spectral transforms spectral vegetation indiceslees.geo.msu.edu/courses/geo827/lecture8_vis.pdf ·...

77
SPECTRAL TRANSFORMS Spectral Vegetation Indices GEO 827 October 15, 2015

Upload: others

Post on 01-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

SPECTRAL TRANSFORMSSpectral Vegetation Indices

GEO 827

October 15, 2015

Page 2: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

• Read EVI ATBD at the following site:– http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf

• Answer the following questions:

– What are the major reasons to include blue band in EVI and how does the blue band improve the “quality” of EVI index?

– How were the coefficients a, b, c derived and are they suitable for your study?

Fall 2015

Page 3: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Need for SVI

• Simplified PCT or first few principal components

• Feature-Space– Each eigenvalue “represents” a feature

• What if you are primarily interested in vegetation or crop or forest information?

• Greenness is primarily associated with “green” which can be directly linked to– Total amount of green biomass

– Total amount of green cover (percentage covered with green materials)

– Direct links to the fPAR (fraction of absorbed photosynthetically active radiation)

Page 4: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Topics to Be Addressed

– VI Development

– Computation

– Comparison

– Limitation,

– Interpretation

– Their relationships biophysical parameters

Page 5: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Topics to Be Covered

• Background on Vegetation Indices

• New Development

• Potentials

• Issues

Page 6: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

0

0.2

0.4

0.6

0.8

Sp

ec

tra

l r

ef

lec

tan

ce

s

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength(um)

Landsat 5 TM

EO-1 Hyperion

Landsat 7 ETM+

EO-1 ALI

Green Vegetation

Senescent vegetation

Bare soil

Rationale

Page 7: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

0

0.2

0.4

0.6

0.8

NIR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

RED

SOIL LINE

NIR = 1.05 + 0.037Red

Rsquared = 0.98

1:1 line

Soil Line Concept

Page 8: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Types of VIs

RED

NIR

Soil Line

Slope

1. Slope-based measure

Page 9: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

• RATION BASED INDICES:

– RVI (SR)

– NDVI: Normalized difference vegetation

index

RED

NIRSRRVI )(

REDNIR

REDNIRNDVI

Page 10: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

RED

NIR

Soil Line

Distance from soil line

2. Distance-based measure

Page 11: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

• DISTANCE BASED INDICES

– PVI: Perpendicular Vegetation Index

WDVI:Weighted Difference Vegetation Index

PVI NIRRED

WDVI NIR RED

Page 12: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

• DEVELOPMENT FOCUS:

1. Soil noise reduction

2. Atmospheric reduction

3. Vegetation sensitivity

4. Bidirectional Normalization

Page 13: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-0.40 -0.20 0.00 0.20 0.40

Red

NIR

Isoline Concept

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-0.40 -0.20 0.00 0.20 0.40

Red

NIR

Page 14: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-0.40 -0.20 0.00 0.20 0.40

Red

NIR

Isoline Concept

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-0.40 -0.20 0.00 0.20 0.40

Red

NIR

Page 15: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

• SAVI: Soil Adjusted Vegetation Index

• Various versions of this index include:

– TSAVI: Transformed SAVI

– SAVI2

– MSAVI: Modified SAVI

– OSAVI:Optimized SAVI

SAVI NIRRED

NIR RED L(1 L)

Page 16: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

• MSAVI: Modified Soil Adjusted Vegetation Index

• By solving this equation, MSAVI is like this:

MSAVI NIR RED

NIR RED (1 MSAVI)(11MSAVI)

MSAVI 2NIR 1 2NIR1

2 8(NIR RED)

2

Page 17: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices• Introducing a combination of red and

blue bands,

• Using this equation to replace the

Red in NDVI yields Atmospheric

Resistance Vegetation Index (ARVI)

ARVI NIRRB

NIR RB

RB Red (Blue Red )

Page 18: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices• Soil Adjusted ARVI (SARVI) and later

improved EVI (enhanced vegetation index) is proposed as a MODIS product:

1.0 and 7.5, 6.0, be todeterminedy empiricall are ,,

)1(

21

21

LCC

LLBlueCREDCNIR

REDNIREVI

Page 19: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Aerosol Free Vegetation Index

• Longer wavelengths tend to have less or little scattering

• What if we found that there is a correlation between red and MIR spectral bands? Can we then use such relationship to reduce atmospheric effect?

