slides control of discrete systems

46
1 Control of Discrete Syste ms ENSICA Yves Briere ISAE General Introduction

Upload: atakan-ozturk

Post on 04-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 1/45

1

Control of Discrete Systems

ENSICA

Yves BriereISAE

General Introduction

Page 2: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 2/45

2

Prerequisites :Automatique ENSICA 1A et 2ATraitement numérique du signal ENSICA 1A(Control and signal processing, basics)

Tools :Matlab / Simulink

References :

• « Commande des systèmes », I. D. Landau, Edition

Lavoisier 2002.

Planning22 slots of 1h15

Overview

Overview

Discrete signals and systems

Sampling continuous systems

Identification of discrete systems

Closed loop systems

Control methods

Control by computer

Page 3: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 3/45

3

I. Introduction

6

II. Discrete signals and systems

Signal processing / Control

Signal processing gives tools to describe and filter signals

Control theory use these tools to deal with closed loop systems

More generally, control theory deal with : discrete state system analysis and control (Petri nets, etc...)

Complex systems, UML, etc...

Page 4: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 4/45

4

7

II. Discrete signals and systems

What we deal with in this course

 

F1(z)

E(z)

S(z)U(z)

P(z)

R(z) F2(z)

F3(z)

S(z)

T(z)

F4(z)

Or, simply :

 

F(z)e(z) s(z)u(z)

p(z)

Computer DAC System ADC

The same problem as seen by the control system engineer :

8

II. Discrete signals and systems

II. Discrete signals and

systems

Page 5: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 5/45

5

9

II. Discrete signals and systemsReminder : the z-transform

Discrete signal : list of real numbers (samples)

Z-transform : function of the complex z variable

( ) ( )( ) ( )∑∞

=

−⋅==0k 

k zk sk sZzs

( ) { },...s,s,sk s 210=

Existence of s(z) : generally no problem (convergence radius : s(z) exist for a

given radius |z| > R )

10

II. Discrete signals and systems

Reminder : properties of the z-transform

1

 

( ) ( )( ) ( )∑∞

=

−⋅==0k 

k zk sk sZzs

2

 

( ) ( )( ) ( )( ) ( )( )k sZβk sZαk sβk sαZ 2121   ⋅+⋅=⋅+⋅  

3

 

( )( )  ( )

dz

zdszk sk Z   ⋅−=⋅  

4

 

( )( )    

 

 

 

=⋅ c

z

sk scZ

  k 

 5

 

( )( ) ( ) ( )zsz1k s1k sZ   1 ⋅+−==−   −

 

6

 

( )( ) ( ) ( )0k szzsz1k sZ   =⋅−⋅=+

 

7

 

( ) ( )( )zslim0k s z   ∞→==

 8

 

( ) ( ) 

  

 ⋅

−=∞→ →   zs

z

1zlimk s 1z

 

Delay theorem

Final value theorem

Linearity

Page 6: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 6/45

6

11

II. Discrete signals and systemsReminder : basic signals

s(k) S(z)

δ(k) : unit impulse 1

u(k) : unit step1z

z

− 

k.u(k)( )2

1z

z

 ( )k uck  ⋅  cz

z

 ( ) ( )k uk sin   ⋅⋅ω

 

( )

( )   1sinz2z

sinz2 +ω⋅⋅−

ω⋅

 

12

II. Discrete signals and systems

Reminder : from « z » to « k »

First approach : use the z-transform equations (we don’t give here the

inverse z-transform equation, it is too ugly...)

Second approach : use tricks

recurrence inversion

Polynoms division

Singular value decomposition

Third approach : computer (Matlab)

Page 7: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 7/45

Page 8: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 8/45

8

15

II. Discrete signals and systemsReminder : discrete transfer function

Properties

Impulse response : the inverse z-transform of the transfer function

Step response

( )1n

n2

21

1

mm

22

110

z1

1

za...zaza1

zb...zbzbbzs

−−−−

−−−

−×

⋅++⋅+⋅+

⋅++⋅+⋅+=

Static gain (Final value theorem applied to the last equation)

∑=

=

=

=

+

=ni

1i

i

mi

0i

i

0

a1

b

F

16

II. Discrete signals and systems

Reminder : discrete transfer function

Properties : stability

Any transfer function can be expressed as:

( )  ( ) ( ) ( )

( ) ( ) ( )1n

12

11

1m

12

110

zc1zc1zc1

ze1ze1ze1ezF

−−−

−−−

⋅+⋅+⋅⋅+

⋅+⋅+⋅⋅+⋅=

L

L

Coefficients ci are either real or complex conjugates

For a stable system each ci coefficient must verify |ci| <1, in other words

each poles must belong to the unit circle.

