srnwp 27-29 oct., 2003, bad orb masaki satoh and tomoe nasuno frontier system research for global...

26
SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Frontier System Research for Global Change/ Saitama Inst. Tech. Saitama Inst. Tech. Radiative-convective equilibrium Radiative-convective equilibrium calculations with cloud resolving calculations with cloud resolving models: models: A standard experiment and paramet A standard experiment and paramet er study er study Fifth International SRNWP-workshop on nonhydrosta tic modelling 27-29 Oct. 2003, Bad Orb, Germany

Upload: randolph-wilcox

Post on 16-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Masaki Satoh and Tomoe NasunoMasaki Satoh and Tomoe Nasuno

Frontier System Research for Global Change/Frontier System Research for Global Change/Saitama Inst. Tech.Saitama Inst. Tech.

Radiative-convective equilibrium calculations Radiative-convective equilibrium calculations with cloud resolving models:with cloud resolving models:

A standard experiment and parameter studyA standard experiment and parameter study

Fifth International SRNWP-workshop on nonhydrostatic modelling27-29 Oct. 2003, Bad Orb, Germany

Page 2: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

OutlineOutline

MotivationA global cloud resolving model

Investigation of physics

Model formulationNonhydrostatic core

Radiative-convective equilibrium experimentsSetup

Parameter study

Summary

Page 3: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

MotivationMotivation

Development of a global cloud resolving model Nonhydrostatic ICosahedral Atmospheric Model (NICAM)

⇒ Δx = 3.5km on the Earth Simulator

   2hours for one day simulation

if 320 nodes are used (half of ES)

Climate study

  ⇒ direct calculation of cloud-radiation interaction

⇒ Radiative-convective equilibrium

NICAMNICAM

By H.Tomita

Page 4: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

RegionalRegional    Nonhydrostatic modelNonhydrostatic model

Regional Nonhydrostatic model (Satoh, 2002,2003,MWR)A subset of the global cloud resolving model (NICAM)• Cartesian coordinates

• The same dynamical framework as NICAM except for the metrics

• Model hierarchy: can be used as 1D-vertical, 2D-slice, and 3D-regional models

> Development of new dynamical schemes: Dynamical framework and advection scheme

> Study of physics: cloud-radiation interaction

Page 5: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

CharacteristicCharacteristic s s of the nonhydrostatic modelof the nonhydrostatic model

Fully compressible non-hydrostatic equations Horizontally explicit and vertically implicit time integration with time splittin

g The Helmholtz equation is formulated for vertical velocity not for pressure:

> a switch for a hydrostatic/non-hydrostatic option can be introduced.

Conservation of the domain integrals (Satoh 2002, 2003,MWR) The finite volume method using flux form equationsDensity, momentum, and total energy are conserved.Conservation of total energy including TKE budget

Tracer advecionThird order upwind, or UTOPIAConsistency with Continuity

Exact treatment of moist thermodynamics (Ooyama 1990, 2001).Dependency of latent heat on temperature and specific heats of water substanceTransports of water, momentum, and energy due to rain.

An accurate transport scheme for rain (Xiao et al 2003,MWR) Conservative Semi-Lagrangian scheme with 3rd order

Page 6: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Dry formulationDry formulation

Conservative flux form equations for density R, momentum V, and total energy E+K+G:

where

ETKE

Wj

zj

Vj

yj

Uj

xj

GChGKEt

Gx

wRgPz

Wt

Gx

vPy

Vt

Gx

uPx

Ut

Rt

vFv

V

V

V

V

V

2

0

2

gzGKpR

CTCeE

RpPwvuWVU

d

VV

in

,2

,

' ,' ,,,,,2v

V

Page 7: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Governing equations (Governing equations (Ooyama, 1990,2000Ooyama, 1990,2000 ))

Transports due to rain

Release of potential energy of rain

Page 8: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

CharacteristicCharacteristic s s of the nonhydrostatic model (2)of the nonhydrostatic model (2)

PhysicsCloud physics: Choice of ice process for the global model is an issue.

