sinusoidal steady-state analysis - xuanqi-net.com · sinusoidal steady-state analysis qi xuan...

49
1 Electric Circuits Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015

Upload: others

Post on 14-Mar-2020

54 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

1 Electric Circuits

Sinusoidal Steady-State Analysis

Qi Xuan Zhejiang University of Technology

Nov 2015

Page 2: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Structure

2 Electric Circuits

•  The  Sinusoidal  Source    •  The  Sinusoidal  Response  •  The  Phasor  •  The  Passive  Circuit  Elements  in  the  Frequency  Domain  •  Kirchhoff's  Laws  in  the  Frequency  Domain  •  Series,  Parallel,  and  Delta-­‐to-­‐Wye  SimplificaEons  •  Source  TransformaEons  and  Thévenin-­‐Norton  Equivalent  Circuits  •  The  Node-­‐Voltage  Method  •  The  Mesh-­‐Current  Method  •  The  Transformer  •  The  Ideal  Transformer  •  Phasor  Diagrams  

Page 3: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Why  Sinusoidal  Source?   •  The   genera4on,   transmission,   distribu4on,   and   consump4on  

of   electric   energy   occur   under   essen4ally   sinusoidal   steady-­‐state  condi4ons.    

•  An  understanding  of  sinusoidal  behavior  makes  it  possible  to  predict  the  behavior  of  circuits  with  nonsinusoidal  sources.    

•  Steady-­‐state  sinusoidal  behavior  oAen  simplifies  the  design  of  electrical  systems.    

Electric Circuits 3

A Household Distribution Circuit

Page 4: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  Sinusoidal  Source

Electric Circuits 4

A sinusoidal voltage/current source (independent or dependent) produces a voltage/current that varies sinusoidally with time.

Vm: Maximum amplitude ω: Angular frequency ϕ: Phase angle (radians/degrees)

f: Frequency T: Period

Page 5: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

RMS  Value

Electric Circuits 5

The  rms  value  of  a  periodic  func4on  is  defined  as  the  square  root  of  the  mean  value  of  the  squared  func4on.

We  can  completely  describe  a  specific  sinusoidal  signal  if  we  know   its   frequency,  phase  angle,  and  amplitude   (either   the  maximum  or  the  rms  value).

Power

Page 6: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Example  #1 A   sinusoidal   current   has   a   maximum   amplitude   of   20   A   .   The  current   passes   through   one   complete   cycle   in   1   ms.   The  magnitude  of  the  current  at  zero  4me  is  10  A  .    a)  What  is  the  frequency  of  the  current  in  hertz?    b)  What  is  the  frequency  in  radians  per  second?    c)  Write   the   expression   for   i(t)   using   the   cosine   func4on.  

Express  ϕ  in  degrees.    d)  What  is  the  rms  value  of  the  current?    

Electric Circuits 6

Page 7: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Solu:on  for  Example  #1 a)  From  the  statement  of  the  problem,  T = 1 ms;  hence  f = 1/T

=  1000 Hz.    b) ω = 2πf = 2000π rad/s. c)  We  have i(t) = Imcos(ωt + ϕ) = 20 cos(2000πt +ϕ),but  i(0)=

10A.Therefore  10 = 20cos ϕ and  ϕ = 60°.  Thus  the  expression  for  i(t) becomes    

                                                     i(t) = 20cos(2000πt + 60°). d)  The  rms  value  of  a  sinusoidal  current  is Im/√2.  Therefore  the  

rms  value  is  20/√2,  or  14.14 A.    

Electric Circuits 7

Page 8: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Example  #2 •  Calculate   the   rms   value   of   the   periodic   triangular   current   in  

the   given   figure.   Express   your   answer   in   terms   of   the   peak  current  Ip.    

Electric Circuits 8

Page 9: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Solu:on  for  Example  #2

Electric Circuits 9

Page 10: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  Sinusoidal  Response

Electric Circuits 10

Transient component Steady-state component

Page 11: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Steady-­‐state  Solu4on •  The  steady-­‐state  solu4on  is  a  sinusoidal  func4on.    •  The  frequency  of  the  response  signal  is  iden4cal  to  the  frequency  of  

the   source   signal.   This   condi:on   is   always   true   in   a   linear   circuit  when  the  circuit  parameters,  R,  L,  and  C,  are  constant.    

•  The  maximum  amplitude  of   the   steady-­‐state   response,   in   general,  differs   from  the  maximum  amplitude  of   the  source.  For   the  circuit  being  discussed,   the  maximum  amplitude  of   the   response  signal   is  Vm/√(R2+ω2L2),  and  that  of  the  signal  source  is  Vm.  

•  The  phase  angle  of  the  response  signal,  in  general,  differs  from  the  phase  angle  of  the  source.  For  the  circuit  being  discussed,  the  phase  angle  of  the  current  is  ϕ − θ  and  that  of  the  voltage  source  is  ϕ.