F(z) can be decomposed in a sum of first order and second order systems

It is good to know how first and second order behaves

Properties : singular value decomposition

Page 9: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 9/45

9

17

II. Discrete signals and systemsReminder : first order systems

Properties : first order system

0 5 10 15 20 250

1

2

3zpk([],[0.6],1,1)

-3 -2 -1 0 1 2 3-1

0

1Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0 5 10 15 20 250

5

10zpk([],[0.9],1,1)

-3 -2 -1 0 1 2 3-1

0

1Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0 5 10 15 20 250

10

20zpk([],[1],1,1)

-3 -2 -1 0 1 2 3-1

0

1

Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0 5 10 15 20 250

100

200zpk([],[1.2],1,1)

-2 0 2 4-1

0

1Pole-Zero Map

 

   I  m  a  g   i  n  a  r  y   A  x   i  s

18

II. Discrete signals and systems

Reminder : second order systems

Properties : second order systems

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1π /T

0.2π /T

0.3π /T

0.4π /T0.5π /T

0.6π /T

0.7π /T

0.8π /T

0.9π /T

π /T

0.1π /T

0.2π /T

0.3π /T

0.4π /T0.5π /T

0.6π /T

0.7π /T

0.8π /T

0.9π /T

π /T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

Page 10: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 10/45

10

19

II. Discrete signals and systems

0 5 10 15 20 250

2

4zpk([],[0.6+0.5i 0.6-0.5i],1,1)

-3 -2 -1 0 1 2 3-1

0

1

Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0 5 10 15 20 25

0

0.5

1zpk([],[-0.1+0.2i -0.1-0.2i],1,1)

-3 -2 -1 0 1 2 3

-1

0

1

Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0 5 10 15 20 250

1

2zpk([],[0.2+0.9i 0.2-0.9i],1,1)

-3 -2 -1 0 1 2 3-1

0

1

Pole-Zero Map

Real Axis

   I  m  a  g   i  n  a  r  y   A  x   i  s

0 5 10 15 20 25-5

0

5zpk([],[0.6+0.9i 0.6-0.9i],1,1)

-3 -2 -1 0 1 2 3-1

0

1

Pole-Zero Map

 

   I  m  a  g   i  n  a  r  y   A  x   i  s

Reminder : second order systems

Properties : second order systems

20

II. Discrete signals and systems

Reminder : frequency response

Reminder : continuous systems

( ) ( )

[ ]

∞∈

=⋅⋅π⋅⋅+⋅⋅π⋅=   ⋅⋅π⋅⋅

0f 

etf 2sin jtf 2cos)t(e   tf 2 j

Analogy : discrete system

( ) ( )

[ ]

=⋅⋅π⋅⋅+⋅⋅π⋅=   ⋅⋅π⋅⋅

10f 

ek f 2sin jk f 2cos)k (e   k f 2 j

The output signal looks like

( )   ( )( )

[ ]

⋅=   Φ+⋅⋅π⋅⋅

10f 

ef A)k (s   f k f 2 j

With F of phase Φ (degrees) and module A (decibels):

( )   ( )[ ]

==   ⋅π⋅⋅

10f 

ezFf F   f 2 j

Page 11: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 11/45

11

21

II. Discrete signals and systemsReminder : frequency response

Definition : frequency response

( )   ( )[ ]

==   ⋅π⋅⋅

10f 

ezFf F   f 2 jf : normalized frequency (between 0 and 1)

F(f) : frequency response

Property : Bode diagram

-10

-5

0

5

10

15

20

   M  a  g  n   i   t  u   d  e   (   d   B   )

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-360

-270

-180

-90

0

   P   h  a  s  e   (   d  e  g   )

bode diagramof 1/(z2  - 0.4z + 0.85))

 

Bode diagram of a second order

system. Note the linear scale for

frequency.

