spin current vs. charge current in magnetic nanostructuresykis07.ws/presen_files/20/...s. maekawa...

31
S. Maekawa (IMR, Tohoku University) Spin Current vs. Charge Current Spin Current vs. Charge Current in Magnetic Nanostructures in Magnetic Nanostructures Contents: (i) Spin current, (ii) Spin accumulation, (iii) Spin Hall effect, (iv) Spin current pumping. (Charge current Spin Current) YKIS2007 (November 20 ,2007)

Upload: others

Post on 09-Aug-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

S. Maekawa(IMR, Tohoku University)

Spin Current vs. Charge Current Spin Current vs. Charge Current

in Magnetic Nanostructuresin Magnetic Nanostructures

Contents:(i) Spin current,(ii) Spin accumulation,(iii) Spin Hall effect,(iv) Spin current pumping.

(Charge current Spin Current)

YKIS2007 (November 20 ,2007)

Page 2: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

FM current

normal metalsuperconductorhybrid device

charge current : cJ J J↑ ↓= +

sJ J J↑ ↓= −spin current :

Contents:(i) Spin accumulation,(ii) Spin current,(iii) Spin Hall effect,(iv) Spin current pumping.

Page 3: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

What is a ferromagnet ?

Cu Fe,Co,Ni La1-xSrxMnO3CrO2

( )μ ↓ ↑= −BM N N

N N↑ ↓= N N↓ ↑> 0N N↓ ↑> =Electron number :

Atomic energy : i iε ε↑ ↓= i iε ε↓ ↑< i iε ε↓ ↑=

E

E E

EF

(half-metal)

Electric current :charge current :

cJ J J↑ ↓= + sJ J J↑ ↓= −spin current :J J↑ ↓≠ Magnetization :

Page 4: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Spin diffusion length(λN)

10 nm ~ 1 μm

λN

Ferromagnet MetalSemicond.Supercond.

λN

Spin Electronics Device !

Device size <

(Charge current usual electronics)

Page 5: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Tunnel magnetoresistance (TMR)

Parallel alignment Antiparallel alignment

(S. Maekawa and U. Gafvert: IEEE Mag. 18, 707 (1982))

Page 6: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Spin accumulation :

( ):

↑↓

Antiparallel alignment

( ):

↑↑

Parallel alignment

Page 7: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Antiparallel alignment

“Spin accumulation” “Spin current”

Parallel alignment

Page 8: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Spin accumulation in High-Tc superconductors :

(Z.W. Dong et al.: APL 71, 1718 (1997))

Critical current

Injection current

injI

injI

I I

V

Page 9: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Zeeman Effect Spin Accumulation

BHμ

BHμ

δμδμ

02 PeVΔ ≈

Magnetization( )BM n nμ ↑ ↓= −

Pair breaking :02 BHμΔ ≈

Page 10: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

For Al,0 ~ 0.4 meVAlΔ

-3~ (10 V) ( ~ 1)bV O P~ (1 T)H O

Al AlB S(0) 4 (1Oe)M N PeV B M Oμ π→ =: :

For YBCO,0 0100 YBCO AlΔ Δ:

-1(10 V)bV O:

2(10 T)H O:

4(10 Oe)YBCOSB O:

2(0) 10 (0)YBCO AlN N⎡ ⎤⎣ ⎦:

Spin accumulation >> Zeeman effect

Page 11: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

theory

Au

(S. Takahashi, H. Imamura, S.M., PRL. 82, 3911 (1999)

Page 12: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Spin accumulation signal:Spin accumulation signal:

P AP( ) /SR V V I= −

PP

APAP

650 nm10 mS

LR

== Ω

Non-Local Spin Accumulation Device, F. J. Jedema et. al., Nature 416, 713 (2002)

PP

Co-Al-Co

APAP

Page 13: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

( )N xδμ μ μ↓↑

= −

spin

j j jj j j

↑ ↓

↑ ↓

= +⎧⎨ = −⎩

Spin accumulation:

Charge and Spin currents:

Non-local geometryfor measurement

NP AP

2 2 2 /S

V V eRI I

δμ−= =

2PeV+

AP2eV−

Spin accumulation signal:

xL0

x

Top view

Side view

F1 F2N

Page 14: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

( )

( ) ( )

2

22s

0

1

σ μ σ μ

μ μ μ μλ

↑ ↑ ↓ ↓

↑ ↓ ↑ ↓

∇ + =

∇ − = −

Basic equations for Electro-chemical potential:

Charge conservation

Spin diffusion

, e e

σ σμ μ↑ ↓

↑ ↑ ↓ ↓= − ∇ = − ∇j j

Spin-dependent currents:

F FF

F F

p σ σσ σ

↓↑

↓↑

−=

+

N N N

F F F F F

12

,

( )

N :

F :

σ σ σ

σ σ σ σ σ

↓↑

↓ ↓↑ ↑

= =

≠ = +

s : spin diffusion lengthλ

8 μΩcm5 nm*Py14 μΩcm

6 μΩcm1.4 μΩcm

ρ

50 nm*

650 nm1000 nm

λS

Co

CuAl

( ) s/ exp xμ μ λ↑ ↓− ∝ −

(Py: Ni80Fe20)

Jedema et al.

