dark matters: wimp and beyond

65
Dark Matters: WIMP and Beyond Shufang Su Shufang Su U. of Arizona U. of Arizona SI 2005 SI 2005

Upload: yon

Post on 17-Jan-2016

55 views

Category:

Documents


0 download

DESCRIPTION

Dark Matters: WIMP and Beyond. Shufang Su U. of Arizona SI 2005. Outline. -. Brief introduction of standard cosmology Dark matter evidence New physics and dark matter WIMP candidates: neutralino LSP in MSSM, lightest KK particle in UED - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Dark Matters: WIMP and Beyond

Dark Matters:

WIMP and Beyond

Dark Matters:

WIMP and Beyond

Shufang Su Shufang Su

U. of ArizonaU. of Arizona

SI 2005SI 2005

Shufang Su Shufang Su

U. of ArizonaU. of Arizona

SI 2005SI 2005

Page 2: Dark Matters: WIMP and Beyond

S. Su Dark Matters 2

Outline Outline

Brief introduction of standard cosmologyBrief introduction of standard cosmology

Dark matter evidenceDark matter evidence

New physics and dark matterNew physics and dark matter

WIMPWIMP

candidates: candidates: neutralino LSP in MSSM, lightest KK particle neutralino LSP in MSSM, lightest KK particle in UEDin UED

direct/indirect DM searches, collider studiesdirect/indirect DM searches, collider studies

synergy between cosmology and particle synergy between cosmology and particle physicsphysics

superWIMPsuperWIMP

Page 3: Dark Matters: WIMP and Beyond

S. Su Dark Matters 3

Standard cosmology Standard cosmology

Einstein equationsEinstein equations

MetricsMetrics

Equations of stateEquations of state

a(t): scale factora(t): scale factor

k: -1, 0, 1 for open, flat, close universek: -1, 0, 1 for open, flat, close universe

Page 4: Dark Matters: WIMP and Beyond

S. Su Dark Matters 4

Standard cosmology Standard cosmology

Friedmann equationFriedmann equation

Hubble Hubble parameterparameter

critical densitycritical density

Page 5: Dark Matters: WIMP and Beyond

S. Su Dark Matters 5

We are living through a revolution in our We are living through a revolution in our understanding of the Universe understanding of the Universe

on the largest scaleson the largest scales

For the first time in history, For the first time in history,

we have a complete picture of the Universewe have a complete picture of the Universe

Page 6: Dark Matters: WIMP and Beyond

S. Su Dark Matters 6

DM evidence: rotation curves DM evidence: rotation curves

NGC 2403

Rotation curves of galaxies and galactic clustersRotation curves of galaxies and galactic clusters

VVcc »» const const

VVcc »» 1/r 1/r

Dark matter Dark matter in haloin halo

Constrain Constrain mm

ii==ii//cc

Page 7: Dark Matters: WIMP and Beyond

S. Su Dark Matters 7

Dark matter evidence: supernovae Dark matter evidence: supernovae

SupernovaeSupernovae

Constrain Constrain mm--

Page 8: Dark Matters: WIMP and Beyond

S. Su Dark Matters 8

Dark matter evidence: CMB Dark matter evidence: CMB

Cosmic Microwave BackgroundCosmic Microwave Background

Constrain Constrain ++mm

thethenn

nownow

Page 9: Dark Matters: WIMP and Beyond

S. Su Dark Matters 9

Remarkable agreementRemarkable agreement Remarkable precision Remarkable precision (~10%)(~10%)

Synthesis Synthesis

73% 73% §§ 4% 4%

23% 23% §§ 4% 4%

3%3%

» » 0.5%0.5%

» » 0.5%0.5%

Page 10: Dark Matters: WIMP and Beyond

S. Su Dark Matters 11

Dark matter vs. dark energy Dark matter vs. dark energy

We know We know how muchhow much, but no idea , but no idea what it is.what it is.

Dark matterDark matter Dark energyDark energy

No known particles contributeNo known particles contribute All known particles contributeAll known particles contribute

Probably tied to mProbably tied to mweakweak »» 100 100 GeVGeV

Probably tied to mProbably tied to mPlanckPlanck »» 10 101919 GeVGeV

Several compelling solutions Several compelling solutions No compelling solutionsNo compelling solutions