22

II. Discrete signals and systems

Reminder : Nyquist-Shannon sampling theorem

 

1

0

Plan complexe

continu

Plan complexe

discret

1

1

1

2

0

Page 12: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 12/45

12

End of C1 C2

III. Sampling

continuoussystems

Page 13: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 13/45

13

25

III. Sampled continuous systemsDiscrete systems

A real system is generally continuous (and described by differential

equations)

 

Computer DAC System ADC

An interface provides sampled measurements at a given frequency:

Digital to Analog Converter (DAC)

smart sensor

A computer provides at a given frequency the input of the system

An interface transforms the computer output into a continuous input

for the system

Analog to Digital Converter (ADC)

smart actuator

26

III. Sampled continuous systems

Hypothesis

Sampling is regular

Sampling is synchronous

The computer computes the control according to the

curr »ent measurement and a finite set of pas

measurements.

 

Computer DAC System ADC

Page 14: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 14/45

14

27

III. Sampled continuous systemsSampling a continuous transfer function

Hypothesis :

The continuous transfer function is known

The ADC is a ZOH ☺

We must now deal with F+ZOH in a whole

 ZOH F(p)

28

III. Sampled continuous systems

Zero Holder Hold : the sampled input is blocked during one sampling

delay.

The impulse response of a zoh is consequently:

 

t

Te0 

The Laplace transform of the above signal is:

( )eT s

1 eZOH s

s s

− ⋅

= −

Sampling a continuous transfer function

Page 15: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 15/45

15

29

III. Sampled continuous systems

The impulse response of ZOH+F is :

( ) ( ) ( ) ( )sFs

1esF

s

1sF

s

e

s

1ss   e

eT j

T j

⋅−⋅=⋅ 

  

 −=   ⋅−

⋅−

Two terms for the impulse response :

( ) ( ) ( )   ( )   ( ) 

 

 

 ⋅−= 

 

 

 ⋅− 

 

 

 ⋅=

  −−

sFs

1

Zz1sFs

1

ZzsFs

1

Zk s  11

Usually the z-transfer function of ZOH+F is given by tables:

Sampling a continuous transfer function

30

III. Sampled continuous systems

Tables

F(s) FBOZ(z)

1 1

s

1

1e

z1

zT−

⋅ 

sT1

1

⋅+ 

−=−=

⋅+

−−

TT

1T

T

1

11

11

ee

eae1b

za1

zb

 

e

sL

TL

sT1

e

<

⋅+

⋅−

 

( ) ( )

−=−=

−=⋅+

⋅+⋅

−−

−−

1eebe1b

eaza1

zbzb

TLTT2

TTL1

TT11

1

22

11

ee

e

 

Matlab

% Def in i t ion o f a cont inuous system :

sysc=t f (1 , [1 1 ] ) ;

% z_t ransfer funct ion a f ter sampl ing

Te=0.1;

sysd=c2d(sysc,Te, 'zoh ' ) ;

% Nota t ion wi th z^-1

sysd.var iab le= 'z

Matlab

Sampling a continuous transfer function

Page 16: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 16/45

16

31

III. Sampled continuous systemsSampling time delay equivalence

A sampling time of Te can be approximated as a delay of Te /2 :

instability in closed loo^p.

-1.5 -1 -0.5 0 0.5 1 1.5 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2Nyquist Diagram

Real Axis

   I  m  a

  g   i  n  a  r  y   A  x   i  s

>> F=2*s/(1+s+s^2)/s/(1+s)

>> G=F;>> G.ioDelay=0.5>> nyquist(F,G)

FG

32

III. Sampled continuous systems

Choice of sampling time

The sampling time is chosen according to the closed loop expected

performance

Example : third order system>> F=1.5/(1+s+s^2)/(1+s)

Sampling frequency : 5 to 25 fois the expected closed loop bandwidth.

Closed loop bandwitdh at -3dB of F/(1+F) : 0.3 Hz

Sampling time : 5 Hz

Page 17: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 17/45

17

33

III. Sampled continuous systems

10-1

-270

-225

-180

-135

-90

-45

0

   P   h  a  s  e   (   d  e  g   )

Bode Diagram

Frequency (Hz)

-20

-15

-10

-5

0

5

10

System: F

Frequency (Hz): 0.196

Magnitude (dB): - 3

System: untitled1

Frequency (Hz): 0.26

Magnitude (dB): -7.36

   M  a  g  n   i   t  u   d  e   (   d   B   )

System: untitled1

Frequency (Hz): 0.0215

Magnitude (dB): -4.36

F F/(1+F)

