som

Upload: shiva-mohammadzadeh

Post on 02-Mar-2016

215 views

Category:

Documents


0 download

DESCRIPTION

Structure of Matter

TRANSCRIPT

  • wehaveto

    take

    into

    accountonlytheterm

    ei

    tbecause

    wearedealingwithab

    sorption

    (theother

    term

    eitleadsto

    fast

    oscillations,wou

    ldberelevantwhen

    wewantto

    treat

    stim

    ulatedem

    issionandcompute

    M21).

    =

    M12

    = 2 H

    1=

    eA0

    2m

    e2|p

    |1(3.195)

    2|p

    |1=

    2 i

    1d3r=

    ime

    2|r

    |1(3.196)

    =

    M12

    =i 2

    eA02|r

    |1=

    E0 22|er

    |1(3.197)

    Because

    eristhedipoleop

    erator,M

    12iscalled

    dipole-m

    atrix-elementan

    dtheab

    ove

    approxim

    ationdipole

    approxim

    ation.

    =

    |M12|2

    =e2 4|2

    |E0r

    |1|2

    (3.198)

    ifE

    0=

    E0ex,

    =

    M2 12

    =e2E

    2 0

    4|2

    |x|1

    |2(3.199)

    Butthesystem

    issymetric=

    (x;y;z)areidentical

    =

    |2|x

    |1|2

    =1 3|2

    |r|1

    |2(3.200)

    =

    M2 12

    =e2E

    2 0

    12|2

    |r|1

    |2(3.201)

    1 2 0E

    2 0:averaged

    energydensity

    forplanewaveatthefrequency

    =

    u(

    )=

    1 2 0E

    2 0(

    )forspectralenergydensity,an

    dwith

    (

    )=

    (E

    )dE d

    =(E

    )(3.202)

    =

    (E

    )=

    2u(

    )

    0E

    2 0

    (3.203)

    Therefore,withW

    1

    2=

    B12u(

    )wehave

    B12

    =e2

    3 02|2

    |r|1

    |2(3.204)

    A12

    =e23

    3 0c3|2

    |r|1

    |2(3.205)

    Indipoleapproxim

    ation:

    |2|r

    |1|2=

    | 2r1d3r|2

    =0

    =

    transitiondipole

    allowed

    (3.206)

    if|2

    |r|1

    |2=

    0=

    transitiondipole

    forbidden(3.207)

    Oscillatorstrengh(see

    chapter2)isproportionnalto

    |2|r

    |1|2 .

    80

    3.4

    Molecu

    les

    Source:

    Fox,Chapter8.

    3.4.1

    H2molecu

    le

    Letsstart

    withtheeasiestmolecule

    H2.

    Weexpectedthatthetw

    oprotonssharethetw

    oelectronsin

    thegroundstate

    (low

    estenergy).

    Typicalforcovalent

    bond,i.e.

    co-valence,sharingvalence,sharing

    outere

    .

    Moleculesareusuallytreatedin

    Born-O

    ppenheimer

    approxim

    ation,whichmeans:

    weseparate

    electronic

    andnuclearmotion,justied

    bythehugedierence

    inmasses.

    For

    ethenuclei

    arenotmoving,wecantreatrelative

    positionsof

    nuclei

    asparametersandsolveelectronic

    problem

    En(R

    ),withR

    -positionof

    nuclei.

    Nuclei

    seepotentialcreatedbye

    ,wesolveproblem

    fornuclei

    insecondstep.

    Problem

    forthetw

    oe

    (electron1an

    d2)

    (x

    1,y

    1,z

    1,x

    2,y

    2,z

    2)

    (3.208)

    H=

    2

    2me(

    2 1+2 2

    )

    e2

    4 0

    ( 1 r 1l+

    1 r 1r+

    1 r 2l+

    1 r 2r

    1

    |r 1r 2|)

    (3.209)

    e.g.r 1

    lisdistance

    betweenelectron1andleftnucleus.

    Complicated6-dim

    ensionalproblem! 81

  • Approxim

    ationap

    proach

    tondgroundstate:ifthetw

    onuclei

    are

    farapart,we

    havetw

    ohydrogen

    atoms:

    l(r)

    =100(|r

    r lp|)

    (3.210)

    r(r)

    =100(|r

    r r

    p|)

    (3.211)

    withr lpandr r

    pare

    positionof

    leftan

    drightprotonsrespectively.

    (r

    1,r

    2)

    =l(r 1)

    r(r

    2)

    (3.212)

    Electron1is

    aroundleft

    protonandelectron2is

    aroundrightproton,electronsare

    independent.

    Whatabouttheprobabilitydensity?Problem,wehave6dim

    ensions!

    Probability

    density

    tondeither

    e:

    (r)

    =

    |(r,r

    2)|2

    d3r 2

    +

    |(r

    1,r)|2

    d3r 1

    (3.213)

    with,e.g., |

    (r,r

    2)|2

    d3r 2

    isprobabilityto

    ndelectron2,

    whateverelectron1is

    doing!

    For

    (r

    1,r

    2)=

    l(r 1)

    r(r

    2),theprobabilitydensity

    lookslike:

    Ofcourse,

    exchangingtheelectronsisphysicallyequivalent:

    (r

    1,r

    2)

    =r(r

    1)

    l(r 2)

    (3.214)

    Note

    thatr(r

    1)

    r(r

    2)or

    l(r 1)

    l(r 2)arenotrelevantto

    ndagroundstate

    (2e

    aroundoneproton).

    82

    Stateswheretheelectronsare

    nolonger

    assigned

    toonespecicproton(shared

    electronstates)

    canbefoundaslinearcombination:

    (r

    1,r

    2)

    =al(r 1)

    r(r

    2)+b

    r(r

    1)

    l(r 2)

    (3.215)

    Norm

    alization(

    randlare

    realandnorm

    alized,aandbare

    real):

    (r 1,r

    2)

    (r1,r

    2)d

    3r 1d3r 2

    (3.216)

    =a2+b2

    +2ab

    l|r2

    ! =1

    (3.217)

    a bcanbechosenfreely.

    Compute

    expectationvalueforenergy H

    forallratio

    a bandproton-protondis-

    tances(variationalapproach,possible

    because

    weknow

    100(r)=

    e

    r/a0

    a3 0

    ).Integrals

    haveto

    beevaluatednumerically.

    Approxim

    ationof

    ground-state:thecongurationwendwiththelowestenergy.

    Itturnsou

    t:groundstate

    a=

    b

    E=

    H=

    2ER

    13.6eV

    3.2eV

    exactvalue4.52eV

    (3.218)

    Distance

    betweenprotons:

    0.87A(0.74A

    )

    83

  • Symmetricstate

    s:sw

    appingr 1

    andr 2

    changes

    nothing.

    Importantother

    possibility-antisymmetricstate

    a:sw

    appingr 1

    andr 2

    changes

    sign.

    Generic

    phenomena:lettw

    osystem

    swithidenticaleigenfunctionsinteract:

    withoutinteraction:degeneracy

    ofsym/antisymmetricstate,

    withinteraction:degeneracy

    getslifted

    Esym0.

    Compatible

    withBloch:acanbechosenarbitrarily!

    V0=

    0

    n(x)=

    Ansin[k(x

    na)]+B

    ncos[k(x

    na)]

    for(n

    1)a