smooth multi-sided blending of bi-2 splinessmooth multi-sided blending of bi-2 splines ke¸stutis...

51
Smooth Multi-Sided Blending of bi-2 Splines Ke ¸ stutis Karˇ ciauskas org Peters Vilnius University University of Florida K. Karˇ ciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 1 / 18

Upload: others

Post on 28-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Smooth Multi-Sided Blending of bi-2 Splines

Kestutis Karciauskas Jorg Peters

Vilnius University University of Florida

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 1 / 18

Page 2: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Quad models converted to CAD-compatible splinesgold = C1 bi-2 splines; red = G1 bi-3;

(a) rocker arm (b) fan disk

Continuity of normals often suffices (+ highlight lines well-distributed)Low degree preferable (fewer oscillations, lower downstream cost, ...)Matched Gk constructions yield Ck iso-geometric elements [P2013]

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 2 / 18

Page 3: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Quad models converted to CAD-compatible splinesgold = C1 bi-2 splines; red = G1 bi-3;

(a) rocker arm (b) fan disk

Continuity of normals often suffices (+ highlight lines well-distributed)Low degree preferable (fewer oscillations, lower downstream cost, ...)Matched Gk constructions yield Ck iso-geometric elements [P2013]

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 2 / 18

Page 4: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Quad models converted to CAD-compatible splinesgold = C1 bi-2 splines; red = G1 bi-3;

(a) rocker arm (b) fan disk

Continuity of normals often suffices (+ highlight lines well-distributed)Low degree preferable (fewer oscillations, lower downstream cost, ...)Matched Gk constructions yield Ck iso-geometric elements [P2013]

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 2 / 18

Page 5: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Quad models converted to CAD-compatible splinesgold = C1 bi-2 splines; red = G1 bi-3;

(a) rocker arm (b) fan disk

Continuity of normals often suffices (+ highlight lines well-distributed)Low degree preferable (fewer oscillations, lower downstream cost, ...)Matched Gk constructions yield Ck iso-geometric elements [P2013]

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 2 / 18

Page 6: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Joining and capping a collection of bi-2 spline surfaces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 3 / 18

Page 7: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Joining and capping a collection of bi-2 spline surfaces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 3 / 18

Page 8: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Joining and capping a collection of bi-2 spline surfaces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 3 / 18

Page 9: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Joining and capping a collection of bi-2 spline surfaces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 3 / 18

Page 10: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Outline

1 Why not classical 1980s, 1990s solutions?

2 Multi-sided blends: unified input, geometric continuity

3 Construction Highlights

4 Bi-3 caps when n = 3,5

5 More examples and comparisons

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 4 / 18

Page 11: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

Outline

1 Why not classical 1980s, 1990s solutions?

2 Multi-sided blends: unified input, geometric continuity

3 Construction Highlights

4 Bi-3 caps when n = 3,5

5 More examples and comparisons

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 4 / 18

Page 12: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

1980s, 1990s solutions

(a) input (b) Doo-Sabin (DS)

(c) input (d) Gregory-Zhou (e) our cap

singular constructions, rational (normalized) constructions, simplex splines,manifold splines, 3-sided patches,. . . not adopted by industry

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 5 / 18

Page 13: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

1980s, 1990s solutions

(a) input (b) Doo-Sabin (DS)

(c) input (d) Gregory-Zhou (e) our cap

singular constructions, rational (normalized) constructions, simplex splines,manifold splines, 3-sided patches,. . . not adopted by industry

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 5 / 18

Page 14: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

1980s, 1990s solutions

(a) input (b) Doo-Sabin (DS)

(c) input (d) Gregory-Zhou (e) our cap

singular constructions, rational (normalized) constructions, simplex splines,manifold splines, 3-sided patches,. . . not adopted by industry

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 5 / 18

Page 15: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

1980s, 1990s solutions

(a) input (b) Doo-Sabin (DS)