Choice of sampling frequency

34

III. Sampled continuous systems

Root Locus

Real Axis

   I  m  a  g   i  n  a  r  y

   A  x   i  s

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.50.120.240.380.50.640.76

0.88

0.97

0.120.240.380.50.640.76

0.88

0.97

0.511.522.5

System: F

Gain: 1.64

Pole: -0.0488 + 1.35i

Damping: 0.0362

Overshoot (%): 89.2

Frequency (rad/sec): 1.35

System: F

Gain: 1.69

Pole: -1.92

Damping: 1

Overshoot (%): 0

Frequency ( rad/sec): 1.92

Choice of sampling frequency

Page 18: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 18/45

18

35

III. Sampled continuous systems

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Choice of sampling frequency

36

III. Sampled continuous systems

Sampling effect : discretization

Sampling is always associated to a discretization of the signal !

Example :

- Signal sampled at 0.2s and discretized at a resolution of 0.1.

- The numerical derivative of the signal

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 1 0 1 5

- 0 . 1

- 0 . 0 5

0

0 . 0 5

0 . 1

0 . 1 5

Page 19: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 19/45

19

37

III. Sampled continuous systemsFirst approach : discretise a continuous controller

The sampling effect (ZOH) is neglected.

Example : continuous PD :   ( )  ( )

( )

( ) ( )  ( )

p D

p D

e sPID s k k s

s

d te t k t k  

dt

= = + ⋅ε

ε= ⋅ ε + ⋅

Continuous derivative is replaced by a discrete derivative :

( ) ( )   ( ) ( )e

DpT

1k k k k k k e   −ε−ε⋅+ε⋅=

Transfer function :

( ) ( )  ( ) ( )

( )zT

z1k k 

T

zzzk zk ze

e

1

Dp

e

1

Dp   ε⋅ 

  

    −⋅+=

ε−ε⋅+ε⋅=

−−

S to z equivalence :e

1

T

z1s

−−=

38

III. Sampled continuous systems

More generally the problem is to approximate a differential equation : cf

numerical methods of integration

Method s to z equivalence

Euler's forwardmethod

e1

1

Tz

z1s

−=

 

Euler's backwardmethod

e

1

T

z1s

−−=

 

Tustin method1

1

e   z1

z1

T

2s

+

−⋅=

 

First approach : discretise a continuous controller

Page 20: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 20/45

20

39

III. Sampled continuous systems

Warning : methods are not equivalent !

-1.5 -1 -0.5 0 0.5 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Blue : zoh

Green : tustin

(No problem if sampling

time is small)

First approach : discretise a continuous controller

40

III. Sampled continuous systems

Equivalence of contrinuous poles after « s to z » conversion

 

(a) (b)

1

1

(c) (d)

s z

z z (a) : continuous

(b) : Euler forward

(c) : Euler backward

(d) : Tustin

First approach : discretise a continuous controller

Page 21: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 21/45

21

41

III. Sampled continuous systems

End C3 C4

IV. Identification of

discrete systems

Page 22: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 22/45

22

43

IV. Identification of discrete systemsIntroduction

Before the design process of a controller one must have a discrete model of the

plant

First approach : continuous model and/or identification then discretization (cf

last chapter)

Second approach : tests on the real system, measurements (sampled),

identification algorithm

For a full course on this topic see 3d year course “airplane identification”

44

IV. Identification of discrete systems

Naive approach

(But easy, fast and easy to explain)

Standard test (step, impulse)

Try to fit as well as possible a model (first order, second order with delay,

etc...)

... « fit as well as possible » ... criteria ?... optimisation ?…

Page 23: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 23/45

23

45

IV. Identification of discrete systems

Example : real step test (o) and simulated first order step (x)

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

1.2

1.4

Naive approach

46

IV. Identification of discrete systems

A little bit of method ?

trial and error fitting of the outputs

find a criteria☺ , example : mean square error...

( ) ( )( )∑=

−=N

1t

2mesuréreel   tyty

N

1J

>> t=0:0.1:8;>> p=tf('p');

>> sysreal=tf(1/(1+2*p)/(1+0.6*p)*(1+0.5*p))

+0.02*randn(length(t),1);

>> yreal=step(sysreal,t)+0.02*randn(length(t),1);

>> ysimul=step(1/(1+2*p),t);

>> plot(t,yreal,'bo',t,ysimul,'rx')

>> eps=yreel-ysimul;

>> J=1/length(eps)*eps'*eps;

After some iterations one obtain Jminimal with tau=1.81 s

Better model with a delay, twoparameters to tune

Naive approach

Page 24: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 24/45

24

47

IV. Identification of discrete systems

Drawbacks :

Test signals with high amplitude (is the system still linear ?)