Page 11: Dark Matters: WIMP and Beyond

S. Su Dark Matters 12

富士山富士山

Five stationFive station

Seven stationSeven station

Dark Dark EnergyEnergy

Dark Dark MatterMatter

Ordinary Ordinary mattermatter

Page 12: Dark Matters: WIMP and Beyond

S. Su Dark Matters 13

Standard Model Standard Model

HH

uu cc tt

dd ss bb

ee ee

WW§§,Z,Z gg

QuarksQuarks

LeptonsLeptons

Gauge bosonGauge boson(force (force carrier)carrier)HiggsHiggs

No good candidates for CDM in No good candidates for CDM in SMSM

Not for cosmology Not for cosmology observationsobservations

− Dark MatterDark Matter− Cosmology constantCosmology constant− Baryon asymmetry …Baryon asymmetry …

SM is a very successful theoretical SM is a very successful theoretical frameworkframework describes all experimental observations to describes all experimental observations to datedate

CDM CDM requirementsrequirements

Gravitational Gravitational interactinginteracting

StableStable Non-baryonicNon-baryonic NeutralNeutral Cold (massive)Cold (massive) Correct Correct densitydensity

Page 13: Dark Matters: WIMP and Beyond

S. Su Dark Matters 14

New physics beyond SM New physics beyond SM

DM problem provide precise, unambiguous evidence for new physicsDM problem provide precise, unambiguous evidence for new physics

Independent motivation for new physics in particle physics

New physics to protect electroweak scaleNew physics to protect electroweak scale

new symmetry: supersymmetrynew symmetry: supersymmetry new space dimension: extra-dimensionnew space dimension: extra-dimension … …

Page 14: Dark Matters: WIMP and Beyond

S. Su Dark Matters 15

Dark matter in new physics Dark matter in new physics

Dark Matter: new stable particleDark Matter: new stable particle

in many theories, dark matter is easier to explain than no dark matterin many theories, dark matter is easier to explain than no dark matter

there are usually many new weak scale particle there are usually many new weak scale particle constraints (proton decay, large EW constraints (proton decay, large EW corrections) corrections) discrete symmetrydiscrete symmetry

stabilitystability

good dark matter candidategood dark matter candidate

Page 15: Dark Matters: WIMP and Beyond

S. Su Dark Matters 16

Dark matter candidates Dark matter candidates

mass and interaction strengths span many, many orders of mass and interaction strengths span many, many orders of magnitudemagnitude

Many ideas of DM candidates:Many ideas of DM candidates:

WIMP WIMP superWIMPssuperWIMPs primodial black holesprimodial black holes

axionsaxions warm gravitinoswarm gravitinos Q ballsQ balls wimpzillaswimpzillas

self-interacting particlesself-interacting particles self-annihilating particlesself-annihilating particles fuzzy dark matterfuzzy dark matter branonsbranons … …

appear in particle physics models motivated independentlyappear in particle physics models motivated independently by attempts to solve Electroweak Symmetry Breaking by attempts to solve Electroweak Symmetry Breaking

relic density are determined by mrelic density are determined by mplpl and m and mweakweak

naturally around the observed valuenaturally around the observed value no need to introduce and adjust new energy scaleno need to introduce and adjust new energy scale

Page 16: Dark Matters: WIMP and Beyond

S. Su Dark Matters 17

Dark matter freeze out Dark matter freeze out

Freeze out, n/s Freeze out, n/s »» constconst

WIMPWIMP

− early time early time H H n n ¼¼ n neqeq

− late timelate time H H (n/s)(n/s)todaytoday »» (n/s) (n/s)decouplingdecoupling

− at freeze-out at freeze-out ¼¼ H H TTFF »» m/25 m/25

Approximately, Approximately, relicrelic // 1/ 1/hhvvii

=n =n hhvvii v.s. H v.s. H

ffff ff ff expansionexpansionUniverse cools: Universe cools: n=nn=nEQEQee-m/T-m/T

Boltzmann equationBoltzmann equationThermal Thermal equilibriumequilibrium

$$ ff ff

Page 17: Dark Matters: WIMP and Beyond

S. Su Dark Matters 18

Relic density calculations Relic density calculations

Boltzmann equationBoltzmann equation

number density at thermal number density at thermal equilibriumequilibrium

entropyentropy

Page 18: Dark Matters: WIMP and Beyond

S. Su Dark Matters 19

Relic density calculations Relic density calculations

Define Define

Long before freeze-Long before freeze-out out

Long after freeze-Long after freeze-out out

Page 19: Dark Matters: WIMP and Beyond

S. Su Dark Matters 20

Relic density calculations Relic density calculations

Approximately, relic density today ( ) Approximately, relic density today ( )

gg**: number of relativistic degrees of freedom at the time of freeze out: number of relativistic degrees of freedom at the time of freeze out

xxFF: freeze out : freeze out temperaturetemperature

g: degrees of freedom for dark g: degrees of freedom for dark matter Xmatter Xc: O(1) constant determined by matching the late-time and early-time c: O(1) constant determined by matching the late-time and early-time solutionssolutions

