solid staten mr

Upload: alex-nyakumba

Post on 04-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Solid Staten Mr

    1/24

    October 20, 2010 Ren Verel - ETH Page 1

    Solid-state NMR Spectroscopy - An Introduction

    Rene [email protected]

    HCI D117

    Outline

    General Principles of NMR Spectroscopy

    Interactions relevant to NMR Spectroscopy (and their information content)Differences between solution and solid state NMR

    Selected/Special experimental techniques

    Courses

    PCIV: Magnetic Resonance B.H. Meier, M.C. Ernst, G. Jeschke yearly

    Structure Determination by NMR B.M. Jaun yearly

    Advanced Magnetic Resonance M.C. Ernst approx. every third year

    Books

    M.H. Levitt: "Spin Dynamics: Basics of Nuclear Magnetic Resonance", John Wiley & Sons, 2001

    J. Keeler: "Understanding NMR Spectroscopy", John Wiley & Sons, 2005.

    M. Duer: "Introduction to solid-state NMR", Blackwell Science Ltd (Oxford), 2004.

    K. Schmidt-Rohr, H.W. Spiess: "Multidimensional Solid-State NMR and Polymers", Academic Press, 1994.

  • 7/30/2019 Solid Staten Mr

    2/24

    October 20, 2010 Ren Verel - ETH Page 2

    NMR Spectroscopy - A short Introduction

    Many Nuclei have an Inherent Angular Moment (or Spin) which is quantized and character-

    ised by a spin quantum number

    Associated with the Spin is a Magnetic Moment

    The z-component of the spin angular momentum can only assume different values.