Reduced precision

Perurbation noise not taken into account

Perturbation noise reduces the performance of the identification

long, not very rigorous...

Advantage :

easy to understand...

Naive approach

48

IV. Identification of discrete systems

Second method (the good one) : « estimation »

Perform a « rich test » (random input signal, rich in frequency)

Fit the model that best predict the output.

Page 25: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 25/45

25

49

IV. Identification of discrete systems

Basic principle of parametric identification

Physical systemADC DAC

Numerical model

Parameters Adaptation

Algorithm

u(t) y(t)

ŷ(t)

ε(t)

Parameters of the model

perturbations

50

IV. Identification of discrete systems

Example of an Identification Process

Linear model (ARX) :

euByA   +⋅=⋅

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )te1ntub...1tubtub

1ntya...1tyatya1ty

bn21

an21

b

a

++−⋅++−⋅+⋅

=+−⋅++−⋅+⋅++

Model used as a predictor :

( ) ( ) ( )   ( )( )( ) ( )   ( )

a

b

predict 1 2 n a

1 2 n b

y t 1 a y t a y t 1 ... a y t n 1

.... ... ... .......... ... .... ... .b u t b u t 1 ... b u t n 1

+ = − ⋅ + ⋅ − + + ⋅ − + +

⋅ + ⋅ − + + ⋅ − +

Try to minimize the difference between prediction and actual measurement.

White noise

Page 26: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 26/45

26

51

IV. Identification of discrete systems

errorpredictionmeasurements

JTotal

eps8yp8y8u8

eps7yp7y7u7

eps6yp6y6u6

eps5yp5y5u5

eps4yp4y4u4

eps3yp3y3u3

y2u2

y1u1

Example : orders na = 3 et nb = 2

( )

2ub1ub...............................

3ya2a1ya5yp

21

321

⋅+⋅

+⋅+⋅+⋅−=

5y5yp5eps   −=

( )∑=

=N

1t

2teps

N

1J

Unknown : coefficients

{a1, a2, a3, b1, b2}

Example of an Identification Process

52

IV. Identification of discrete systems

Recursive Least Square Algorithm

Possible since model is linear

Possible since quadratic criteria

Interesting because of the recursive version

( ) ( ) ( )   ( )( )( ) ( )   ( )

a

b

predict 1 2 n a

1 2 n b

y t 1 a y t a y t 1 ... a y t n 1........ ... ... ............. ....b u t b u t 1 ... b u t n 1

+ = − ⋅ + ⋅ − + + ⋅ − + +⋅ + ⋅ − + + ⋅ − +

Prediction equation can be re-written :

( ) ( )Tpredicty t t= θ ⋅ φ

( )   [ ],...b,b,...a,atθ 2121T

=

( ) ( ) ( ) ( ) ( )[ ],...1tu,tu,...1ty,tytφ  T

−−−−=

Example of an Identification Process

Where :

Page 27: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 27/45

27

53

IV. Identification of discrete systems

Estimate  θ  taking into account the full set of measurements

Obtained θ is optimal

Least Square Algorithm

( ) ( ) ( )( )∑=

−φ⋅=θt

1i

1iiytFˆ

With :

( ) ( ) ( )( )∑=

−−⋅−=

t

1i

T11iφ1iφtF

54

IV. Identification of discrete systems

Estimate θ recursively for t = 0...N

θ obtained after recursion is optimal

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

T

1 1 T

t t 1 F t t y t t 1 t

with :

F t F t 1 t t

− −

θ = θ − + ⋅ ϕ ⋅ − θ − ⋅ ϕ

= − + ϕ ⋅ϕ

Algorithm can be applied in real time

parameters supervision

diagnostis

Algorithm can be improved with a forget factor : λ=0.95...0.99

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

T

1 1 T

t t 1 F t t y t t 1 t

with :

