some things you might be interested in knowing about graphene

64
some things ou might be interested in knowi about Graphene

Upload: kasia

Post on 10-Jan-2016

38 views

Category:

Documents


0 download

DESCRIPTION

some things you might be interested in knowing about Graphene. height. length. width. All Natural Object/Materials Are 3D. quasi-2D. 3D. quasi-1D. quasi-0D. NO Bottom-Up Approach. 400 carbon atoms at 2000 K. growth means temperature means violent vibrations in 2D. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: some things  you might be interested in knowing about Graphene

some things you might be interested in knowing

about Graphene

All Natural ObjectMaterials Are 3D

3D

quasi-2D

quasi-1D

quasi-0D

width

lengthheig

ht

400 carbon atoms at 2000 K

Fasolino (Nijmegen)

growth of macroscopic 2D objects is strictly forbidden Peierls Landau Mermin-Wagner hellip

(only nm-scale flat crystals possible to grow in isolation)

growthmeans

temperaturemeansviolent

vibrationsin 2D

NO Bottom-Up Approach

grapheneleast stable configurationfor lt24000 atoms (Don Brenner 2002)

largest known flat hydrocarbon222atoms37rings

(Klaus Muumlllen 2002)

No Bottom-Up for 2D Crystals

above this number (~20 nm) scrolls are most stable

ONE-ATOM-THICK OBJECTS HUGE MACRO-MACROMOLECULES

(not only graphene)

just extract one atomic plane from a bulk crystal

Top-Down Approach

let us remove the substratechemically

like SiN or C membranes

GOAL NOT EPITAXIAL LAYERS but rather

ISOLATED ATOMIC PLANES

monolayeris a part of the 3D crystal

epitaxialgrowth

MANY MANYDIFFERENT

EPITAXIAL SYSTEMS

including graphitic layersGrant 1970 (on Ru)Bommel 1975 (SiC)

McConville 1986 (on Ni) Land 1992 (on Pt)

Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)

hellip hellip

isolating individual atomic planesstarting point

in ltlt2004suggested in printNature Mater 2007

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 2: some things  you might be interested in knowing about Graphene

All Natural ObjectMaterials Are 3D

3D

quasi-2D

quasi-1D

quasi-0D

width

lengthheig

ht

400 carbon atoms at 2000 K

Fasolino (Nijmegen)

growth of macroscopic 2D objects is strictly forbidden Peierls Landau Mermin-Wagner hellip

(only nm-scale flat crystals possible to grow in isolation)

growthmeans

temperaturemeansviolent

vibrationsin 2D

NO Bottom-Up Approach

grapheneleast stable configurationfor lt24000 atoms (Don Brenner 2002)

largest known flat hydrocarbon222atoms37rings

(Klaus Muumlllen 2002)

No Bottom-Up for 2D Crystals

above this number (~20 nm) scrolls are most stable

ONE-ATOM-THICK OBJECTS HUGE MACRO-MACROMOLECULES

(not only graphene)

just extract one atomic plane from a bulk crystal

Top-Down Approach

let us remove the substratechemically

like SiN or C membranes

GOAL NOT EPITAXIAL LAYERS but rather

ISOLATED ATOMIC PLANES

monolayeris a part of the 3D crystal

epitaxialgrowth

MANY MANYDIFFERENT

EPITAXIAL SYSTEMS

including graphitic layersGrant 1970 (on Ru)Bommel 1975 (SiC)

McConville 1986 (on Ni) Land 1992 (on Pt)

Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)

hellip hellip

isolating individual atomic planesstarting point

in ltlt2004suggested in printNature Mater 2007

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 3: some things  you might be interested in knowing about Graphene

400 carbon atoms at 2000 K

Fasolino (Nijmegen)

growth of macroscopic 2D objects is strictly forbidden Peierls Landau Mermin-Wagner hellip

(only nm-scale flat crystals possible to grow in isolation)

growthmeans

temperaturemeansviolent

vibrationsin 2D

NO Bottom-Up Approach

grapheneleast stable configurationfor lt24000 atoms (Don Brenner 2002)

largest known flat hydrocarbon222atoms37rings

(Klaus Muumlllen 2002)