(c) input (d) Gregory-Zhou (e) our cap

singular constructions, rational (normalized) constructions, simplex splines,manifold splines, 3-sided patches,. . . not adopted by industry

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 5 / 18

Page 16: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

New ingredients – 1990’s vs 2014: parameterization

quad mesh with nodes of valences 3,4,6,8 SMI 2014

1990’s SMI 2014

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 6 / 18

Page 17: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

New ingredients – 1990’s vs 2014: parameterization

quad mesh with nodes of valences 3,4,6,8 SMI 2014

1990’s

SMI 2014

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 6 / 18

Page 18: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Why not classical 1980s, 1990s solutions?

New ingredients – 1990’s vs 2014: parameterization

quad mesh with nodes of valences 3,4,6,8 SMI 2014

1990’s SMI 2014

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 6 / 18

Page 19: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Multi-sided blends: unified input, geometric continuity

Outline

1 Why not classical 1980s, 1990s solutions?

2 Multi-sided blends: unified input, geometric continuity

3 Construction Highlights

4 Bi-3 caps when n = 3,5

5 More examples and comparisons

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 6 / 18

Page 20: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Multi-sided blends: unified input, geometric continuity

Unified Input

(a) CC-net (primal) (b) DS-net (dual)

(c) virtual refine-ment

=⇒

(d) tensor-border b

Border = ring of position and derivative data in BB-form.

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 7 / 18

Page 21: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Multi-sided blends: unified input, geometric continuity

Unified Input

(a) CC-net (primal) (b) DS-net (dual)

(c) virtual refine-ment

=⇒

(d) tensor-border b

Border = ring of position and derivative data in BB-form.K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 7 / 18

Page 22: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Multi-sided blends: unified input, geometric continuity

Geometric continuity

G1: fv (u,0) + gv (u,0) = b(u)fu(u,0)

(1990’s) b(u) := 2 cos 2πn (1− u)2 ⇒

input Hermite data is matched directly (C1)⇒ low quality.bi-4 capping(2014) b(u) := 2 cos 2π

n (1− u)⇒input reparameterized to make green compatible with inter-sector.

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 8 / 18

Page 23: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Multi-sided blends: unified input, geometric continuity

Geometric continuity

G1: fv (u,0) + gv (u,0) = b(u)fu(u,0)

(1990’s) b(u) := 2 cos 2πn (1− u)2 ⇒

input Hermite data is matched directly (C1)⇒ low quality.

bi-4 capping(2014) b(u) := 2 cos 2π

n (1− u)⇒input reparameterized to make green compatible with inter-sector.

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 8 / 18

Page 24: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Multi-sided blends: unified input, geometric continuity

Geometric continuity

G1: fv (u,0) + gv (u,0) = b(u)fu(u,0)

(1990’s) b(u) := 2 cos 2πn (1− u)2 ⇒

input Hermite data is matched directly (C1)⇒ low quality.bi-4 capping(2014) b(u) := 2 cos 2π

n (1− u)⇒input reparameterized to make green compatible with inter-sector.

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 8 / 18

Page 25: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

Outline

1 Why not classical 1980s, 1990s solutions?

2 Multi-sided blends: unified input, geometric continuity

3 Construction Highlights

4 Bi-3 caps when n = 3,5

5 More examples and comparisons

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 8 / 18

Page 26: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

1. The positive effect of border reparameterization

(a) input a,b,c (b) b, C1, bi-4 (c) our cap

(d) Catmull-Clark

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 9 / 18

Page 27: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

1. The positive effect of border reparameterization

(a) input a,b,c (b) b, C1, bi-4 (c) our cap

(d) Catmull-ClarkK. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 9 / 18

Page 28: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

2. Curvature continuity at the extraordinary point

n = 7 CC-net

bi-4, G1 eop bi-4, G2 eop

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 10 / 18

Page 29: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

2. Curvature continuity at the extraordinary point

n = 7 CC-net bi-4, G1 eop bi-4, G2 eop

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 10 / 18

Page 30: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

3. Functionals – but only after carefulparameterization!

Fmf :=∫ 1

0

∫ 1

0

i+j=m∑i,j≥0

m!

i!j!(∂ i

sf∂ jt f )

2, m-jet F∗κ f :=

∫ 1

0

∫ 1

0(∂κs f )2 + (∂κt f )2

Fix central point then minimize. Low n < 7→ F3, High n > 6→ F4.