• Karnieli et al., RSE 77 (2001), pp10-21

Page 20: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 21: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

AFRI (Continued)

r0.469 = 0.25 r2.1

r0. 645 = 0.5 r2.1

Here MIR can be either band 5 or band 7 of Landsat TM or ETM+

MIRNIR

MIRNIRMIRNDVI

rr

rr

From Karnieli et al., RSE 77 (2001), pp10-21

Page 22: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

AFRI (Continued)

r0.469 = 0.25 r2.1

r0. 645 = 0.5 r2.1

Here MIR can be either band 5 or band 7 of Landsat TM or ETM+

)1( LL

SAVIMIRNIR

MIRNIRMIR

rr

rr

From Karnieli et al., RSE 77 (2001), pp10-21

Page 23: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

AFRI (Continued)

r0.469 = 0.25 r2.1

r0. 645 = 0.5 r2.1

Here MIR can be either band 5 or band 7 of Landsat TM or ETM+

MIRNIR

MIRNIRMIR

a

aAFRI

rr

rr

From Karnieli et al., RSE 77 (2001), pp10-21

Page 24: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

AFRI (Continued)

r0.469 = 0.25 r2.1

r0. 645 = 0.5 r2.1

Here MIR can be either band 5 or band 7 of Landsat TM or ETM+

)1( LLa

aAFRI

MIRNIR

MIRNIRsave

rr

rr

From Karnieli et al., RSE 77 (2001), pp10-21

Page 25: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 26: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 27: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 28: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 29: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

• Non-Linear Vegetation Index

– Global Environmental Monitoring Index

GEMI (1 0.25)RED 0.125

1 RED

2(NIR2 RED2)1.5NIR .5RED

NIR RED 0.5

Page 30: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Indices

6Blue1i4Bluei3

2

Blue2

2

i1

6Blue5i4Bluei3

2

Blue2

2

i1vi

ρρρρρρ

ρρρρρρ

r

Step 1. Optimize this equation against model prediction at the

top of the atmosphere

Step 2. Optimize it again against biophysical parameter such as

fPAR

Step 3. Obtain a set of coefficients and compute the VI value

Page 31: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

0

0.2

0.4

0.6

0.8

Sp

ec

tra

l re

fle

cta

nc

es

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Wavelength(um)

Vegetation Indices• Angular Vegetation Index

– 1st and 2nd Derivatives

– AVI

Page 32: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

NDVI = (NIR — VIS)/(NIR + VIS)

http://earthobservatory.nasa.gov/Library/MeasuringVegetation/

Page 33: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

VI Family TreeRATIO-BASED DISTANCE-BASED

RVI and NDVI SBR, PVI, WDVI, DVI

SAVI

SAVI2, TSAVI, MSAVI, OSAVI,

ARVI

SARVI, MSARVI.

Non-Linear Index

GEMI:

Global Environmental Monitoring Index

ANGULAR INDEX

1st and 2nd Derivatives

AVI

EVI MVIMODIS

MISR and VI

Page 34: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

N.H. Broge, J.V. Mortensen / Remote Sensing of Environment 81 (2002) 45–57

Page 35: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 36: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 37: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Water stress :use of SWIR Band

• SWIR bands are not only sensitive to water

content, but also to senescent components such

as litters and crop residues

• Example use is to extract senescent grasses

(normalized difference senescent vegetation

index or normalized difference water index

(NDWI)

SWIRNIR

SWIRNIRLSWI

NIRSWIR

NIRSWIRNDSVI

Page 38: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Land Surface Water Index:

LSWI = (ρred– ρswir) / (ρred + ρswir)

-Xiao et al., 2002

Senescent Vegetation Index:

NDSVI = (ρswir – ρred) / (ρswir + ρred)

Qi et al., 2002

ρred and ρswir = atmospherically corrected surface reflectance in the red (620–670 nm), short wave infrared (SWIR1: 1628–1652 nm) wavelength, respectively

Water Content Indices

Page 39: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

GEO 827 - Digital Image

Processing and Analysis

/ Geo424 Advanced

Remote Sensing (D.

