at  any  desired  fold  change  with  a  fixed  number  of  biological  replicates  and  FDR    

0.0

0.2

0.4

0.6

0.8

1.0

1.05 1.1 1.15 1.2 1.25 1.3

Desired fold change

Powe

r

Number of replicates is 3FDR is 0.01

Page 23: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

23  

Sample size calculation

Visualizes  the  minimal  number  of  biological  replicates  required  to  observe  a  desired  fold  change  at  a  fixed  sta-s-cal  power  and  FDR      

05

1015

2025

3035

1.05 1.1 1.15 1.2 1.25 1.3

0 0.001 0.001 0.002 0.003 0.005Coefficient of variation, CV

Desired fold change

Min

imal

num

ber o

f bio

logi

cal r

eplic

ates FDR is 0.01

Statistical power is 0.9

Page 24: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

24  

•  Includes  •  R  version,  loaded  so\ware  libraries,  Op-ons  selected  by  the  user,  Data  structure  MSstats  

recognizes,  Comple-on  of  intermediate  analysis  steps,  Warning  messages  •  Help  troubleshoot  poten-al  problems  

4. Progress report : msstats.log

Page 25: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

25  

Design  of  follow-­‐up  study  

Data  processing  and  Quality  control  

Experimental  design  

Group  comparison  

MSstats  

MSstats as an external tool in Skyline

•  For  the  beginner  of  R  or  other  sta-s-cal  tools,  we  can  do  sta-s-cal  analysis  with  default  op-ons  through  Skyline  easily.  

•  In  R,  more  op-ons  and  func-ons  are  available.  

Page 26: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

•  Select  normaliza-on  method  

•  High  quality  feature  selec-on  

•  Select  which  groups  to  compare  

•  Select  sample  size  or  power  calcula-on  

•  Specify  the  desired  FDR  

MSstats functions in Skyline

Page 27: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Data : Rat-plasma for Risk of heart disease

27  

Each    Protein  

High  salt  (Disease)   Low  salt  (Healthy)  

Sub1   …   Sub7   Sub8   …   Sub14  T1   T2   T3   T1   T2   T3   T1   T2   T3   T1   T2   T3  

Pep*Tran1   X   X   X   …   X   X   X   X   X   X   …   X   X   X  

Pep*Tran2   X   X   X   …   X   X   X   X   X   X   …   X   X   X  

Pep*Tran3   X   X   X   …   X   X   X   X   X   X   …   X   X   X  

•  Label-­‐free  SRM  experiment  •  High  salt  (7)  vs.  Low  salt  (7)  •  3  Technical  replicates  •  Total  42  injec-ons  (Runs)  •  48  proteins  •  Comparison  :  High  Salt  –  Low  Salt  (Disease-­‐Healthy)    

Rat  Plasma  :  label-­‐free  SRM  

Page 28: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Examples of inconsistent (poor quality?) peptides

28  

Rat  Plasma  :  label-­‐free  SRM  

Profile  plot  show  the  problema,c  pep,des  or  transi,ons.  We  need  to  check  what  happen  in  this  pep,de.  

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 2 ● ●CSSLLWAGAAWLR_2 NLGVVVAPHALR_2

NP_001007697

Page 29: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

NLGVVVAPHALR  

29  

Rat  Plasma  :  label-­‐free  SRM  

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 2 ● ●CSSLLWAGAAWLR_2 NLGVVVAPHALR_2

NP_001007697

Page 30: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

CSSLLWAGAAWLR  

30  

Rat  Plasma  :  label-­‐free  SRM  

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 2 ● ●CSSLLWAGAAWLR_2 NLGVVVAPHALR_2

NP_001007697

Page 31: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Log2 FC and variation are different between before and after removing peptides

31  

Rat  Plasma  :  label-­‐free  SRM  

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 2 ● ●CSSLLWAGAAWLR_2 NLGVVVAPHALR_2

NP_001007697

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●●

●●●

●●●

●●●

●●

●●●

●●●

●●●

●●

●●

●●●

●●●

● ●

●●

●●

●●

●●

●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 1 ● CSSLLWAGAAWLR_2

NP_001007697

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●●

●●

●●

● ●

●●

●●

●●

●●

●●

●●

●●

● ●

●●

●●

●●

●●●

●●

● ●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 1 ● NLGVVVAPHALR_2

NP_001007697

All  features   Only  NLGV  (red  lines)   Only  CSSL  (black  lines)  

log2FC   SE   Adj  p-­‐value   log2FC   SE   Adj  p-­‐value   log2FC   SE   Adj  p-­‐value  

Result   -­‐2.6701   0.2214   <0.0001   0.8750   0.2399   0.0066   -­‐6.2187   0.4152   <0.0001  

Endogenous

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●● ●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

Diseased Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 1 ● NLGVVVAPHALR_2

NP_001007697

Featuares  without  interference  

log2FC   SE   Adj  p-­‐value  

Result   1.094   0.3880   0.0087  

Page 32: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

32  

Examples of inconsistent peptides Rat  Plasma  :  label-­‐free  SRM  

Profile  plot  show  inconsistent  pa]ern  per  pep,des.  We  need  to  check  that  is  there  any  measurement  problem.  