(a) n = 6 (b) F2 (c) F3 our cap (d) F∗3

(e) n = 8 (f) F3 (g) F4 our cap (h) F∗3

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 11 / 18

Page 31: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

3. Functionals – but only after carefulparameterization!

Fmf :=∫ 1

0

∫ 1

0

i+j=m∑i,j≥0

m!

i!j!(∂ i

sf∂ jt f )

2, m-jet F∗κ f :=

∫ 1

0

∫ 1

0(∂κs f )2 + (∂κt f )2

Fix central point then minimize. Low n < 7→ F3, High n > 6→ F4.

(a) n = 6 (b) F2 (c) F3 our cap (d) F∗3

(e) n = 8 (f) F3 (g) F4 our cap (h) F∗3

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 11 / 18

Page 32: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

3. Functionals – but only after carefulparameterization!

Fmf :=∫ 1

0

∫ 1

0

i+j=m∑i,j≥0

m!

i!j!(∂ i

sf∂ jt f )

2, m-jet F∗κ f :=

∫ 1

0

∫ 1

0(∂κs f )2 + (∂κt f )2

Fix central point then minimize. Low n < 7→ F3, High n > 6→ F4.

(a) n = 6 (b) F2 (c) F3 our cap (d) F∗3

(e) n = 8 (f) F3 (g) F4 our cap (h) F∗3

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 11 / 18

Page 33: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

Implementation via generating functionsTabulate 4 generating functions (3 if primal)

Assemble patch covering sector s

patchsij :=

n−1∑k=0

4∑m=1

tablek,mij nets−k

m . (1)

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 12 / 18

Page 34: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Construction Highlights

Implementation via generating functionsTabulate 4 generating functions (3 if primal)

Assemble patch covering sector s

patchsij :=

n−1∑k=0

4∑m=1

tablek,mij nets−k

m . (1)

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 12 / 18

Page 35: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Bi-3 caps when n = 3, 5

Outline

1 Why not classical 1980s, 1990s solutions?

2 Multi-sided blends: unified input, geometric continuity

3 Construction Highlights

4 Bi-3 caps when n = 3,5

5 More examples and comparisons

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 12 / 18

Page 36: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Bi-3 caps when n = 3, 5

Bi-3 cap when n = 3

Theorem For n = 3 any smooth piecewise polynomial cap, satisfyingsymmetric G1 constraints is curvature continuous at the central point.

CC-net highlights mean curvature

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 13 / 18

Page 37: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

Bi-3 caps when n = 3, 5

Bi-3 cap when n = 5

One patch per sector!

(a) n = 5 (b) F3 (c) F5 to set cen-tral point

(d) n = 5 (e) Gregory-Zhou (f) our cap

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 14 / 18

Page 38: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Outline

1 Why not classical 1980s, 1990s solutions?

2 Multi-sided blends: unified input, geometric continuity

3 Construction Highlights

4 Bi-3 caps when n = 3,5

5 More examples and comparisons

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 14 / 18

Page 39: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Beams joining and subdivision

DS-net DS augmented DS

CC-net CC bi-4

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 15 / 18

Page 40: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Modeling with multi-sided patches

quad mesh, n=3,4,5,6 regular bi-2 + caps

’rotation’

5-sided + bi-3 surface modification4-sided faces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 16 / 18

Page 41: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Modeling with multi-sided patches

quad mesh, n=3,4,5,6 regular bi-2 + caps ’rotation’

5-sided + bi-3 surface modification4-sided faces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 16 / 18