No Bottom-Up for 2D Crystals

above this number (~20 nm) scrolls are most stable

ONE-ATOM-THICK OBJECTS HUGE MACRO-MACROMOLECULES

(not only graphene)

just extract one atomic plane from a bulk crystal

Top-Down Approach

let us remove the substratechemically

like SiN or C membranes

GOAL NOT EPITAXIAL LAYERS but rather

ISOLATED ATOMIC PLANES

monolayeris a part of the 3D crystal

epitaxialgrowth

MANY MANYDIFFERENT

EPITAXIAL SYSTEMS

including graphitic layersGrant 1970 (on Ru)Bommel 1975 (SiC)

McConville 1986 (on Ni) Land 1992 (on Pt)

Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)

hellip hellip

isolating individual atomic planesstarting point

in ltlt2004suggested in printNature Mater 2007

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 4: some things  you might be interested in knowing about Graphene

grapheneleast stable configurationfor lt24000 atoms (Don Brenner 2002)

largest known flat hydrocarbon222atoms37rings

(Klaus Muumlllen 2002)

No Bottom-Up for 2D Crystals

above this number (~20 nm) scrolls are most stable

ONE-ATOM-THICK OBJECTS HUGE MACRO-MACROMOLECULES

(not only graphene)

just extract one atomic plane from a bulk crystal

Top-Down Approach

let us remove the substratechemically

like SiN or C membranes

GOAL NOT EPITAXIAL LAYERS but rather

ISOLATED ATOMIC PLANES

monolayeris a part of the 3D crystal

epitaxialgrowth

MANY MANYDIFFERENT

EPITAXIAL SYSTEMS

including graphitic layersGrant 1970 (on Ru)Bommel 1975 (SiC)

McConville 1986 (on Ni) Land 1992 (on Pt)

Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)

hellip hellip

isolating individual atomic planesstarting point

in ltlt2004suggested in printNature Mater 2007

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 5: some things  you might be interested in knowing about Graphene

ONE-ATOM-THICK OBJECTS HUGE MACRO-MACROMOLECULES

(not only graphene)

just extract one atomic plane from a bulk crystal

Top-Down Approach

let us remove the substratechemically

like SiN or C membranes

GOAL NOT EPITAXIAL LAYERS but rather

ISOLATED ATOMIC PLANES

monolayeris a part of the 3D crystal

epitaxialgrowth

MANY MANYDIFFERENT

EPITAXIAL SYSTEMS

including graphitic layersGrant 1970 (on Ru)Bommel 1975 (SiC)

McConville 1986 (on Ni) Land 1992 (on Pt)

Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)

hellip hellip

isolating individual atomic planesstarting point

in ltlt2004suggested in printNature Mater 2007

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 6: some things  you might be interested in knowing about Graphene

just extract one atomic plane from a bulk crystal

Top-Down Approach

let us remove the substratechemically

like SiN or C membranes

GOAL NOT EPITAXIAL LAYERS but rather

ISOLATED ATOMIC PLANES

monolayeris a part of the 3D crystal

epitaxialgrowth

MANY MANYDIFFERENT

EPITAXIAL SYSTEMS

including graphitic layersGrant 1970 (on Ru)Bommel 1975 (SiC)

McConville 1986 (on Ni) Land 1992 (on Pt)

Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)

hellip hellip

isolating individual atomic planesstarting point

in ltlt2004suggested in printNature Mater 2007

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 7: some things  you might be interested in knowing about Graphene

let us remove the substratechemically

like SiN or C membranes

GOAL NOT EPITAXIAL LAYERS but rather

ISOLATED ATOMIC PLANES

monolayeris a part of the 3D crystal

epitaxialgrowth

MANY MANYDIFFERENT

EPITAXIAL SYSTEMS

including graphitic layersGrant 1970 (on Ru)Bommel 1975 (SiC)

McConville 1986 (on Ni) Land 1992 (on Pt)

Nagashima 1993 (on TiC)Forbeaux 1998 (SiC)de Heer 2004 (SiC)

hellip hellip

isolating individual atomic planesstarting point

in ltlt2004suggested in printNature Mater 2007

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 8: some things  you might be interested in knowing about Graphene

3D LAYERED MATERIALextract individual

atomic planes

Poor Man Approach

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 9: some things  you might be interested in knowing about Graphene

start with graphiteneed strong in-plane bonds

Also Kurtz 1990 Ebbesen 1995 Ohashi 1997 Ruoff 1999 Kim 2005 McEuen 2005

split into increasingly thinner ldquopancakesrdquo

SEM down to ~30-100 layers

1 mm

until we found a single layer

called GRAPHENE

one atomic plane deposited on Si wafer

Manchester Science 2004 PNAS 2005

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 10: some things  you might be interested in knowing about Graphene