Or, order of magnitude estimation: Or, order of magnitude estimation:

Resonance enhancement, coannihilation …Resonance enhancement, coannihilation …

Page 20: Dark Matters: WIMP and Beyond

S. Su Dark Matters 21

WIMP dark matter WIMP dark matter

WIMPWIMP: Weak Interacting Massive Particle : Weak Interacting Massive Particle

mmWIMPWIMP»» m mweakweak

anan »» weakweak22 m mweakweak

-2-2

hh22 »» 0.3 0.3

naturally around the observed valuenaturally around the observed value

Page 21: Dark Matters: WIMP and Beyond

S. Su Dark Matters 22

SM particle superpartnerSM particle superpartner Spin differ by 1/2Spin differ by 1/2

(H(Huu++,H,Huu

00) , (H) , (Hdd00, H, Hdd

--))

uu cc tt

dd ss bb

ee ee

BB00 WW§§,W,W00 gg

SquarkSquarkss

sleptonsleptonss

GauginGauginososHiggsinHiggsinoo

»» »» »»

»»»»»»

»» »» »»

»»»»»»

»» »» »» »»

»»»»»»»»

CDM CDM requirementsrequirements

Correct Correct densitydensity

Non-baryonicNon-baryonic NeutralNeutral ColdCold

m > 45 GeVm > 45 GeV

StableStable

gravitational gravitational interactinginteracting

weak interactionweak interaction

Supersymmetry breaking, m Supersymmetry breaking, m »» TeV TeV

Minimal Supersymmetric Standard Model (MSSM) Minimal Supersymmetric Standard Model (MSSM)

Page 22: Dark Matters: WIMP and Beyond

S. Su Dark Matters 23

Neutralino LSP as DM Neutralino LSP as DM

new weak scale particle new weak scale particle constraints constraints discrete symmetrydiscrete symmetry

stabilitystability

dark matter candidatedark matter candidate

super-partnerssuper-partners

proton decayproton decay

R-parityR-parity: : SM particle SM particle ++ super-partner super-partner --

lightest supersymmetric particle (LSP)lightest supersymmetric particle (LSP) stablestableLSP LSP SM particle, LSP SM particle, LSP super particle super particle

BB00, W, W00, H, Hdd00, H, Huu

00

Superpartner of Superpartner of gauge bosonsgauge bosons

Superpartner of Superpartner of Higgs bosonsHiggs bosons

~~ ~~ ~~ ~~

neutralinos neutralinos ii

00, i=1…4 mass eigenstates, i=1…4 mass eigenstates

Neutralino LSP: Neutralino LSP: 1100 as Dark Matter as Dark Matter

Page 23: Dark Matters: WIMP and Beyond

S. Su Dark Matters 24

Sneutrino Dark Matter Sneutrino Dark Matter

~~

~~

ZZ/l/q/l/q

/l/q/l/q

~~

~~

W/ZW/Z

W/ZW/Z

~~ff

~~

~~

/l/l

/l/l

rapid annihilation, rapid annihilation, hhAAvvii large large

light sneutrino: 45-200 GeV light sneutrino: 45-200 GeV low abundance low abundance

heavy sneutrino: 550 – 2300 GeV heavy sneutrino: 550 – 2300 GeV 0.1 0.1 1 1

− disfavored on theoretical grounddisfavored on theoretical ground− excluded by nuclear recoil direct detection: mexcluded by nuclear recoil direct detection: m ¸̧ 20 TeV 20 TeV ~~

Sneutrino CDM in MSSM is disfavoredSneutrino CDM in MSSM is disfavored

Page 24: Dark Matters: WIMP and Beyond

S. Su Dark Matters 25

Neutralino relic density Neutralino relic density

CMSSMCMSSM

0.1 0.1 hh22 0.3 (pre-WMAP) 0.3 (pre-WMAP)

110 0

1100

ff

ff

~~ff

1100

1100

++

WW

WW

t-channelt-channel(dominate)(dominate)

absent for Babsent for B00~~

~~1100

~~1100

Z,HZ,H/l/q/l/q

/l/q/l/q

s-channels-channel

important near pole important near pole mm »» m mZ,HZ,H/2/2

Cosmology excludes Cosmology excludes much of much of the parameter spacethe parameter space

too bigtoo big

cosmology focuses cosmology focuses attention attention on particular regions on particular regions

just rightjust right

Page 25: Dark Matters: WIMP and Beyond

S. Su Dark Matters 26

Bulk region and coannihilation regionBulk region and coannihilation region

bulkbulk co-annihilation

co-annihilation

mm »» m m

+X +X !! +Y in +Y in equilibriumequilibrium decays into decays into eventuallyeventually