Warm rain (bulk method)

Ice process: Grabowski(1998; simple 3 categories) (courtesy of W.G.)

planned: Lin et al.(1983); Grabowski (1999: 5 categories)

Bin or Spectral expansion method (K.Suzuki)

Turbulence: 1.5TKE (Deardorff)

or Mellor and Yamada Level 2, 2.5

Surface flux: Louis (1982)

Radiation: MSTRN-X (Nakajima et al, 2000, courtesy of CCSR)

Page 9: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Radiative-convective equilibrium studiesRadiative-convective equilibrium studies

Small domain experimentsInvestigation of many parameters: physics and external parameters

Comparison between different models

Feasible on many computers: • 100km x 100km , Δx=2km (Tompkins and Craig 1998)

Can be used as a standard test

Large domain experiments1000km x 100km (Tompkins 2001)

3D domain : 1000 km x 1000 km , Δx=2km

Equatorial belt   2D   or   3D :  40000km x 100km

Global experiments on ESAqua planet with uniform SST (Sumi; Grabowsky 2003)

Aqua planet with prescribed SST distribution (Hayashi and Sumi; APE)

AMIP ,… : Realizable climate condition is an equilibrium state of fully interactive radiative and convective processes.

Page 10: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Large domain experimentsLarge domain experiments 3D large domain experiment: fo

llowing Tompkins (2001)1000 km x 100 km x 21 kmΔx= 2 kmUniform radiative cooling (-2K/day)Tropical SST (302K)Long-time simulation (56 days)No large scale forcing: pure RCE exp.Use of MRI/NPD-NHM

(Courtesy of Dr. T.Kato)

Page 11: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Large-scaleorganization

Looselyorganized(small scale)

10 days

1000 km

Rainwater (z=35m)

y-averaged(100 km)

Page 12: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Issues of radiative-convective equilibrium experimentsIssues of radiative-convective equilibrium experiments

Strong dependency on artificial parameters

Surface flux with bulk formula:

Depends on minimum surface velocity: Umin

Control of the shear:

Mean winds develop internally.

Strong interaction with radiation

Domain size, resolution, numerical diffusion…

Model dependency

⇒   Requires a suitable standard setup

To understand parameter dependency

To know model characteristics

Shie et al. (2003)

Page 13: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Small domain experimentsSmall domain experiments

Basically follows Tompkins & Craig (1998)Dimension: 3D or 2D100km × 100km × 25km 200km×200km(3D); 1000km, 5000km(2D)Δx=Δy=2km           4, 10kmLowest level: 20m, 54 layers depend on number of vertical layers?Periodic boundary conditionFixed sea surface temperature with 300K or 302KRadiation: interactive with clouds and humidity

prescribed radiative cooling: 2K/day (z<9km) decreases to zero at z=12km or 1K/day, or interactive radiation (require solar flux and ozone profile)

Surface flux: minimum velocity for the bulk coefficient: Umin=4m/s or 1, 7m/sNo large-scale forcing: no momentum source

or nudging to prescribed zonal wind (0m/s)No Coriolis forcing: f=0Total integration time: 60(spin up)+40days Initial condition: uniform temperature(250K)

or TOGA-COARE, Marshall islands

Page 14: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Control experimentControl experiment•100km × 100km, Δx = 2km•Warm rain•Prescribed cooling: -2K/day•TKE•Bulk method Umin=4m/s•Uniform initial cond. T=250K

Precipitation

Relative humidity

temperature

Page 15: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Mass weighted mean temperature & precipitable waterMass weighted mean temperature & precipitable water

CTL

Courtesy of W.K. Tao

Page 16: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Problems and further experimentsProblems and further experiments

Problems of the control experimentToo cold and too dry

Too moist in the upper troposphere

Domain size & grid intervals: Are they sufficiently large and fine?