F t F t 1 t t− −

θ = θ − + ⋅ ϕ ⋅ − θ − ⋅ ϕ

= λ ⋅ − + ϕ ⋅ ϕ

Recursive Least Square (rls) Algorithm

Page 28: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 28/45

28

55

IV. Identification of discrete systems

Les algorithmes d’identification sont en général des variantes des moindres

carrés récursifs

En tous cas ils ont tous, pour les algorithmes récursifs, la forme suivante :

Identification algorithms (general)

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )T11

T

tt1tFtF

avec

t1ttyttF1tt

ϕ⋅ϕ+−⋅λ=

ϕ⋅−θ−⋅ϕ⋅+−θ=θ

−−

56

IV. Identification of discrete systems

1. Choice of a frequency sampling

Not too big

Not too small

Adapted to the fastet expected dynamic (usually closed loop dynamic)

Identification method

Page 29: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 29/45

29

57

IV. Identification of discrete systems

2. Excitation signal

Le signal doit être riche en fréquence

Signal can (and must) be of small amplitude (a few %)

Example 1 : Pseudo Random Binary Signal

0 5 10 15 20-1.5

-1

-0.5

0

0.5

1

1.5

Matlab / System Identification Toolboxe

>> u=idinput(500,’prbs’)

Example 2 : excitation 3-2-1-1 (airplane identification)  3∆t

2∆t

∆t

∆t

Identification method

58

IV. Identification of discrete systems

3. Test and measurements

Choice of a setpoint

Test

Remove mean of measurements

Remove absurd values

4. Model choice

Example : ARX, degree of A and B

5. Apply algorithm

Example : rls

6. Validate

Validation criteria ?

Iterate

Identification method

Page 30: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 30/45

30

59

IV. Identification of discrete systems

1. The model must predict the output

Validation criteria

2. The model behavior must be the same than the original for perturbations

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )te1ntub...1tubtub

1ntya...1tyatya1ty

bn21

an21

b

a

++−⋅++−⋅+⋅

=+−⋅++−⋅+⋅++

The model :

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )1ty...............

1ntub...1tubtub...............

1ntya...1tyatyate

1ty1tyte

bn21

an21est

estest

b

a

+−

+−⋅++−⋅+⋅−

+−⋅++−⋅+⋅=

+−+=

With the estimated model (ai

, bi

) one can estimate the error !

Check that eest(t) is a white noise !

60

IV. Identification of discrete systems

Use dedicated software

Example : Matlab / System Identification Toolboxe...

Page 31: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 31/45

31

61

IV. Identification of discrete systems

1. Import datas 2. Choose modeland algorithm

3. Validate :prédiction

3. Validate,residuals

62

IV. Identification of discrete systems

Accelerate the identification process

Matlab licence = 3000 € + toolboxes licence...

« homemade » toolboxes are used for dedicated applications

Use dedicated software

Page 32: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 32/45

32

63

IV. Identification of discrete systemsNon parametric identification

From input/output datas, estimate the transfer function :

Input / output cross correlation

FFT, Hamming window and tutti quanti

Gain and phase, Bode diagram

From input / output datas, estimate the impulse response

Apply RLS algorithm with nB big and nA = 0

Allow for instance to quickly estimate the pure delay

V. Closed loop

systems

Page 33: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 33/45

33

65

V. Closed loop systemsReminder

 

F1(z)

E(z)

S(z)U(z)

P(z)

R(z) F2(z)

F3(z)

S(z)

T(z)

F4(z)

F(z)e(z) s(z)u(z)

p(z)

Equivalent !

Open loop transfer function :

F = S.F1.F2.F3.T

66

V. Closed loop systems

Closed loop transfer function

Open loop transfer function :

F = S.F1.F2.F3.T

Closed loop transfer function :

G = F(1+F)

G = B/(A+B)

Page 34: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 34/45

34

67

V. Closed loop systemsStatic gain

As seen before :

∑∑

∑=

=

=

=

=

=

++

=ni

1i

i

mi

0i

i

mi

0i

i

0

ab1

b

G

Condition to have a unitary closed loop static gain (no static error) :

1

ab1

b

Gni

1i

i

mi

0i

i

mi

0i

i

0   =

++

=

∑∑

∑=

=

=

=

=

= ( )  ( )

( )( )( )z'A

zB

z1

1

ze

zszF

1  ⋅

−==

Integrator

68

V. Closed loop systems

Perturbation rejection

Same condition on A(1) to perfectly reject the perturbations

(integrator in the loop)

Perturbation-output transfer function

( )  ( )

( )

( )( ) ( )11

1

ypzBzA

zA

zp

zszS

−−

+==

Generally the rejection perturbation condition is weaker :

|Syp(e j2πf)| < Smax for a subinterval of [0 0.5]

Page 35: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 35/45

35

69

V. Closed loop systemsStability : poles

System is stable is the poles belong to the unit circle

Compute closed loop transfer function

Jury criteria (equivalent to Routh)

Compute poles

Draw the root locus

 

F(z)

e(z)s(z)u(z)

p(z)

K

70

V. Closed loop systems

Example : root locus

 

F(z)

e(z)

s(z)u(z)

p(z)

K

 

- . - . - . . . . .