ANY LAYERED MATERIAL

SPLIT INTOATOMIC PLANES

extracting atomic planes en masse

WHEN YOU KNOW THAT ISOLATED ATOMIC PLANES CAN EXIST

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 11: some things  you might be interested in knowing about Graphene

Splitting Graphite into Graphene

few hourssonication in organic

solvent(chloroformDMF etc)

15 min centrifugation

TEM

100 nm

Manchester Nanolett rsquo08Coleman et al Nature Nano rsquo08

relevant literatureINTERCALATED GRAPHITE

TEM observations of ultra-thin graphite

from Ruess 1948 toBoehm 1962 to Horiuchi 2004

graphene oxide paper Brodie 1859

Kohlschutter 1918

RENAISSANCE starting with graphene oxide

Ruoff Nature 2006also Kernrsquos Kanerrsquos groups

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 12: some things  you might be interested in knowing about Graphene

chemically remove the substrate

as suggested Nature Mat 2007

CHEMICAL EXTRACTION

Kong lsquo09

FIRST DEMONSTRATEDKong et al Nanolett 2009 on Ni

Hong Ahn et al Nature 2009 on NiRuoff et al Science 2009 on Cu

chemically extract epitaxially grown atomic planes

graphene-on-Si wafersuniform no multilayer regions some cracks gt5000 cm2Vs

S Seo (Samsung 2010)

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 13: some things  you might be interested in knowing about Graphene

EXTRACTION ONTO SAME SUBSTRATEatomic planes decouple during cooling andor intercalated

RELATIVELY WEAK INTERACTION WITH THE GROWTH SUBSTRATE

de Heer 2004 Rotenberg 2006 Seyller 2008

DECOUPLED FURTHER BY PASSIVATIONStarke 2010 Yakimova 2010

Mallet et al 2007

special caseSiC as an insulator

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 14: some things  you might be interested in knowing about Graphene

50 m

2D boron nitride in AFM

Many Other 2D Materials Possible

2D MoS2 in optics

1 m

1m

0Aring 8Aring 23Aring

2D NbSe2 in AFM

1 m

2D Bi2Sr2CaCu2Ox in SEM

NOT ONLYNATURALLYLAYERED

MATERIALS

THINK OF EPITAXY

Manchester PNAS rsquo05

also234hellip layers

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 15: some things  you might be interested in knowing about Graphene

MESSAGE TO TAKE AWAY

MATERIALS OF A NEW KIND ONE ATOM THICK

atomic planes of graphite and other materialswere KNOWN before as constituents of 3D systems

now we can ISOLATE STUDY and USE them- and importantly - they are worth of

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 16: some things  you might be interested in knowing about Graphene

what is so special about graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 17: some things  you might be interested in knowing about Graphene

GRAPHENErsquoS SUPERLATIVESthinnest imaginable material

largest surface-to-weight ratio (~2700 m2 per gram)

strongest material lsquoever measuredrsquostiffest known material (stiffer than diamond)

most stretchable crystal (up to 20 elastically)

record thermal conductivity (outperforming diamond)

highest current density at room T (106 times of copper)

highest intrinsic mobility (100 times more than in Si)

conducts electricity in the limit of no electronslightest charge carriers (zero rest mass)

longest mean free path at room T (micron range)

completely impermeable (even He atoms cannot squeeze through)

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 18: some things  you might be interested in knowing about Graphene

EXCEPTIONAL ELECTRONIC

QUALITY amp TUNABILITY

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 19: some things  you might be interested in knowing about Graphene

AMBIPOLAR ELECTRIC FIELD EFFECT

CONTROL ELECTRONIC PROPERTIES

-100 -50 0 10050

gate voltage (V)

res

istiv

ity (

k)

0

2

4

6

SiO2

Si graphene

Manchester Science 2004

ASTONISHING ELECTRONIC QUALITY

carrier mobility at 300Kroutinely ~15000 cm2Vs

ballistic transport on submicron scale

under ambient conditions

weak e-ph scatteringPOSSIBLE ROOM-T MOBILITY

above 200000 cm2VsManchester PRL 2008

Fuhrerrsquos group Nature Nano 2008

electrons~1013 cm-2

holes~1013 cm-2

homogenous electric doping from ~108 to ~1014 cm-2

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 20: some things  you might be interested in knowing about Graphene