Page 42: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Modeling with multi-sided patches

quad mesh, n=3,4,5,6 regular bi-2 + caps ’rotation’

5-sided + bi-3 surface

modification

4-sided faces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 16 / 18

Page 43: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Modeling with multi-sided patches

quad mesh, n=3,4,5,6 regular bi-2 + caps ’rotation’

5-sided + bi-3 surface modification4-sided faces

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 16 / 18

Page 44: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Multi-patch caps naturally fill a bi-2 C1 complex

Mean curvature

n = 5 n = 6 n = 7

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 17 / 18

Page 45: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Conclusion

G1 with well-distributed highlight lines – sufficient for inner surfaces ormechanical parts.Degree bi-4 (default); bi-3 when n = 3,5.(Alternatively bi-3 for all n using a 2× 2 split.)Immediate boundary reparameterization!Curvature continuity at the extraordinary point.Minimize functionals – but only after careful parameterization!⇒ cap behaves like one patch:

Questions?

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 18 / 18

Page 46: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Conclusion

G1 with well-distributed highlight lines – sufficient for inner surfaces ormechanical parts.Degree bi-4 (default); bi-3 when n = 3,5.(Alternatively bi-3 for all n using a 2× 2 split.)Immediate boundary reparameterization!Curvature continuity at the extraordinary point.Minimize functionals – but only after careful parameterization!⇒ cap behaves like one patch:

Questions?

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 18 / 18

Page 47: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Conclusion

G1 with well-distributed highlight lines – sufficient for inner surfaces ormechanical parts.Degree bi-4 (default); bi-3 when n = 3,5.(Alternatively bi-3 for all n using a 2× 2 split.)Immediate boundary reparameterization!Curvature continuity at the extraordinary point.Minimize functionals – but only after careful parameterization!⇒ cap behaves like one patch:

Questions?

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 18 / 18

Page 48: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Conclusion

G1 with well-distributed highlight lines – sufficient for inner surfaces ormechanical parts.Degree bi-4 (default); bi-3 when n = 3,5.(Alternatively bi-3 for all n using a 2× 2 split.)Immediate boundary reparameterization!Curvature continuity at the extraordinary point.Minimize functionals – but only after careful parameterization!⇒ cap behaves like one patch:

Questions?

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 18 / 18

Page 49: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Conclusion

G1 with well-distributed highlight lines – sufficient for inner surfaces ormechanical parts.Degree bi-4 (default); bi-3 when n = 3,5.(Alternatively bi-3 for all n using a 2× 2 split.)Immediate boundary reparameterization!Curvature continuity at the extraordinary point.Minimize functionals – but only after careful parameterization!⇒ cap behaves like one patch:

Questions?

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 18 / 18

Page 50: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Conclusion

G1 with well-distributed highlight lines – sufficient for inner surfaces ormechanical parts.Degree bi-4 (default); bi-3 when n = 3,5.(Alternatively bi-3 for all n using a 2× 2 split.)Immediate boundary reparameterization!Curvature continuity at the extraordinary point.Minimize functionals – but only after careful parameterization!⇒ cap behaves like one patch:

Questions?

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 18 / 18

Page 51: Smooth Multi-Sided Blending of bi-2 SplinesSmooth Multi-Sided Blending of bi-2 Splines Ke¸stutis Karciauskasˇ Jorg Peters¨ Vilnius University University of Florida K. Karciauskas,

More examples and comparisons

Conclusion

G1 with well-distributed highlight lines – sufficient for inner surfaces ormechanical parts.Degree bi-4 (default); bi-3 when n = 3,5.(Alternatively bi-3 for all n using a 2× 2 split.)Immediate boundary reparameterization!Curvature continuity at the extraordinary point.Minimize functionals – but only after careful parameterization!⇒ cap behaves like one patch:

Questions?

K. Karciauskas, J. Peters (VU, UF) SMI14: Bi-3/4 Caps for bi-2 Splines 18 / 18