Co-annihilation:Co-annihilation:, , , ,

~~

~~~~

~~

~~

~~

mmee=99GeV=99GeV ~~

b b !! s s

Other constraintsOther constraints

− b b !! s s : : »» 10 10-4-4

exclude small mexclude small m1/21/2

important for important for <0 <0

bb ss

− muon g-2muon g-2 th-exp=(26 th-exp=(26 §§ 16) 16)££ 10 10-10-10

CMSSMCMSSM

0.1 0.1 hh22 0.3 0.3

0.094 0.094 hh22 0.129 0.129

Ellis et. al. (2003)

Page 26: Dark Matters: WIMP and Beyond

S. Su Dark Matters 27

Focus Point RegionFocus Point Region

conventional wisdomconventional wisdom focus pointfocus point

naturalness naturalness m m00, M, M1/21/2, |, || | TeVTeV

mm00 a few TeV , a few TeV , naturalnatural

mm00 term negligible term negligible mm00 term not negligible term not negligible

||| | ÀÀ M M11 ||| | »» M M11

DM Bino-like: DM Bino-like: 1100 ¼¼ B B00 DM Bino-Higgsino DM Bino-Higgsino

mixturemixture

(100 GeV)(100 GeV)22

~~

Feng et. al. (2000)

Page 27: Dark Matters: WIMP and Beyond

S. Su Dark Matters 28

Funnel-Like RegionFunnel-Like Region

~~1100

~~1100

A,HA,Hl/ql/q

l/ql/q

Large tanLarge tan : m : m »» m mA,HA,H/2/2

// 1/ 1/hhvvii

hhvvii »» 1/(4m 1/(4m22 – m – mA,HA,H

22))2 2 too bigtoo big

too smalltoo small

Ellis et. al. (2003)

Page 28: Dark Matters: WIMP and Beyond

S. Su Dark Matters 29

Extra dimension Extra dimension

SMSM

4D4D

Universal extra dimension: Universal extra dimension:

All SM particles live in the (flat) bulk All SM particles live in the (flat) bulk

unwanted states: orbifoldunwanted states: orbifold

Bulk field: KK towerBulk field: KK towermm22 = n/R = n/R22

……00

11

22

33

1/R1/R22

2/R2/R22

3/R3/R22

Appelquist, cheng and Dobrescu (2000)

Page 29: Dark Matters: WIMP and Beyond

S. Su Dark Matters 30

Universal Extra Dimension Universal Extra Dimension

new weak scale particle new weak scale particle constraints constraints

discrete symmetrydiscrete symmetry

stabilitystability

dark matter candidatedark matter candidate

KK modes of SM particleKK modes of SM particle

momentum conservation in momentum conservation in compactified dimension + compactified dimension + orbifoldingorbifolding

KK-parityKK-parity: : odd level KK odd level KK particles particles --

lightest KK state (LKP)lightest KK state (LKP) stablestable

LKP, likely to be LKP, likely to be 11stst excitation of hypercharge gauge boson B excitation of hypercharge gauge boson B(1)(1)

Page 30: Dark Matters: WIMP and Beyond

S. Su Dark Matters 31

UED: LKP Dark Matter UED: LKP Dark Matter

Servant, Tait (2002)

Page 31: Dark Matters: WIMP and Beyond

S. Su Dark Matters 32

Dark matter detection Dark matter detection

DMDM

DMDM ff

ff

// 1/ 1/hh iiNot overclose universeNot overclose universe

Efficient annihilation thenEfficient annihilation then

DM annihilationDM annihilation

Cross Cross symmetrysymmetry

DM

DM

DM

DM

ffff

DM scatteringDM scattering

Efficient scattering now Efficient scattering now directdirect DM direction DM direction

Efficient annihilation Efficient annihilation now now

indirectindirect DM direction DM direction

Page 32: Dark Matters: WIMP and Beyond

S. Su Dark Matters 33

Direct detection Direct detection

DMDM

detectordetector

Measure nuclear recoil energyMeasure nuclear recoil energy(ionization, photo…)(ionization, photo…)

Number of targetNumber of targetnuclei in detectornuclei in detector Local WIMP densityLocal WIMP density

(astro)(astro)

scattering cross sectionscattering cross section(particle)(particle)

Page 33: Dark Matters: WIMP and Beyond

S. Su Dark Matters 34

Direct detection Direct detection

WIMPWIMP

CDMCDMSS

DAMA Signal andOthers’ Exclusion Contours

CDMS (2004)

DAMADAMA

CDMS IICDMS II

CDMSCDMSEDELWEISSEDELWEISS

Page 34: Dark Matters: WIMP and Beyond

S. Su Dark Matters 35

Current Sensitivity

Near Future

Future

Theoretical Predictions

Bae