Lusch)

Physical Basis of Remote Sensing

Vegetation reflectance in the SWIR

Primary

biophysical

control of

reflectance

Internal leaf

moisture content

Page 40: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 41: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

LSWI annual composite from 500m MODIS

derived 8-day Surface reflectance MOD09A1

Low : -0.309

Annual LSWI

High : 0.743

Note:image displayed

with 2 SD for contrast

0 250 500 750125 Kilometers

±

Projection: Albers equal area

Datum: WGS 84

Page 42: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

LSWI annual SD from 500m MODIS derived 8-

day Surface reflectance MOD09A1

SD LSWI

High : 2.190

Low : 0.003

0 250 500 750125 Kilometers

Note:image displayed

with 2 SD for contrast

±

Projection: Albers equal area

Datum: WGS 84

Page 43: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

NDSVI annual composite from 500m MODIS

derived 8-day Surface reflectance MOD09A1

0 250 500 750125 Kilometers

Note:image displayed

with 2 SD for contrast

Annual NDSVI

High : 0.610

Low : 0.000

±

Projection: Albers equal area

Datum: WGS 84

Page 44: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

0 250 500 750125 Kilometers

NDSVI annual SD from 500m MODIS derived

8-day Surface reflectance MOD09A1

Note:image displayed

with 2 SD for contrast

SD NDSVI

High : 0.347

Low : 0.000

±

Projection: Albers equal area

Datum: WGS 84

Page 45: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Han et al 2006

Page 46: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Plannar Indices

Ts – Ta or so

Veg

eta

tio

n In

dex

1. Well watered full cover

2. Stressed full cover

3. Well watered soil

Stressed (Dry) soil

CA B

WDI = AC / AB is a measure of stress or components

3. Two-D index

Page 47: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Wang et al 2014

Page 48: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Characteristics of P-Index

• Use more than one spectral dimension usually measured in very different spectral regions

• Unlike “Red-NIR”, these indices extract different features

• Usually different data sources

Page 49: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Planner Indices

Page 50: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Crop Water Stress Index (CWSI): estimate of crop water status for min and max levels of

water stress that can occur due to availability or unavailability of water

CWSI = (dTm − dTLL)/(dTUL − dTLL) ………………………………..(1)

where dT is difference between canopy and air (Tlst − Tair) and m, LL, and UL represent

measured, lower limit (non-water-stressed), and upper limit (severely-stressed) of dT,

respectively.

Upper and lower limits of dT can be estimated through the empirical approach. This is

based on the assumption that there is a linear relationship between dTLL and vapor

pressure deficit (VPD) for a non-water-stressed crop under specific climatic conditions.

Similarly, there is a linear relationship between dTUL and the vapor pressure gradient (VPG)

for the same crop when its transpiration is halted due to severe water stress:

dTLL = a (VPD) + b .........................................................................(2)

dTUL = a (VPG) + b ........................................................................(3)

where “a” and “b” are slope and intercept of the linear relationship, respectively.

VPG is estimated as the difference between saturated vapor pressure at air temperature

and at a higher temperature equal to air temperature plus the coefficient “b”

Taghvaeian et al 2012

Page 51: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Potentials• Sensitive to vegetation

• Related to fPAR, GLAI, and other

biophysical parameters

• Easy computation

• MODIS Backup system

Page 52: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

0.65

0.70

0.75

0.80

0.85

0.90

0.65 0.70 0.75 0.80 0.85 0.90

NDVI(Reflectance)

ND

VIs

(Rad

ian

ce a

nd

DN

s) NDVI(Radiance) NDVI(DNs)

Issues• Computation

– Depends on data type and levels of

correction

• DNs vs. Radiance vs. Reflectance

Page 53: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Issues (cont.)• Dynamic Ranges

– Depends on crop and soil types

Page 54: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Issues (cont.)

• Spectral bands

• Location and bandwidth

– Teillet et al., 1997 summarized potential

uncertainties associated with spatial and

spectral resolutions when computing NDVI

and other spectral indices

• Sensitive to sensor characteristics??

– An example of NDVI from a long term study

with AVHRR for the North America

Page 55: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Example of

“Greenner

North”

Page 56: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Issues (cont.)

• What about radiometric resolution effects?

• How much detail can you “see”?

– If you calculate SVIs from ETM and IKONOS

images of the same targets, would you see

the same thing? If not, why?