CURRENT STATUS

also Columbia group arxiv 2010

graphene on atomically flat boron nitride

room-T mobility gt 50000 cm2Vs

10 um

BN

Si wafer

graphene Hall bar

2

6

13

0

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 21: some things  you might be interested in knowing about Graphene

2 K

CURRENT STATUS2-terminal suspended devices

first reported by Andrei Kim amp Yacobysuspended graphene

low-T mobilities few million cm2Vs

2 m

level degeneracy lifted ~ 500G

SdH oscillations start ~50G

Manchester unpublished

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 22: some things  you might be interested in knowing about Graphene

UNIQUEELECTRONICSTRUCTURE

Wallace 1947

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 23: some things  you might be interested in knowing about Graphene

massivechiral fermions

bilayer graphene

2 2ˆˆ mpH

masslessDirac fermions

monolayer graphene

FvpH ˆˆ

McCann amp Falko 2006McClure 1958

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 24: some things  you might be interested in knowing about Graphene

1

250 10050

xx

(1k

) 12T

Vg (V)

0

75

80K

140K

20K

1

0

(

au

)

1500T (K)

+10V

+90V

eB

TmkT cB

xx

22sinh

Vg (V)

100-50 500-100

xx

(k) 4

0

6

2

n =4Bφ0

ωcτ =const

8T

4K

B (T)

06

04

xx

(k

)

Vg = -60V

40 128

10K

degeneracy f =4two spins amp two

valleys

Finding Electronic StructureManchester Science rsquo04 amp Nature lsquo05

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 25: some things  you might be interested in knowing about Graphene

BF =(ħ2πe)S and mc =(ħ22π)partSpartE

experimental dependencesBF ~ n and mc ~ n12

necessitates S ~ E(k)2 or E ~k

mass of charge carriers strongly depends on concentration

mc

m0

0-3-6 60

n (1012 cm-2)3

002

004

006 Sky

kx

E=pvF

vF = 10middot106 ms 5

ZERO REST MASSeffective mass

E = mcvF2

Finding Electronic Structure

in agreement with theoryWallace 1947 McClure 1958 Semenoff 1984

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 26: some things  you might be interested in knowing about Graphene

n (1012 cm-2)-2-4 40 2

5

10

0

15

-15

-25

-35

-05

25

35

05

12T

xx (k) xy (4e2h)

half-integer QHErelativistic analogue of integer QHE

Manchester Nature rsquo05 Columbia Nature rsquo05

0ˆˆ

ˆˆ0ˆyx

yxF pip

pipvH

ldquoanomalousrdquo QHExy (4e2h) xx (k)

n (1012 cm-2)

-2-4 40 2

2

4

6

0

1

2

-1

-2

-4

0

-3

4

3

12T

4K

0)ˆˆ(

ˆˆ0

2

1ˆ2

2

yx

yx

pip

pip

mH

massive amp massless Dirac fermions

Manchester+Lancaster Nature Phys rsquo06

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 27: some things  you might be interested in knowing about Graphene

robust quantum Hall phenomena

gate voltage (V)

xx (k

)

-6

2

4

-60 -30 0 6030

xy (e

2h)

0

10

20

30

-4

-2

0

30T

300K

Manchester+Columbia Science lsquo07

zero LL directlyin the density of states

)(420)( TBKE

250K

150K

100K

200K

B =16 T

-1 0 1

04

06

qua

ntu

m c

apa

cita

nce

gate voltage (V)

30K

room-temperature QHE

Manchester PRL 2010

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 28: some things  you might be interested in knowing about Graphene

NEW PHYSICS

ACCESS TO RELATIVISTIC-LIKE PHYSICS

IN CONDENSED MATTER EXPERIMENT

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 29: some things  you might be interested in knowing about Graphene

EXAMPLE 1

Klein Tunnelling

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 30: some things  you might be interested in knowing about Graphene

Gorbachev et al Nanolett rsquo08 Stander et al PRL rsquo09

Young et al Nature Phys lsquo09

Klein Tunnelling

Klein 1929Katsnelson + Manchester 2006

Falko et al 2006

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 31: some things  you might be interested in knowing about Graphene