r, Bala

zs, Belyaev, O

’Farrill (2003)

Direct detection: future Direct detection: future

BB(1

)(1

) LK

P D

M L

KP

DM

Page 35: Dark Matters: WIMP and Beyond

S. Su Dark Matters 36

Indirect detectionIndirect detection

DMDMDMDM

detectordetector

Dark Matter annihilates Dark Matter annihilates

in in (amplifier) (amplifier) to to ,, a place some particles

which are detected bywhich are detected by .. an experiment

reci

pe

reci

pe

AA // n nDMDM22

Page 36: Dark Matters: WIMP and Beyond

S. Su Dark Matters 37

Dark Matter annihilates Dark Matter annihilates

in in center of the suncenter of the sun to to neutrinos neutrinos ,,

a place some particles

which are detected bywhich are detected by AMANDA, ICECUBEAMANDA, ICECUBE.. an experiment

reci

pe

reci

pe

earthearth

Dark matter density in Dark matter density in the sun, capture ratethe sun, capture rate

Page 37: Dark Matters: WIMP and Beyond

S. Su Dark Matters 38

MSSMMSSM

Indirect detection: neutrinoIndirect detection: neutrino

UEDUED

icecubeicecube

Hooper and Wang (2003) Hooper and Krib (2002)

Page 38: Dark Matters: WIMP and Beyond

S. Su Dark Matters 39

Dark Matter annihilates Dark Matter annihilates

in in galactic center galactic center to to photons photons ,,

a place some particles

which are detected bywhich are detected by GLAST, HESSGLAST, HESS.. an experiment re

cip

ere

cip

e

Dark matter density in Dark matter density in the center of the galaxythe center of the galaxy

HESSHESS

Page 39: Dark Matters: WIMP and Beyond

S. Su Dark Matters 40

MSSMMSSM

EGRETEGRET

GLASTGLAST

Indirect detection: gamma rayIndirect detection: gamma ray

UEDUED

Hooper and Wang (2003)

Page 40: Dark Matters: WIMP and Beyond

S. Su Dark Matters 41

Dark Matter annihilates Dark Matter annihilates

in in the halo the halo to to positions positions ,,

a place some particles

which are detected bywhich are detected by AMS on the ISSAMS on the ISS.. an experiment re

cip

ere

cip

e

Dark matter density Dark matter density profile in the haloprofile in the halo

AMSAMS

Page 41: Dark Matters: WIMP and Beyond

S. Su Dark Matters 42

Comparison of pre-LHC SUSY searchesComparison of pre-LHC SUSY searches

DM searches are complementary to collider searchesDM searches are complementary to collider searches

When combined, entire cosmologically attractive When combined, entire cosmologically attractive region will be explored before LHC ( region will be explored before LHC ( »» 2007 ) 2007 )

Pre-WMAPPre-WMAP

Post-WMAPPost-WMAP

LHC searchLHC search

DM searchDM search

Page 42: Dark Matters: WIMP and Beyond

S. Su Dark Matters 43

Collider study of dark matter Collider study of dark matter

Can study those regions at collidersCan study those regions at colliders

pppp

20072007NowNow

TevatronTevatron

pp--pp

Precise determination of new particle mass and couplingPrecise determination of new particle mass and coupling

Determine DM mass, relic densityDetermine DM mass, relic density

LHCLHC

ILCILC

Page 43: Dark Matters: WIMP and Beyond

S. Su Dark Matters 44

Choose four Choose four representative points for representative points for

detailed studydetailed study

Neutralino DM in mSUGRA Neutralino DM in mSUGRA

Feng et. al. ILC cosmology working group

Baer et. al. Baer et. al. ISAJETISAJETGondolo et. al. Gondolo et. al. DarkSUSYDarkSUSYBelanger et. al. Belanger et. al. MicroMEGAMicroMEGA

Page 44: Dark Matters: WIMP and Beyond

S. Su Dark Matters 45

Bulk region LCC1 (SPS1a) Bulk region LCC1 (SPS1a)

MM00, m, m1/21/2, A, A00, tan, tan = 100, 250, -100, 10 ( = 100, 250, -100, 10 ( >o, m>o, m3/23/2>m>mLSP LSP ))

light light 1100, , 22

00, , 11§§, slepton, slepton

Weiglein, Martyn et. al. (2004)

Scan over Scan over »» 20 20 most most relevant relevant parametersparameters