1

.8

.6

.4

.2

0

.2

.4

.6

.8

0.1π /T

0.2π /T

0.3π /T0.4π /T0.5π /T0.6π /T

0.7π /T

0.8π /T

0.9π /T

π /T

0.1π /T

0.2π /T

0.3π /T

0.4π /T0.5π /T

0.6π /T

0.7π /T

0.8π /T

0.9π /T

π /T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

System: sys

Gain: 0.0169

Pole: 0.564 + 0.281iDamping: 0 .706

Overshoot (%): 4.35

Frequency (rad/sec): 0.654System: sys

Gain: 0.0162

Pole: 0.196

Damping: 1

Overshoot (%): 0

Frequency (rad/sec): 1.63

Page 36: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 36/45

36

71

V. Closed loop systemsStability : frequency criteria

Nyquist criteria : as in the continuous case

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Nyquist Diagram

RealAxis

   I  m  a  g   i  n  a  r  y   A  x   i  s

   f  =   0

   f  =   0 .   5

   (  -   1 ,   0   )

72

V. Closed loop systems

Nyquist criteria

Margins :

- Module margin ∆M- Gain module∆G- Phase module∆P

 

(-1,0)

∆P∆M

1/ ∆G

Page 37: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 37/45

37

73

V. Closed loop systems

end C5 C6

VI. Control of

sampled systems

Page 38: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 38/45

38

75

VI. Control of closed loop systemsHypothesis

Requisites :

Synchronous sampling

Regular sampling

Sampling time adapted to the desired closed loop performance

76

VI. Control of closed loop systems

Introduction

If K is linear, the RST form is canonical :

 

F(z)

e(t)s(t)

u(t)

p(t)

1/S

R

Tr(t))

R, S et T are polynoms

Controller computes e(t) given r(t) and s(t) :

 

F(z)e(t) s(t)

p(t)

K(z)r(t))

Page 39: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 39/45

39

77

VI. Control of closed loop systemsDiscretization of a continuous controller

1. Process is modelled as a linear transfer function (Laplace)

No need to know a sampled model of the system

2. Design of a continuous controller

3. Discretization of the continuous controller

Many discretization methods

Problem if Te too big (stability)

Problem if Te too small (numerical round up)

78

VI. Control of closed loop systems

Design of a discrete controller

1. System is known as a discrete transfer function (z-transform)

Discxretizaiton of a continuous model + ZOH

Direct identification

2. Design of a discrete controller

1. PID 1

2. PID 2

3. Pole placement

4. Independant tracking and regulation goals

Page 40: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 40/45

40

79

VI. Control of closed loop systemsPID 1

Continuous PID :   ( )

 

 

 

 

⋅+

⋅+

⋅+⋅=

sN

T1

sT

sT

11KsK

d

d

i

PID

Discretization (Euler) :   ( )

 

 

 

 

−⋅+

−⋅

+−

+⋅=−

e

1d

e

1

d

e

1

i

PID

T

q1

N

T1

T

q1T

T

q1T

11KqK

80

VI. Control of closed loop systems

PID 1

After re-arranging :

( )( ) ( )

⋅+=

 

  

 ⋅+

⋅=

 

  

 

⋅+

⋅+

⋅+⋅+

⋅++⋅−=

 

  

 

⋅+

⋅++⋅=

⋅+⋅−

⋅+⋅+⋅=

−−

−−

ed

d'1

ed

d2

ed

d

ed

d

i

e

ed

d1

ed

d

i

e0

1'1

1

22

110

PID

TNT

Ts

TNT

TKr

TNT

TN

TNT

T

T

T

TNT

T1Kr

TNT

TN

T

T1Kr

qs1q1

qrqrrKqK

 

B/As(t)

1/S

R

Rr(t)

Page 41: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 41/45

41

81

VI. Control of closed loop systemsPID 1

Closed loop transfer function is : :

CL

B R B RH

A S B R P

⋅ ⋅= =

⋅ + ⋅

S as an integral teerm (the I of PID) :

( )   RB'Sz1ARBSAP   1 ⋅+⋅−⋅=⋅+⋅=   −

Desired dynamics is given by the roots of P :

A,B,P R S’

Small degrees : by hand

Large degrees : Bezout algorithm

82

VI. Control of closed loop systems

PID 1

Main drawback : new zeros given by R at the denominator...