Page 57: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 58: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Issues (cont.)• Sensitivity to Vegetation Changes

– Depends on crop and soil types

• Sensitivity to Vegetation

– Types and conditions (canopy architecture effect)

• Vary with crop type: Corn vs. soybean for example

• Coupled with stress conditions and density

Page 59: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 60: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Issues (cont.)

• Relationship with Biophysical Variables

• Is linear relationship better?

LAI = ax3 + bx2 + cx + d,

LAI = a + bxc,

LAI = -1/2a ln (1 - x),

LAI= f(x)

“..where x is either vegetation indices or reflectances derived from remotely sensed data.

Coefficients a, b, c, and d are empirical parameters and vary with vegetation types. The

last equation is a generic function of any form” (Qi et al 2002).

Page 61: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

NDVI

Est

imate

d a

nd

Fit

ted

LA

IPolynomial fit

R2= 0.94

Linear fit

R2= 0.88

Page 62: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 63: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Glenn et al 2008, http://www.mdpi.com/1424-8220/8/4/2136

Page 64: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Criteria of VI Evaluation

1. Sensitive to vegetation

2. Insensitive to external factors

3. Easy computation

4. What about bidirectional effect?

5. Should we try to normalize VIs to a single

sun angle?

Page 65: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Criteria of VI Evaluation

...

dB

B

VIdA

A

VIdV

V

VIdS

S

VIdVI

?/

dBB

VIdA

A

VIdS

S

VI

dVV

VI

NS

Page 66: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

VI Applications

• VIs are primarily sensitive to “green” vegetation.

• Can be quantitatively related to fPAR, GLAI, and other biophysical parameters

• Can be easily computed

• Have been used in MODIS fPAR and LAI retrievals as a backup system

Page 67: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 68: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 69: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 70: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et
Page 71: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Fractional Cover

• Two components only: soil and vegetation. If vegetation cover is fc, then percent soil is 1 – fc. The synthesized signal r is:

soilcanopy fcfc rrr )1(

Page 72: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Vegetation Fractional Cover

• Solving for fc, we get:

fc vi visoil

vicanopy visoil

fc r rsoil

rcanopy rsoil

Page 73: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Example of fractional cover from GTP data Early growing season

Peak growing season

Page 74: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Remarks

• Most indices are indicators of “green”,

which can be related to crop yields and

total biomass

• Lack of effort on the development of new

indicators of other vegetation/surface

characteristics such as chlorophyll

concentration, N stress, water stress, etc.

• Some caution should be considered:

– Soil, atmosphere, and BRDF

Page 75: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

Remarks

• Spectral information needs to be further

explored, especially with hyperspectral sensors.

• Aware of these potentials and limitations – it

helps on the interpretation of your findings

• VIs should be combined with modeling effort.

• Overall, it is a practical way of mapping

vegetation spatial variability, which can be used

for many other applications.

Page 76: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

SVI in Global Change

• The accumulation of carbon dioxide in the atmosphere is considered to be the primary forcing agent for global climate change, so forecasts of future climate require that the fate of carbon dioxide released into the atmosphere be understood.

• Recent analyses of the global carbon cycle suggest a

significant role for terrestrial uptake in the Northern

Hemisphere of CO2 in the overall budget (missing

carbon).

• Characterizing the location and mechanism of carbon

sinks is of scientific and political importance (the Kyoto

Protocol of the UNFCCC).

• SVI has been used to show “evidence” of greener high

latitude.

Page 77: SPECTRAL TRANSFORMS Spectral Vegetation Indiceslees.geo.msu.edu/courses/geo827/Lecture8_VIs.pdf · Land Surface Water Index: LSWI = (ρ red–ρ swir) / (ρ red + ρ swir) -Xiao et

SVI in Global Change

• Satellite observations of vegetation have provided global coverage with relatively high spatial resolution and consistent time coverage since the early 1980s.

• Satellite observations of vegetation greenness is a measurement of the amount and functioning of plants which consume atmospheric carbon dioxide and synthesize sugars (photosynthesis). Watching the greening over the years is a good indication of carbon sequestration.

• Vegetation biomass cannot be directly measured from

space yet, but , remotely sensed greenness can be

used as an effective surrogate for biomass on decadal

and longer time scales in regions of distinct seasonality.