compute compute hh22, , weigh weigh each point byeach point by Gaussian Gaussian distributiondistribution for each for each observableobservable

width of pdf width of pdf hh

Page 45: Dark Matters: WIMP and Beyond

S. Su Dark Matters 46

WMAPWMAP(current)(current)

PlanckPlanck(~2010)(~2010)

LHC (“best case scenario”)LHC (“best case scenario”)ILCILC

LCC1

Relic density determination: LCC1 Relic density determination: LCC1

(preliminary) result: (preliminary) result: // = 2.2% ( = 2.2% ( h h22 = 0.0026 ) = 0.0026 )

Battaglia (2005)

Page 46: Dark Matters: WIMP and Beyond

S. Su Dark Matters 47

LCC2

Foucs point region: LCC2 Foucs point region: LCC2

(preliminary) result: (preliminary) result: // = 2.4% ( = 2.4% ( h h22 = 0.0029 ) = 0.0029 )

Battaglia (2005)

MM00, m, m1/21/2, A, A00, tan, tan =3280, 300, 0, 10 ( =3280, 300, 0, 10 ( >o, m>o, m3/23/2>m>mLSP LSP ))

light neutralino/chargino light neutralino/chargino

WMAPWMAP

PlanckPlanckILCILC

LCC2

Page 47: Dark Matters: WIMP and Beyond

S. Su Dark Matters 48

Coanniliation region: LCC3 Coanniliation region: LCC3

(preliminary) result: (preliminary) result: // = 7% ( = 7% ( h h22 = 0.0084 ) = 0.0084 )

Battaglia (2005)

MM00, m, m1/21/2, A, A00, tan, tan =210, 360, 0, 40 ( =210, 360, 0, 40 ( >o, m>o, m3/23/2>m>mLSP LSP ))mm »» m mstaustau

LCC3WMAPWMAP

PlanckPlanckILCILC

Page 48: Dark Matters: WIMP and Beyond

S. Su Dark Matters 49

Synergy Synergy

Relic Density Indirect DetectionRelic Density Indirect Detection Direct DetectionDirect Detection

Astrophysical and Cosmological InputsAstrophysical and Cosmological Inputs

Collider InputsCollider Inputs

Weak-scale ParametersWeak-scale Parameters

DM AnnihilationDM Annihilation DM-DM-NN Interaction Interaction

parts per mille parts per mille agreement for agreement for discovery discovery of dark matterof dark matter

local DM density local DM density and velocity and velocity profileprofile

eliminate particle physics eliminate particle physics uncertaintyuncertaintydo real astrophysicsdo real astrophysics

Page 49: Dark Matters: WIMP and Beyond

S. Su Dark Matters 50

Alternative dark matter Alternative dark matter

But the relic density argument But the relic density argument strongly prefers weak strongly prefers weak interactions.interactions.

All of the signals rely on DM having EW interactions.All of the signals rely on DM having EW interactions.

Is this required?Is this required?

CDM CDM requirementsrequirements

Gravitational Gravitational interactinginteracting (much weaker(much weaker than than electroweak)electroweak)

StableStable Non-baryonicNon-baryonic NeutralNeutral Cold (massive)Cold (massive) Correct Correct densitydensity

NO!NO!

DMDM -1-1

((gravitational gravitational coupling)coupling)-2-2

● too smalltoo small

● DMDM too big too big

overcloseoverclose the Universe the Universe

Page 50: Dark Matters: WIMP and Beyond

S. Su Dark Matters 51

SWIMPSWIMPSMSM

101066

superWIMP superWIMP

Feng, Rajaraman and Takayama (2003)

101044 s s t t 10 1088 s s

superWIMPsuperWIMP

e.g. Gravitino e.g. Gravitino LSPLSP LKK LKK gravitongraviton

WIMPWIMP

neutralneutral chargedcharged

WIMP WIMP superWIMP + SM particles superWIMP + SM particles

WIMPWIMP

Page 51: Dark Matters: WIMP and Beyond

S. Su Dark Matters 52

superWIMP : an example superWIMP : an example

SUSY caseSUSY case WIMP WIMP superWIMP + SM particles superWIMP + SM particles

Charged sleptonCharged sleptonSuperpartner of leptonSuperpartner of lepton

GravitinoGravitinoSuperpartner of gravitonSuperpartner of graviton

EM, had. cascadeEM, had. cascade

change CMB change CMB spectrumspectrum

change light change light element element

abundance predicted abundance predicted

by BBNby BBN

Strong constraints !Strong constraints !

WIMPWIMP

superWIMPsuperWIMP

SM particleSM particle

»» 11

mmplpl