EXAMPLE 2

conductivity ldquowithoutrdquo

charge carriers

Manchester Nature rsquo05

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 32: some things  you might be interested in knowing about Graphene

no localizationin the peak

down to 30mKand

for million-range mobilities

ρmax

-80 -40 0 8040

Vg (V)

ρ (k

)

0

2

4

6

10K

E =0

zero-gapsemiconductor

Minimum Quantum Conductivity

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 33: some things  you might be interested in knowing about Graphene

Minimum Quantum Conductivity

ldquoquantizedrdquo conductivity NOT conductance

(~e2h per spin and valley)

one electron per sample makes it a metal

data from 2007

min (

4e2

h)

1

1

(cm2Vs)

0 120004000 8000

2

0

recent samples with million mobility

Fradkin 1986 Lee 1993 Ludwig 1994 Morita 1997 Ziegler 1998 hellipPeres 2005 Gusynin 2005 Katsnelson 2006 Tworzydlo 2006 Cserti 2006 Ostrovsky 2006 hellip

annealing

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 34: some things  you might be interested in knowing about Graphene

h

elk

h

ene F

22

NO LOCALIZATION

Mottrsquos argument Fl

Minimum ldquoMottrdquo Conductivity

not the case of other materials

AG amp Allan MacDonald Phys Today 2007

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 35: some things  you might be interested in knowing about Graphene

EXAMPLE 3

visualization of fine structure constant

Manchester Science 2008

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 36: some things  you might be interested in knowing about Graphene

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

Manchester Science rsquo08

GRAPHENE OPTICS

one-atom-thick single crystal visible by naked eye

100 microm

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 37: some things  you might be interested in knowing about Graphene

coupling of light with relativistic-like chargesshould be described by

coupling constant aka fine structure

constant

GRAPHENE OPTICS

2520E (eV)

3015 li

ght

tran

smitt

ance

(

)

100

80

90

G (e

2 2h

)

(nm)

15

05

10

600 700500

23

e2

c =

theory of 2DDirac fermions

Gusynin lsquo06Kuzmenko lsquo08

one-atom-thicksingle crystal

visible by naked eye

bilayer

grap

hene

air

whi

te li

ght

tra

nsm

ittan

ce

()

98

100

96

500 25

distance (m)

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 38: some things  you might be interested in knowing about Graphene

EXAMPLE 4

relativistic fall on superheavy nuclei

Shytov et al PRL 2007 Castro Neto et al PRL 2007

hellip

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 39: some things  you might be interested in knowing about Graphene

Z

Z137

1

Z

1371

Z

Positron emission

Atomic Physics

supercritical regime

slides courtesy of Antonio Castro Neto

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 40: some things  you might be interested in knowing about Graphene

1F

G v

e

0

2

ldquoartificial atomsrdquo

easily become overcritical 1

1

G

Z

Z

Graphene Physics

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 41: some things  you might be interested in knowing about Graphene

Manchester Science rsquo09 amp arxiv 2010

EXAMPLE 5

New Graphene-BasedMaterials

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 42: some things  you might be interested in knowing about Graphene

Graphene as GigaMolecule

chemical reactionsC + X =gt CX

GRAPHENE

both surfacesavailable

(bi-surface chemistrychemistry of individual

gigamolecules)

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 43: some things  you might be interested in knowing about Graphene

FluoroGraphenemake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 44: some things  you might be interested in knowing about Graphene

FluoroGrapheneCHANGES IN RAMANmake large

graphene membranesexpose them from BOTH side

to atomic F (using XeF2)

Raman optics TEM XPS transport

1h

9h

20h

1600 30001200 2600

2

inte

nsi

ty (

au

)0

4

6

Raman shift (cm-1)

pristineD

G

2D

30h

fluorographene

XPS amp EDXCF 1

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 45: some things  you might be interested in knowing about Graphene

Stoichiometric Derivativefluorographene (ldquo2D Teflonrdquo )

chemical reactionsC + F =gt (CF)

wide-gap semiconductorchemically amp thermally stable

mechanically strong

optical gap of 30eV

exposure to atomic fluorine using XeF2

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 46: some things  you might be interested in knowing about Graphene