Τ = 4.2Κ

*Bass and Pratt

Bulk spin polarizationof F:

F 50 70%*p = :

Page 15: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

1 2

N

N N N

600 , 1200 , 100 A6 cm

250nm 50nm

R R I

A w d

μρ μ

= Ω = Ω =⎧⎪ = Ω⎨⎪ = = ×⎩

Co-Al-Co tunnel device

P AP N/2T N L

SV V

IR P R e λ−−

= =

N 650nmλ =

N 350nmλ =

N NN

N

3 RA

ρ λ= = Ω

NN

/N

12

( ) xx e eP R I λδμ −= ⋅

SR

L

15 eV

μ14 2 43

N Fitting parameter: , P λ

T 0.1P =

(F. J. Jedema et al., Nature 416, 713 (2002)S. Takahashi and S.M., PRB 67, 052409 (2003))

Page 16: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Hall effect

current

magneticfield

Spin Hall effect

Spin current ( )J J↑ ↓−

current

(Anomalous Hall effect)

J↓

J↑

spin current

spin current:

current:IInjection current:

J J↑ ↓−

J J↑ ↓+

Ferromagnet

Normal metal / semiconductor

Page 17: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Spin Hall effect :

Intrinsic Spin Hall Effect:Spin-Orbit Coupling in the Band Structure

Ballistic transport

Extrinsic Spin Hall Effect:Spin-Orbit Scattering of Electrons

Diffusive transport

Experiments:Valenzuela & Tinkham, Nature 442, 176 (2006).Saitoh et al., APL 88, 182509 (2006)Kimura et al., PRL 98,156601(2007),

metallic systems

Anomalous Hall effect in ferromagnets

Page 18: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

side jump

Boltzman equation for AHE (Anomalous Hall Effect):

Hamiltonian:† †

, , k k k kk k k

k k ka a U a aσσ

σ σ σ σσ σ σ

ξ ′′ ′ ′

′ ′

= +∑ ∑ ∑H

( ) ( )ˆ ˆimp so ji k k r

kkj

U u i k k eσσσσ σσδ λ σ ′− ⋅′

′ ′ ′⎡ ⎤′= + ⋅ ×⎣ ⎦∑

Impurity potential:

Current density with spin σ :

spin-orbit scatt. 1 4 4 2 4 43

†ˆ k kk

kkj e a amσ σ σ

σ

σω⎡ ⎤= +⎢ ⎥⎣ ⎦∑ h

Anomalous velocity: ˆF imp

sok kk σσσ λ

ω τ σ⎡ ⎤= ×⎣ ⎦

Fermi distribution function:

0 0 0imp SS imp k k k k k

kf f v f fmσ σ σ σσ στ α τ σ⎡ ⎤= − ⋅∇ + × ⋅∇⎢ ⎥⎣ ⎦h

(2 ) (0)SS impso/3 N uα π λ=

skew scattering

Page 19: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

q,x xN SH

s,y ySH N

J EJ eN

/δμ

σ σσ σ

−⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥ −∇⎣ ⎦⎣ ⎦ ⎣ ⎦

Spin Hall conductivity:

s,x xN SH

q,y ySH N

J eJ E

N/

δμσ σσ σ

−∇−⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

SH SH SHSS SJ σ σ σ= +

( )N

/q N

s N

j Ej e

σσ δμ

=⎧⎨ = − ∇⎩

spin // x[ ]⎧ = + ×⎪⎨ ⎡ ⎤= + ×⎪ ⎣ ⎦⎩

q q H

s s H q

sJ j x j

J j x j

α

α

σ αyq y

zj E x jN H spin⎡ ⎤= + ×⎣ ⎦

x

σ δμ αNzs

IJ xe z AN H

Pt

⎡ ⎤∂= − + ×⎢ ⎥∂ ⎣ ⎦

z

y

Spin current

Charge current

Charge current

Spin current

Page 20: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Room Temperature Spin Hall EffectT. Kimura (ISSP, RIKEN), Y. Otani (ISSP, RIKEN), T. Sato (ISSP)S. Takahashi (IMR, CREST), S. Maekawa (IMR, CREST)

( Phys. Rev. Lett. 98, 156601(2007))

Nonlocal Spin Hall device

``Conversion between charge-current and spin-current’’

Page 21: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

スピン流

スピン流電荷蓄積

Py

Pt

Cu

IV

[ ]H =S Q

VRI

Δ→

Spin-current induced Spin Hall effect

PyPt

Cu

1 2 3

(Kimura et al.)