Decay lifetime Decay lifetime planck mass planck mass

Page 52: Dark Matters: WIMP and Beyond

S. Su Dark Matters 53

Gravitino Gravitino

Gravitino: superpartner of gravitonGravitino: superpartner of graviton

Obtain mass when SUSY is spontaneously broken Obtain mass when SUSY is spontaneously broken mmGG »» F/m F/mplpl

Stable when it is LSP Stable when it is LSP - candidate of Dark Matter- candidate of Dark Matter

~~

mmG G »» m mSUSYSUSY

»» GeV – TeV GeV – TeV

coldcold Dark Matter Dark Matter

~~mmGG ¿¿ m mSUSYSUSY

» » keVkeV

warmwarm Dark Matter Dark Matter

~~

Page 53: Dark Matters: WIMP and Beyond

S. Su Dark Matters 54

Gravitino: warm dark matter Gravitino: warm dark matter

mmG G ¿¿ m mSUSYSUSY (GMSB)(GMSB)

~~ hh22 »» (m (mGG/keV) (100/g/keV) (100/g**))

mmGG »» keV : keV : warmwarm Dark Matter Dark Matter

mmGG keV : keV : problematic !problematic !

gravitino dilution necessarygravitino dilution necessary

stringent bounds on reheating temp. stringent bounds on reheating temp.

~~

~~

Moroi, Murayama and Yamaguchi, PLB303, 289 (1993)

~~

Page 54: Dark Matters: WIMP and Beyond

S. Su Dark Matters 55

Gravitino cold dark matter Gravitino cold dark matter

mmG G »» m mSUSYSUSY »» GeV – TeV GeV – TeV (supergravity)(supergravity)

~~

thermalthermalLSPLSP vv-1-1

((weak weak coupling)coupling)-2-2

GG~~

~~ ll~~ LSPLSP

WIMPWIMP

GG~~~~ ll

~~LSPLSP

superWIMPsuperWIMPDMDM

G G LSP + SM LSP + SM

BBN constraints:BBN constraints: TTRHRH 10 1055 – 10 – 1088 GeV GeV

Conflict with thermal leptogenesis:Conflict with thermal leptogenesis: TTRHRH 3 3 ££ 10 1099 GeV GeV

~~

Bolz, Brandenburg and Buchmuller,NPB 606, 518 (2001)Kawasaki, Kohri and Moroi, asrtro-ph/0402490, astro-ph/0408426

Buchmuller, Bari, Plumacher, NPB665, 445 (2003)

Kohri, Moroi and Yotsuyanagi, hep-ph/0507245

Y Y // T TRHRH

TTRHRH 10 101010 GeV GeV

Page 55: Dark Matters: WIMP and Beyond

S. Su Dark Matters 56

BBN constraints BBN constraints

??

Fie

lds,

Sark

ar,

PD

G (

20

02

)

Big bang nucleosynthesisBig bang nucleosynthesis

10-10 = 6.1 0.4

Late time particle decayLate time particle decay

Change light element abundanceChange light element abundance

Page 56: Dark Matters: WIMP and Beyond

S. Su Dark Matters 57

BBN constraints on EM/had injection BBN constraints on EM/had injection

EM,hadEM,had==EM,hadEM,had Br BrEM,hadEM,had YYNLSPNLSP

Decay lifetime Decay lifetime NLSPNLSP

EM/had energy releaseEM/had energy release

» » mmNLSPNLSP-m-mGG~~

Cyburt, Ellis, Fields and Olive, PRD 67, 103521 (2003)

EMEM

EM

(G

eV)

Kawasaki, Kohri and Moroi, astro-ph/0402490

hadhad EMEM

Page 57: Dark Matters: WIMP and Beyond

S. Su Dark Matters 58

Viable parameter spaceViable parameter space

slepton and sneutrinoslepton and sneutrino approach I:approach I: fix fix GG = = 0.230.23

~~

apply CMB and BBN constraints on (apply CMB and BBN constraints on (NLSPNLSP, , EM/hadEM/had ))

viable parameter spaceviable parameter space

NLSPNLSP, , EM,hadEM,had==EM,hadEM,had B BEM,hadEM,had Y YNLSPNLSP m m ·· 80 80 »» 300 GeV 300 GeV200 GeV 200 GeV ·· m m ·· 400 400 »» 1500 GeV 1500 GeV

mmGG ¸̧ 400 GeV 400 GeV~~

Feng, SS and Takayama (2004)

Page 58: Dark Matters: WIMP and Beyond

S. Su Dark Matters 59

superWIMP in mSUGRA superWIMP in mSUGRA

BBN EM constraints only

Stau NLSP

Ellis et. al., hep-ph/0312262

superWIMP allowed regionsuperWIMP allowed region

Usual WIMP allowed regionUsual WIMP allowed region

Page 59: Dark Matters: WIMP and Beyond

S. Su Dark Matters 60

Collider phenomenology Collider phenomenology

SWIMP Dark MatterSWIMP Dark Matter

no signals in direct / indirect dark matter searchesno signals in direct / indirect dark matter searches

SUSY NLSP:SUSY NLSP: rich collider phenomenologyrich collider phenomenology

NLSPNLSP in SWIMP in SWIMP: : long lifetime long lifetime stable inside the detectorstable inside the detector