    with

    In an external magnetic field along z, this gives an energy

    The energy difference or resonance frequency is then

    or

    The populations of the states is given by a Boltzmann Distribution

    I 01

    2--- 1

    3

    2--- 6 =

    I=

    2I 1+

    z Izmh2

    -----------= = m I I 1 I 1 I,,,+,=

    E zB0mh2

    -----------B0

    = =

    Eh2------B

    0= B

    0=

    N1 2

    N 1 2--------------- e

    E kT

    1.0002=

  • 7/30/2019 Solid Staten Mr

    3/24

    October 20, 2010 Ren Verel - ETH Page 3

    Th Pa

    Pr

    U

    Nd Pm

    Np

    Sm

    Pu

    Eu

    Am

    Gd

    Cm

    Tb

    Bk

    Dy

    Cf

    Ho

    Es

    Er

    Fm

    Yb

    No

    Lu

    Lr

    Tm

    Md

    Ha

    H

    Li Be

    Na

    K

    Rb

    Cs

    Fr

    Mg

    Ca

    Sr

    Ba

    Ra

    Sc

    Y

    *La

    Ac Rf

    Hf Ta W

    Zr

    Ti

    Nb

    V Cr Mn

    Mo

    Re

    Tc

    Fe

    Ru

    Os

    Co

    Rh

    Ir

    Ni

    Pd

    Pt

    Cu

    Ag

    Au

    Zn

    Cd

    Hg

    B

    Al

    Ga

    In

    Tl

    C N

    Si P

    Ge As

    Sn

    Pb

    Sb

    Bi

    O F Ne

    He

    Ar

    Kr

    Cl

    Br

    I

    At

    Xe

    Rn

    S

    Se

    Te

    Po

    IA

    IIA

    IIIB IVB VB VIBVIIB VIIIB IB I IB

    IIIA IVA VA VIA VIIA

    VIIIA

    Sg Ns Hs Mt

    Ce

    I=1/2 I>1/2

    Isotope Spin Quan-

    tum Number

    I

    Magnetic Quan-

    tum Number

    m

    12C, 18O 0 -

    1H, 13C, 15N,19F, 31P

    1/2 -1/2, +1/2

    2H, 14N 1 -1, 0, +1

    7Li, 23Na,37Cl, 87Ru

    3/2 -3/2, -1/2, 1/2, 3/2

    17O, 25Mg,27Al

    5/2 -5/2, -3/2, -1/2

    1/2, 3/2, 5/2

    45Sc,

    51V,

    59Co7/2 -7/2,-5/2,-3/2,-1/2,1/2,3/2,5/2,7/2

    NMR Spectroscopy - A short Introduction

  • 7/30/2019 Solid Staten Mr

    4/24October 20, 2010 Ren Verel - ETH Page 4

    B0

    E

    E

    m 1 2=

    m 1 2=

    NMR Spectroscopy - A short Introduction

    Properties of some nucleotides of importance to NMR

    Nucleotide gyromagnetic ratio [107 rad T-1 s-1]

    Natural Abundance

    [%]

    0[MHz]

    ( )

    0[MHz]

    ( )

    1

    H26.7519 99.985 400.0 600.0

    13C 6.7283 1.108 100.2 150.9

    15N - 2.7126 0.370 40.3 60.8

    19F 25.1815 100.000 376.3 564.5

    31P 10.8394 100.000 161.9 242.9

    B0 9.4 T= B0 14.1 T=

  • 7/30/2019 Solid Staten Mr

    5/24October 20, 2010 Ren Verel - ETH Page 5

    NMR Interactions

    Zeeman Interaction 106-109 Hz

    Rf Field 100-105 HzUnder experimental control for Spin rotations

    Chemical Shift Interaction 102-104 HzReports on local electronic environment

    Magnetic Dipole-Dipole Interaction 102-105 HzReports on the distance between two coupled spins.

    Scalar J-Coupling 100-102 HzReports on chemical bonds between two spins.

    Quadrupole Coupling 100-107 HzReports on the electric field gradient around the nucleus.

    Only for I > 1/2

  • 7/30/2019 Solid Staten Mr

    6/24October 20, 2010 Ren Verel - ETH Page 6

    NMR Interactions - Tensors

    The chemical shift, dipolar and quadrupole can be described by second rank tensors.

    The general form of the Hamiltonian is given by

    High Field Approximation (example Chemical Shift)

    A

    PA S

    k n A

    110 0

    0 A22

    0

    0 0 A33

    =

    Hk n

    Ik Ak n

    In =

    H CSk Ik k

    k B0

    =

    k I

    kx I

    ky I

    kz

    xx xy xzyx yy yz

    zx

    zy

    zz

    0

    0

    B0

    =

    xz0k

    Ikx yz0k

    Iky zz0k

    Ikz+ +=

    PAS

    x

    y

    z

    LABz

    y

    x

    Orientation dependent

  • 7/30/2019 Solid Staten Mr

    7/24October 20, 2010 Ren Verel - ETH Page 7

    NMR Interactions - Tensors

    Orientation dependency of the signal

    Magic Angle Spinning (MAS)

    40 20 0 -20 -40

    [ppm]

    zz 1 1 1

    zz 2 2 2

    powder

    40 20 0 -20 -40

    [ppm]

    LAB

    x y

    z

    rt

    m

    powdered sample

  • 7/30/2019 Solid Staten Mr

    8/24October 20, 2010 Ren Verel - ETH Page 8

    NMR Interactions - Tensors

    1-13C-Alanine

    400 200 0

    ppm]

    400 200 0

    ppm]

    B0

    MAS: = 54.7

    B

    earingAir

    Bea

    ringA

    ir

    Drive

    Air

  • 7/30/2019 Solid Staten Mr

    9/24October 20, 2010 Ren Verel - ETH Page 9

    NMR Interactions - Chemical Shift

    Information vs. Resolution

    Carbonyl Methyl

    4 Inequivalent molecules

    Ca CH3COO . 2 H2O

  • 7/30/2019 Solid Staten Mr

    10/24October 20, 2010 Ren Verel - ETH Page 10

    NMR Interactions - Chemical Shift

    Structural Information

    Structural Information from the isotropic shift Structural Information from the anisotropy

    29Si 27Al

  • 7/30/2019 Solid Staten Mr

    11/24October 20, 2010 Ren Verel - ETH Page 11

    NMR Interactions - Dipole

    The representation of the dipolar tensor is given by:

    The dipolar Hamiltonian is given by

    D

    PA S

    k n 2

    0

    4------

    kn

    rkn3

    -----------h

    2------

    1

    2--- 0 0

    01

    2--- 0

    0 0 1

    =

    Hk n

    Ik D

    k n In =

    0

    4------

    k

    n

    rkn3----------- h2------ A B C D E F+ + + + + =

    A 2IkzI

    nz3cos

    2 1

    2-------------------------------=

    B1

    2--- Ik

    +In

    Ik

    In

    ++

    3cos2

    1 2

    -------------------------------=

    C Ik+

    Inz

    Ikz

    In+

    + 3 cossin e

    i

    2------------------------------------------=

    D Ik

    Inz

    Ikz

    In

    + 3 cossin e

    i

    2---------------------------------------=

    E1

    2--- Ik

    +In

    +

    3sin2

    e2i

    2

    -----------------------------------=

    F1

    2--- Ik

    In

    3sin2

    e2i

    2

    --------------------------------=

  • 7/30/2019 Solid Staten Mr

    12/24

    October 20, 2010 Ren Verel - ETH Page 12

    1.00 0.75 0.50 0.25 0 0.25 0.50 0.75 1.00

    D

    D 2

    0

    4------

    kn

    rkn3

    -----------h

    2------=

    D 2

    k

    n

    k nSingle Crystal

    Powder

    B0

    NMR Interactions - Dipole

    Orientation Dependency of the Dipole Interaction

  • 7/30/2019 Solid Staten Mr

    13/24

    October 20, 2010 Ren Verel - ETH Page 13

    Dipolar Recoupling

    MAS makes the dipolar coupling time dependent with an average value of zero

    Rf(-pulses) can interfere and cause a non-zero average of the dipolar coupling.

    D t D3cos

    2 1

    2

    ------------------------------- rt cos =

    D 0

    D 12--- t r

    D 1

    D 0

    t r

    D 1

    rf-pulse rf-pulse

  • 7/30/2019 Solid Staten Mr

    14/24

    October 20, 2010 Ren Verel - ETH Page 14

    Heteronuclear Dipolar Recoupling

    Distance based proximity filter using Cross Polarization

    Jadeite glass, 0.62% H2O1H Spectra acquired after polarization

    transfer from 27Al to 1H

    Shorter recoupling durations selectsstronger 27Al-1H couplings (and

    shorter distances)

    0.25 ms

    0.5 ms

    1.0 ms

    2.0 ms

    4.0 ms

    8.0 ms

    Close to Al (0.5 - 8-0 ms)Far from Al (8.0 - 0.5 ms)

  • 7/30/2019 Solid Staten Mr

    15/24

    October 20, 2010 Ren Verel - ETH Page 15

    Homonuclear Dipolar Recoupling

    Structure determination through 2D correlations

    0

    40

    80

    120

    160

    200

    [ppm]

    [

    pp

    m]

    04080120160200

    O

    HO

    OH

    NH2

    123123

    45

    6

    1

    2

    3

    12/6

    3/5

    4

    U-13C-Tyrosine

  • 7/30/2019 Solid Staten Mr

    16/24

    October 20, 2010 Ren Verel - ETH Page 16

    27Al CQ

    / MHz

    NMR Interactions - Quadrupole

    For I>1/2, nuclei have a non-spherical charge distribution in the nucleus and this gives rise to

    a quadrupole moment

    The Quadrupole moment interacts with the electric field gradient

    Quadrupolar Hamiltonian is given by:

    The Quadrupole Coupling Constant, depends on the system

    H k eQ22I 2I 1 h---------------------------Ik V

    Ik =

    CQ

    eQVzz2I 2I 1 h---------------------------=

  • 7/30/2019 Solid Staten Mr

    17/24

    October 20, 2010 Ren Verel - ETH Page 17

    NMR Interactions - Quadrupole

    Going through the mathematics and applying the secular approximation we get a frequency

    caused by the quarupole interaction

    Q3eQVzz

    4I 2I 1 h---------------------------

    1

    2--- 3cos

    2 1 Qsin

    2 2cos+ =

    m 1=

    m 0=

    m +1=

    0

    0 0 Q+

    0

    Q

    Spin 1

    2Q

    Single Crystal

    Powder

  • 7/30/2019 Solid Staten Mr

    18/24

    October 20, 2010 Ren Verel - ETH Page 18

    ST

    CT

    ST

    NMR Interactions - Quadrupole

    m3

    2

    ---=

    m 1 2=

    m +1 2=

    0

    0 0 2Q+

    0

    Spin 3/2Single Crystal

    Powder

    m +3 2=

    0

    0

    2Q

    CT

    ST

    ST

    2Q

    ST

    ST

    CT

    CT

    The Central Transition has NO Angular Dependency

  • 7/30/2019 Solid Staten Mr

    19/24

    October 20, 2010 Ren Verel - ETH Page 19

    NMR Interactions - Quadrupole

    Often the Quadrupolar Interaction is big and the first order approximation is not good enough

    First Order Term

    Second Order Term

    The Second Order Term:

    Scales with the inverse of the Larmor Frequency (and therefore with B0)

    Contains an orientation indenpendent term (A)Contains a second rank term (B)Contains a fourth rank term (C)

    Q1 3eQVzz

    4I 2I 1 h---------------------------

    1

    2--- 3cos

    2 1 Qsin

    2 2cos+ =

    Q2

    3eQVzz4I 2I 1 h---------------------------

    2

    0

    ------------------------------------ A Bd00

    2 Cd

    00

    4 + +

    d00

    2 3cos

    2 1

    d00

    4 35cos

    4 30cos

    2 3+

  • 7/30/2019 Solid Staten Mr

    20/24

    October 20, 2010 Ren Verel - ETH Page 20

    NMR Interactions - Quadrupole

    m3

    2

    ---=

    m 1 2=

    m +1 2=

    0

    0 0 2Q

    1 +

    0

    Spin 3/2

    m +3 2=

    0

    0

    2Q1

    CT

    ST

    ST

    ST

    CT

    CT

    0

    2Q1

    Q ST2

    + +

    0

    2Q1

    Q ST2

    +

    0

    Q CT

    2

  • 7/30/2019 Solid Staten Mr

    21/24

    October 20, 2010 Ren Verel - ETH Page 21

    static

    MAS

    NMR Interactions - Quadrupole

    Magic Angle Spinning of Quadrupoles with second order effects

    Static

    MAS

    Central Transition line is narrowed

    Fourth rank term (C) remains

    Isotropic term (A) remains

  • 7/30/2019 Solid Staten Mr

    22/24

    October 20, 2010 Ren Verel - ETH Page 22

    NMR Interactions - Quadrupole

    Second order Quadrupole and Magnetic Field Strength

    27Al 9Al2O3.2B2O3

    Isotropic and fourth rank term

    scale with 1 0

  • 7/30/2019 Solid Staten Mr

    23/24

    October 20, 2010 Ren Verel - ETH Page 23

    Quadrupole Interaction: High Resolution

    Is it possible to get high resolution Spectra of Quadrupoles?

    Well, yes: 1. Go to very high field

    2. Rotate around two axes simultanously (DOR)

    3. Rotate around two axes consecutively (DAS)

    4. Use the different but related 2nd order shifts of the ST and CT(MQMAS and STMAS)

  • 7/30/2019 Solid Staten Mr

    24/24

    October 20, 2010 Ren Verel - ETH Page 24

    Position of centre ofgravity of ridgeiso and PQ

    Isotropic spectrumnumber of species and

    relative intensities

    Cross-section along ridge

    CQ and Q

    Quadrupole Interaction: MQMAS

    Correlation between Triple Quantum and Single Quantum Coherence in a 2D experiment

    23Na Sodium Citrate