Page 22: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

-200 -100 0 100 200

-0.1

-0.05

0

0.05

0.1

ΔΩ

V/I

C (

m)

ΔΩ

V/I

C (

m)

VC

IeM

H

ΔRSHE

a

b

-0.03

0

0.03

0.06

μ0H (mT)

RT

77 K

Nonlocal Spin Hall resistivity

Page 23: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

スピン蓄積

Py

Pt

Cu

電流

IV

[ ] →Q S

VRISH = Δ

Charge-current induced Spin Hall effect

スピン蓄積

1 2 3

Page 24: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

ΔΩ

V/I

S (

m)

ΔΩ

V/I

S (

m)

VS

IeM

H

a

b

-0.06

-0.03

0

0.03

0.06

-200 -100 0 100 200-0.2

-0.1

0

0.1

0.2

μ0H (mT)

RT

77 K

Nonlocal Spin Hall resistivity

Page 25: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

IV I

V

[ ] →Q S

VRISH = Δ

Onsager Reciprocal Relation!!

[ ] →S Q

VRISH = Δ

Charge-current induced SHESpin-current induced SHE

Charge-current Spin-current

Page 26: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Valenzuela & Tinkham:

1.8 ×104

τsf / τ

Alb2 0.011λso

4.15 ×10−10 Ωcm2

ρNλN

5.88 μΩcm705 nm

ρNλN

◎ Side jump analysis:

kF=1. 5 ×108 cm−1 (Au)

41 10

0.011

SJSJ so

F imp

so

SHH

N k lσ λσ

λ

α −⎧= = ×⎪

⎨⎪⎩

:

:

( )110F imp imp so k l l λ: =

Spin-current induced Spin Hall effect:

(Nature 442, 176 (2006))

Page 27: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Spin pumping:

[ ] ∂⎛ ⎞∝ ×⎜ ⎟∂⎝ ⎠S j

SI St

α

α

x

z

IS

S

H

Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect E. Saitoh et al., APL88 (2006)

Page 28: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

0.21502.2 ×10−11 Ωcm22.45 μΩcm90 nmAue

0.0111800041.5 ×10−11 Ωcm25.88 μΩcm705 nmAlc

0.074756.8 ×10−11 Ωcm23.50 μΩcm195 nmAgd

0.031230015.0 ×10−11 Ωcm21.00 μΩcm1500 nmCub

0.26331.8 ×10−11 Ωcm212.8 μΩcm14 nmPtf

2100

τsf / τ

0.03314.3 ×10−11 Ωcm21.43 μΩcm1000 nmCua

λsoρNλNρNλN

14 K2F N N

soRk

λρ λ

⎛ ⎞≈ ⎜ ⎟

⎝ ⎠24

9sfso

τ λτ

=

kF=1.5 ×108 cm−1T=4.2K

2

N sf

N

Dm

ne

λ τ

ρτ

⎫=⎪⎬

= ⎪⎭25.8K

2/ kR h e= ≈ Ω

2 2

32

sfN N

F

hk e

=τπρ λτ

a) Jedema et. al., b) Kimura et. al.(77K), c) Valenzuela&Tinkham, d) Godfrey&Johnsone) Seki et al..(RT), f) Kurt et. al.

Spin-orbit coupling : λso

Page 29: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Spin-orbit interaction strength in Pt and Auis about 30 times larger than that in Al.

( ) 30,( )

H

H

Pt Al

αα

=( ) 30,( )

so

so

PtAl

λλ

=

Pt, Au: Strong spin-orbit materialSpin absorberSpin generator

Page 30: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

Takahashi, MaekawaPRL88, 116601 (2002)

Page 31: Spin Current vs. Charge Current in Magnetic Nanostructuresykis07.ws/presen_files/20/...S. Maekawa (IMR, Tohoku University)Spin Current vs. Charge Current in Magnetic Nanostructures

S. Maekawa(IMR, Tohoku University)

Spin Current vs. Charge Current Spin Current vs. Charge Current

in Magnetic Nanostructuresin Magnetic Nanostructures

Contents:(i) Spin current,(ii) Spin accumulation,(iii) Spin Hall effect,(iv) Spin current pumping.

(Charge current Spin Current)

YKIS2007 (November 20 ,2007)