Charged slepton Charged slepton highly ionizing trackhighly ionizing track

neutral WIMPneutral WIMP missing energymissing energy

Page 60: Dark Matters: WIMP and Beyond

S. Su Dark Matters 61

WIMP pair production:WIMP pair production: via detailed balancevia detailed balance

1/2: i,j,identical1/2: i,j,identical1: otherwise1: otherwise

relative velocity of two WIMP in CM framerelative velocity of two WIMP in CM framespinspin

Model independent DM production Model independent DM production

WIMPWIMP, , SWIMPSWIMP DMDM

WIMP annihilate efficiently in early universeWIMP annihilate efficiently in early universe

WIMP be produced efficiently at collidersWIMP be produced efficiently at colliders

Birkedal, Matchev and Perelstein, PRD70, 077701 (2004)

Upper bound on Upper bound on

Lower bound on ratesLower bound on rates

Page 61: Dark Matters: WIMP and Beyond

S. Su Dark Matters 62

superWIMP: Discovery limit superWIMP: Discovery limit

10 events reach10 events reach

P-waveP-waveSSXX=0=0mmSWIMPSWIMP/m/mWIMPWIMP=0.6=0.6

Scale as Scale as (2 S(2 SXX+1)+1)-2-2 and and (m(mSWIMPSWIMP/m/mWIMPWIMP))-1-1

(L=30 fb(L=30 fb-1-1)) (L=1 ab(L=1 ab-1-1))

(L=1 ab(L=1 ab-1-1), E), Ecmcm=2.8 m=2.8 mWIMPWIMP ( (=0.7)=0.7)

Signal: Signal: two isolated charged track free of hadron two isolated charged track free of hadron activityactivity

Background free !Background free !

Feng, SS and Takayama (2005)

Page 62: Dark Matters: WIMP and Beyond

S. Su Dark Matters 63

Neutral WIMP Neutral WIMP

WIMP pair production is invisibleWIMP pair production is invisible

Consider monojet event: eConsider monojet event: e++ee-- !! X X X X

ILC: L=500 fb-1

Birkedal, Matchev and Perelstein (2004)

Page 63: Dark Matters: WIMP and Beyond

S. Su Dark Matters 64

NLSPNLSP

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

NLSPNLSPSMSM

~~GG

SMSM

How to trap How to trap slepton?slepton?

● Decay life time Decay life time

● SM particle energy/angularSM particle energy/angular distribution …distribution … mmGG

mmplpl … …

~ ~

Probes gravity in a Probes gravity in a particle physics particle physics experiments!experiments!

BBN, CMB in the labBBN, CMB in the lab

Precise test of Precise test of supergravity: gravitino is a supergravity: gravitino is a graviton partnergraviton partner

Hamaguchi, kuno, Nakaya, Nojiri, hep-ph/0409248Feng and Smith, hep-ph/0409278

Page 64: Dark Matters: WIMP and Beyond

S. Su Dark Matters 65

Slepton trapping Slepton trapping

Slepton could live for a year, Slepton could live for a year, so can be trapped then moved so can be trapped then moved to a quiet environment to to a quiet environment to observe decaysobserve decays

LHC: 10LHC: 1066 slepton/yr possible, slepton/yr possible, but most are fast. but most are fast. Catch 100/yr in 1 kton waterCatch 100/yr in 1 kton water

LC: tune beam energy to LC: tune beam energy to produce slow sleptons, produce slow sleptons, can catch 1000/yr in 1 kton watercan catch 1000/yr in 1 kton water

Feng and Smith, hep-ph/0409278

Page 65: Dark Matters: WIMP and Beyond

S. Su Dark Matters 66

Conclusion Conclusion

We now know the composition of the We now know the composition of the UniverseUniverse

No known particle in the SM can be DMNo known particle in the SM can be DM

precise, unambiguous evidence for new precise, unambiguous evidence for new physicsphysics

New physics New physics

new stable particle as DM candidatenew stable particle as DM candidate

WIMP: neutralino LSP in MSSM, LKP in UEDWIMP: neutralino LSP in MSSM, LKP in UED

direct/indirect DM searches, collider studiesdirect/indirect DM searches, collider studies

synergy between cosmology and particle synergy between cosmology and particle physicsphysics

superWIMP: superWIMP: new viable candidate for DMnew viable candidate for DM