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

● ●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s# peptide: 3 ● ● ●AIAYLNTGYQR_2 DLTGFPQGADQR_2 TVEHPFSVEEFVLPK_2

NP_036620

Page 33: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

DLTGFPQGADQR  

33  

Rat  Plasma  :  label-­‐free  SRM  

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

● ●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 3 ● ● ●AIAYLNTGYQR_2 DLTGFPQGADQR_2 TVEHPFSVEEFVLPK_2

NP_036620

Page 34: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

● ●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 3 ● ● ●AIAYLNTGYQR_2 DLTGFPQGADQR_2 TVEHPFSVEEFVLPK_2

NP_036620

AIAYLNTGYQR  

34  

Rat  Plasma  :  label-­‐free  SRM  

Page 35: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

35  

Log2 FC and variation are quite different depending on peptides.

Rat  Plasma  :  label-­‐free  SRM  

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●

● ●●

●●

● ●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 1 ● AIAYLNTGYQR_2

NP_036620

Endogenous

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

● ●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 3 ● ● ●AIAYLNTGYQR_2 DLTGFPQGADQR_2 TVEHPFSVEEFVLPK_2

NP_036620

Endogenous

●●

●●

●●

●●

●●

●●

●●

Disease Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 2 ● ●DLTGFPQGADQR_2 TVEHPFSVEEFVLPK_2

NP_036620

Endogenous

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●

Diseased Healthy

0

10

20

30

21 42MS runs

Log2−i

nten

sitie

s

# peptide: 2 ● DLTGFPQGADQR_2 ● TVEHPFSVEEFVLPK_2

NP_036620

All  features   Only  DLTG  and  TVEH     Only  AIAY  

log2FC   SE   Adj  p-­‐value   log2FC   SE   Adj  p-­‐value   log2FC   SE   Adj  p-­‐value  

Results   2.0642   0.2966   <0.0001   0.6167   0.1137   0.0005   5.0812   0.7390   <0.0001  

Features  without  interference  

log2FC   SE   Adj  p-­‐value  

Results   0.8535   0.2334   0.001  

Page 36: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

36  

External tool in Skyline

-  From MSstats external tool webpage or ‘Tool store’ -  Automatic installations for all related software and packages -  One-click analysis

-  Tutorial is available (https://skyline.gs.washington.edu/labkey/skyts/home/software/Skyline/tools/details.view?name=Msstats)

Page 37: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

37  

msstats.org and MSstats google group

-  News about Msstats -  Tutorials for different workflows

(under ‘WORKFLOWS’) -  Example datasets with R-scripts -  Related publications

 

-  Announce new release or news in the mailing list

-  Question and answer -  Discussion and

suggestion

Page 38: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

Acknowledgements

Purdue University o  Prof. Olga Vitek o  Mike Cheng

o  Tsung-­‐Heng  Tsai  

38  

University of Washington o  Prof. Mike MacCoss and Lab o  Brendan MacLean o  Yuval Boss

ETH Zürich o  Prof. Ruedi Aebersold o  Prof. Bernd Wollscheid o  Maria Pavlou o  Isabell Bludau

Centre for Genomic Regulation o  Eduard Sabido o  Cristina Chiva

UCSF o  Erik  Verschueren

Page 39: Stascalanalysiswith MSstats%choi67/USHupo2016_short... · 2016. 3. 13. · III. Volcano)plot IV. Heatmap) V. Comparison)plot I. Power)analysis) II. Stas-cal)power) III. Sample)size)

39  

Related works

Poster  038  :  A  system  Suitability  Monitoring  Method  of  LC  MS/MS  Proteomic  Experiment,  Eralp  Dogu    Poster  041  :  Rela-ve  Protein  Quan-fica-on  in  Mass  Spectrometry-­‐based  Proteomics  –  A  Split  Plot  Approach,  Meena  Choi    Poster  046  :  Nonlinear  Regression  Avoids  Overly  Op-mis-c  Assay  Characteriza-on,  Cyril  Galitzine    Oral  presenta,on  :  Monday  10:40am-­‐10:55am                      gMODs  :  An  Open  Source  Data  Analysis  Tool  for  Quan-fying  the  Differen-al  Site  Occupancy  of  Therapeu-c  Protein  Modifica-on  :  Tsung-­‐Heng  Tsai    Parallel  evening  workshop  :  Monday  6:30  pm  –  8  pm                        Computa-on  and  sta-s-cs  for  quan-ta-ve  proteomics,  Grand  C