If not, in what sense?

Bulk coefficient and minimum velocity

Statistic of maximum of the vertical velocity

Ice phase

Page 17: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Bulk coefficient and minimum velocityBulk coefficient and minimum velocity

CTL : control case : bulk formula, Umin=4m/s Umin=1, 7 m/s: minimum wind for bulk coeff.=1, 7m/s CD=0.001, 0.01: constant bulk coefficient

Page 18: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

)()1(

))]()(([

)]()([

*

**

00

spD

sspD

sspD

TqrLTCVC

TTrqTqLTCVC

qqLTTCVC

EvapShQdzF

56 175

Surface temperature jumpSurface temperature jump

Radiative cooling

Ts: surface temperautre, T0 : atmospheric bottom temperature

qs: surface humidity, q0 : atmospheric bottom humidity

q*: saturation humidity, r: relative humidity

CDV: bulk coefficient x surface velocity

F: Total radiative cooling

Sh: sensible heat flux, Evap: evaporation flux

Page 19: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

pDVCCFT /max

)(8.0 *0 sTqq

TTTTqq s 00*

0 ),(8.0

pDs VCCqqLFT /)( 0

Possible range of

Bulk coefficient

Bulk CoefficientBulk Coefficient

Page 20: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Saturation in the upper troposphereSaturation in the upper troposphere

CTL : control case with Kessler:Autoconversion rate:

g/kg 0.1

sec10

)(31

cr

auto

crcauto

q

K

qqKAUTO

Cloud water [kg/kg]

Relative humidity

Page 21: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Relative humidityRelative humidity

G98Berry

G03 RE9

Page 22: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Autoconversion rateAutoconversion rate

CTL : control case with Kessler

Berry

g/kg 0.1

sec10

)(31

cr

auto

crcauto

q

K

qqKAUTO

Grabowsky(2003):

Robe and Emanuel(1996):

Grabowsky(1998): simple ice (3categories) temperature dependent snow/rain

g/kg 0.0

sec10 2

crq

C)02(T g/kg 0.0

C)0(T g/kg 0.1

sec10 3

cr

cr

q

q

1

2

c

c

q

qAUTO

Page 23: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Domain size, grid interval, and 3D vs 2DDomain size, grid interval, and 3D vs 2D

3D 100km CTL 100km x 100km Δx=Δy=2km 3D 200km 200km x 200km Δx=Δy=2km 3D 200km,dx=4km 200km x 200km Δx=Δy=4km 3D 500km,dx=10km 500km x 500km Δx=Δy=10km 2D 1000km 1000km Δx=2km 2D 5000km 5000km Δx=2km

Page 24: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

PDF of maximum vertical velocityPDF of maximum vertical velocity

100km x 100km, x=2km⊿

200km x 200km, x=2km⊿

200km x 200km, x=4km⊿

Page 25: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Summary(1)Summary(1)

A new regional non-hydrostatic model using a conservative scheme.

Conservation of mass and total energy.

Accurate formulation of moist process.

A subset of a global nonhydrostatic model with icosahedral grid (NICAM)

Radiative-convective equilibrium experimentsProposal of a standard experiment

To be used for investigation of physics and parameters

Page 26: SRNWP 27-29 Oct., 2003, Bad Orb Masaki Satoh and Tomoe Nasuno Frontier System Research for Global Change/ Saitama Inst. Tech. Radiative-convective equilibrium

SRNWP 27-29 Oct., 2003, Bad Orb

Summary(2)Summary(2)

Parameter dependency Large dependency on surface flux

Cloud physics: conventional warm rain scheme is inappropriate;

require ice physics

Domain size and resolutionAs the grid interval becomes coarser• Colder mean temperature and less precipitable water

• Larger CAPE

At the same resolution (Δx=2km),• Mean temperature and precipitable water take closer values.

• Statistics (PDF) of Wmax depend on domain size.

• 200km x 200km is preferable rather than 100km x 100km.