Solution : PID2

Page 42: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 42/45

42

83

VI. Control of closed loop systemsPID 2

 

B/As(t)

1/S

R

Rr(t)

Starting from the already known PID1 :

R is replaced by R(1) :

( )CL BH R 1P

= ⋅

Static gain is one, desired dynamic remains the same

Same performances in rejection perturbation

Better performance (smaller overshoot) in tracking

84

VI. Control of closed loop systems

Pole placement

Can be seen as a more general PID 2 where degrees of R and S are

not constrained.( )

( )

( )

( ) ( )

A

A

BB

d 1

OL 1

n1 11 n

n1 1 1 * 11 n

q B qH

A q

A q 1 a q ... a q

B q b q ... b q q B q

− −

−− −

−− − − −

⋅=

  = + ⋅ + + ⋅

= ⋅ + + ⋅ = ⋅

Tracking performance

( ) ( )( )

( ) ( ) ( ) ( ) ( )   P

P

d 1 1

CL 1

n1 1 1 d 1 1 11 n

q B q T qH

P q

P q A q S q q B q R q 1 p q ... p q

− − −

−− − − − − − −

⋅ ⋅=

= ⋅ + ⋅ ⋅ = + ⋅ + + ⋅

Regulation performance : ( )1

11

ypqP

qSqAS

−− ⋅=

Page 43: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 43/45

43

85

VI. Control of closed loop systemsPole placement

P poles gives the closed loop dynamic :

PD Dominant poles (second order, natural frequency, damping)

PF auxiliary poles, faster

A,B,P P : compute R and S

Static gain :

S = (1-q

-1

).S’

Rejection of harmonic perturbation

S = HS.S’ where |HS | is small at a given frequency

Remove sensibility to an given frequency :

R = HR.R’ where | HR | is small at a given frequency

86

VI. Control of closed loop systems

Pole placement

Perturbation rejection : choice of R and S

PF.PD = (1-q-1).HS.S’.A + HR.R’.B

A.(1-q-1).HS B.HR PF.PD R’ and S’

Static gain :

S = (1-q-1).S’

Rejection of harmonic perturbation

S = HS.S’ where |HS | is small at a given frequency

Remove sensibility to an given frequency :

R = HR.R’ where | HR | is small at a given frequency

Page 44: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 44/45

44

87

VI. Control of closed loop systemsPole placement

Tracking : choice of T

T is replaced by the normalized factor :

B/Ay(t)

1/S

R

T'

y*(t)

B* /A

*

r(t)

1. T’ is chosen such as the transfer y*y is as « transparent » as

possible

2. B*/A* chosen such as ry* as the desired dynamic

88

VI. Control of closed loop systems

Pole placement

Tracking : choice of T’

( ) ( )( )1

1d11

yyqP

qBqq'TqS   *

−−−−   ⋅

=

( )   ( )( )1BqPq'T

1

1

− =

With :

One obtain :

( )   ( )( )1B

qBqqS

1d1

yy*

−−− ⋅=

Page 45: Slides Control of Discrete Systems

8/13/2019 Slides Control of Discrete Systems

http://slidepdf.com/reader/full/slides-control-of-discrete-systems 45/45

89

VI. Control of closed loop systemsPlacement de pôle

Tracking : choice of A* and B* :

chosen according to tracking specifications

90

VI. Control of closed loop systems

Independant tracking and perturbation rejection specifications

P chosen to cancel poles of B*

B must be stable

Tracking : choice of T’

( ) ( )   ( )( ) ( )1*1

1*1d11

yyqBqP

qBqqq'TqS   *

−−

−−−−−

⋅⋅=

( ) ( )11 qPq'T   −− =

With :

One obtain :

( )   ( )1d1

yy  qqS   *

+−− =