spin-dependent wimp limits from a bubble chamber

18
Spin-Dependent Wimp Limits from a Bubble Chamber E. Behnke,1 J. I. Collar,2 P. S. Cooper,3 K. Crum,2 M. Crisler,3 M. Hu,3 I. Levine,1 D. Nakazawa,2 H. Nguyen,3 B. Odom,2 E. Ramberg,3 J. Rasmussen,2 N. Riley,2 A. Sonnenschein,3 M. Szydagis,2 R. Tschirhart3 Science 15 February 2008: Vol. 319. no. 5865, pp. 933 - 936

Upload: hei

Post on 25-Feb-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Spin-Dependent Wimp Limits from a Bubble Chamber. E. Behnke,1 J. I. Collar,2 * P. S. Cooper,3 K. Crum,2 M. Crisler,3 M. Hu,3 I. Levine,1 D. Nakazawa,2 H. Nguyen,3 B. Odom,2 E. Ramberg,3 J. Rasmussen,2 N. Riley,2 A. Sonnenschein,3 M. Szydagis,2 R. Tschirhart3 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Spin-Dependent Wimp Limits from a Bubble Chamber

Spin-Dependent Wimp Limits from a Bubble Chamber

E. Behnke,1 J. I. Collar,2 P. S. Cooper,3 K. Crum,2 M. Crisler,3 M. Hu,3 I. Levine,1 D. Nakazawa,2 H. Nguyen,3 B. Odom,2 E. Ramberg,3 J. Rasmussen,2 N. Riley,2 A. Sonnenschein,3 M. Szydagis,2 R. Tschirhart3

Science 15 February 2008:Vol. 319. no. 5865, pp. 933 - 936

Page 2: Spin-Dependent Wimp Limits from a Bubble Chamber

Why?Why was this experiment done?

Dark matter makes up 70% of the universe.

We don’t know what dark matter is.

It might be WIMP-proton scattering.

Wimp-proton scattering is hard to detect.

…………Do WIMPs even exist??

Page 3: Spin-Dependent Wimp Limits from a Bubble Chamber

What to do?What did this experiment do?

Exclude background radiation.

Increase detection time to include WIMPs.

Improve nuclear-recoil specific detection.

Find WIMPs.

Page 4: Spin-Dependent Wimp Limits from a Bubble Chamber

Spoiler:

No WIMPs here.

Page 5: Spin-Dependent Wimp Limits from a Bubble Chamber

Outline

WIMPs Bubble Chambers Bubble Chamber tweaking

For rateFor background

Data Conclusions

Page 6: Spin-Dependent Wimp Limits from a Bubble Chamber

Outline

WIMPs Bubble Chambers Bubble Chamber tweaking

For rateFor background

Data Conclusions

Page 7: Spin-Dependent Wimp Limits from a Bubble Chamber

http://serenitythruhaiku.files.wordpress.com/2009/02/wimp.jpg

Weakly-Interacting Massive Particles

•Hypothetical super-symmetric partners

•Not much known (mass, etc)

•Like Heavy, Slow neutrinos.

•Interacts with WNF and Gravity

Axino · Chargino · Gaugino · Gluino · Gravitino · Higgsino · Neutralino · Sfermion

Page 8: Spin-Dependent Wimp Limits from a Bubble Chamber

Outline

WIMPs Bubble Chambers Bubble Chamber tweaking

For rateFor background

Data Conclusions

Page 9: Spin-Dependent Wimp Limits from a Bubble Chamber

http://maltwood.uvic.ca/physics/Libraries/imagelibrary/29-52low.jpghttp://en.wikipedia.org/wiki/Bubble_chamberhttp://beer.thetazzone.com/images/drinkBeer9.jpg

Page 10: Spin-Dependent Wimp Limits from a Bubble Chamber

Outline

WIMPs Bubble Chambers Bubble Chamber tweaking

For rateFor background

Data Conclusions

Page 11: Spin-Dependent Wimp Limits from a Bubble Chamber

“deactivate inhomogeneous bubble nucleation centers “Instead of few milliseconds, ‘indefinite’. - Good for WIMP rate of 1/kg*day worst case scenario: < 1/ton*year

Tuned to detect only particles of large stopping power (dE/dx>50keV/um) - slow and big)

Just like WIMPs

Page 12: Spin-Dependent Wimp Limits from a Bubble Chamber

A. High (60C)

B. Moderate (30C)- High dE/dx only (222Rn a-decay)

C.WIMP

Page 13: Spin-Dependent Wimp Limits from a Bubble Chamber

Outline

WIMPs Bubble Chambers Bubble Chamber tweaking

For rateFor background

Data Conclusions

Page 14: Spin-Dependent Wimp Limits from a Bubble Chamber

*****CF3I*****

Page 15: Spin-Dependent Wimp Limits from a Bubble Chamber

Outline

WIMPs Bubble Chambers Bubble Chamber tweaking

For rateFor background

Data Conclusions

Page 16: Spin-Dependent Wimp Limits from a Bubble Chamber
Page 17: Spin-Dependent Wimp Limits from a Bubble Chamber
Page 18: Spin-Dependent Wimp Limits from a Bubble Chamber

References Spin-Dependent WIMP Limits from a Bubble Chamber

E. Behnke, J. I. Collar, P. S. Cooper, K. Crum, M. Crisler, M. Hu, I. Levine, D. Nakazawa, H. Nguyen, B. Odom, E. Ramberg, J. Rasmussen, N. Riley, A. Sonnenschein, M. Szydagis, and R. Tschirhart (15 February 2008)Science 319 (5865), 933.

Wikiedia.com G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996). C. Rubbia, Nucl. Phys. B Proc. Suppl. 36, xvii (1994).