MESSAGE TO TAKE AWAY

CORNUCOPIA OF NEW SCIENCEnot only electronic properties

but optical mechanical chemical etc

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 47: some things  you might be interested in knowing about Graphene

WHAT ABOUTAPPLICATIONS

INDUSTRIAL SCALE PRODUCTION IS A DONE DEAL

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 48: some things  you might be interested in knowing about Graphene

APPLICATION OVERVIEW

only realistic examples

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 49: some things  you might be interested in knowing about Graphene

EXAMPLE 1

ON SALE ALREADY

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 50: some things  you might be interested in knowing about Graphene

best possibleTEM support

AVAILABLE from Graphene Industries Graphene Research

Graphene Supermarket

conductive ink

production within last 3 years

from none to gt100 ton paldquomultilayer graphenerdquo

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 51: some things  you might be interested in knowing about Graphene

ANY APPLICATIONWHERE

CARBON NANOTUBES OR GRAPHITE

ARE CONSIDERED

can be MUCH BETTER

bull both sides bindbull monolayerscannot cleave

any further

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 52: some things  you might be interested in knowing about Graphene

EXAMPLE 2

THz Transistors

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 53: some things  you might be interested in knowing about Graphene

ultra high-f analogue transistors

HEMT designManchester Science rsquo04

-100 -50 0 10050

Vg (V)

(k

)

0

2

4

6

SiO2

Si graphene

US military programs500 GHz transistors

on sale by 2013 years

demonstrated (IBM amp HRL 2009) ~100 GHz even for low amp long

channels

Y Lin (IBM)

3 μm

ballistic transport high velocity great electrostatics scales to nm sizes

THz TRANSISTORS

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 54: some things  you might be interested in knowing about Graphene

EXAMPLE 3

OPTOELECTRONICS

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 55: some things  you might be interested in knowing about Graphene

ULTRAFAST PHOTODETECTORS

eh

n-type dopingmetal

p-type dopingmetal

graphene

Avouris Nature Photo 2010

ballistic transportof photo-generated carriers

in built-in electric field

DESIRABLE TO IMPROVE only ~23 conversion

because a monolayer is transparent

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 56: some things  you might be interested in knowing about Graphene

EXAMPLE 4

Graphene instead of ITO

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 57: some things  you might be interested in knowing about Graphene

conductive lt100 transparent ~97flexible strain gt15chemically inert

WORKING 10 m LCD-GRAPHENE PIXEL

grapheneelectrodes

activelayer

transparent polymer film

SUBSTITUTE FOR ITOManchester NanoLett 2008

liquid crystalactive layer

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 58: some things  you might be interested in knowing about Graphene

grapheneelectrodes

transparent polymer film

SUBSTITUTE FOR ITO

liquid crystalactive layer

~40 transparency ~90

~5000 cm2VsHong Nature Nano 2010

reasonably cheap ~$50m2

conductive lt100 transparent ~97flexible strain gt15chemically inert

REMAINING PROBLEM stability of doping

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 59: some things  you might be interested in knowing about Graphene

TOUCH amp OTHER SCREENS

grapheneelectrodes

liquid crystalactive layer

transparent polymer film

bendable amp wearable

Samsung Graphene Road Map first products in 2012

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 60: some things  you might be interested in knowing about Graphene

EXAMPLE 5Little Considered

Applications

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 61: some things  you might be interested in knowing about Graphene

ILLUMINATING WALL PAPER

grapheneelectrodes

polymerLED

transparent polymer film

Robinson ACS Nano 2010

perfect match for organic LED

both anode amp cathode

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 62: some things  you might be interested in knowing about Graphene

STRAIN SENSORS

~$10 each

global market ~$60 billion

SKKU + Samsung NanoLett 2010

Samsung Graphene Road Map production in 2014

graphene cheaper amp larger strains

compatible with existing tech

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64
Page 63: some things  you might be interested in knowing about Graphene

MESSAGE TO TAKE AWAY

AFTER ONLY 5 YEARSAPPLICATIONS NO LONGER

A WISHFUL THINKING

only their extent remains unclear

INCREDIBLY RAPID PROGRESS

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Slide 52
  • Slide 53
  • Slide 54
  • Slide 55
  • Slide 56
  • Slide 57
  • Slide 58
  • Slide 59
  • Slide 60
  • Slide 61
  • Slide 62
  • Slide 63
  • Slide 64