Electric Circuits 11

Page 12: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  Phasor

Electric Circuits 12

The   phasor   is   a   complex   number   that   carries   the   amplitude   and   phase   angle  informa4on  of  a  sinusoidal  func4on  (please  see  the  Appendix  B).    

Euler’s  idenEty:   The real part

The imaginary part

Phasor  transform:  

Angle notation

Page 13: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Inverse  Phasor  Transform

Electric Circuits 13

v = 100cos(ωt − 60)

Inverse  phasor  transform:

The   phasor   transform   is   useful   in   circuit   analysis   because   it  reduces  the  task  of  finding  the  maximum  amplitude  and  phase  angle  of  the  steady-­‐state  sinusoidal  response  to  the  algebra  of  complex  numbers.    

Page 14: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

•  The  transient  component  vanishes  as  4me  elapses,  so  the  steady-­‐  state  component  of  the  solu:on  must  also  sa:sfy  the  differen:al  equa:on.    

•  In  a  linear  circuit  driven  by  sinusoidal  sources,  the  steady-­‐state  response  also  is  sinusoidal,  and  the  frequency  of  the  sinusoidal  response  is  the  same  as  the  frequency  of  the  sinusoidal  source.    

•  Using  the  nota4on  introduced  in  Eq.  9.11,  we  can  postulate  that  the  steady-­‐state  solu4on  is  of  the  form  R{Aejβejωt},  where  A  is  the  maximum  amplitude  of  the  response  and  β  is  the  phase  angle  of  the  response.    

•  When  we  subs4tute  the  postulated  steady-­‐state  solu4on  into  the  differen4al  equa4on,  the  exponen4al  term  ejωt  cancel  out,  leaving  the  solu4on  for  A  and  β  in  the  domain  of  complex  numbers  

Electric Circuits 14

Page 15: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Illustra:on

Electric Circuits 15

Substituted into Eq. 9.8

Page 16: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Electric Circuits 16

The  phasor  transform,  along  with  the  inverse  phasor  transform,  allows  you  to  go  back  and  forth  between  the  4me  domain  and  the   frequency  domain.  Therefore,  when  you  obtain  a  solu4on,  you  are  either  in  the  :me  domain  or  the  frequency  domain.  You   cannot   be   in   both   domains   simultaneously.   Any   solu4on   that   contains   a   mixture   of   4me   domain   and   phasor   domain  nomenclature  is  nonsensical.

The  phasor  transform  is  also  useful  in  circuit  analysis  because  it  applies  directly  to  the  sum  of  sinusoidal  func:on,  if        When   all   the   voltages   on   the   right-­‐hand   side   are   sinudoidal  voltages  of  the  same  frequency,  then  

Page 17: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Example  #3

If   y1 = 20cos(ωt - 30°) and   y2 = 40cos(ωt + 60°),  express  y  =  y1  +  y2  as  a  single  sinusoidal  func4on.    a)  Solve  by  using  trigonometric  iden44es.    b)  Solve  by  using  the  phasor  concept.    

Electric Circuits 17

Page 18: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Solu:on  for  Example  #2

Electric Circuits 18

Page 19: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  Passive  Circuit  Elements  in  the  Frequency  Domain

Electric Circuits 19

The  V-­‐I  RelaEonship  for  a  Resistor

At  the  terminals  of  a  resistor,  there  is  no  phase  shiA  between  the  current  and  voltage.

Page 20: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  V-­‐I  Rela:onship  for  an  Inductor

Electric Circuits 20

Page 21: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  V-­‐I  Rela:onship  for  a  Capacitor  

Electric Circuits 21

Page 22: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Impedance  and  Reactance

Electric Circuits 22

V = Z I Impedance: measured in ohms

Reactance: the imaginary part of impedance

Page 23: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Kirchhoff’s  law  in  the  Frequency  Domain

Electric Circuits 23

Page 24: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Series,  Parallel,  and  Delta-­‐to-­‐Wye  Simplifica4on

The  rules  for  combining  impedances  in  series  or  parallel  and  for  making  delta-­‐to-­‐wye  transforma4ons  are  the  same  as  those   for  resistors.   The   only   difference   is   that   combining   impedances  involves  the  algebraic  manipula:on  of  complex  numbers.    

Electric Circuits 24

Impedances  in  series:

Page 25: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Impedance  in  Parallel

Electric Circuits 25

Two impedance

conductance

susceptance

admittance

Page 26: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Delta-­‐to-­‐Wye  Transforma:ons

Electric Circuits 26

Page 27: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Example  #4 A   90   Ω   resistor,   a   32   mH   inductor,   and   a   5   μF   capacitor   are  connected   in  series  across   the  terminals  of  a  sinusoidal  voltage  source.  The  steady-­‐state  expression   for   the  source  voltage  vs   is  750 cos (5000t + 30°) V.    a)  Construct  the  frequency-­‐domain  equivalent  circuit.    b)  Calculate  the  steady-­‐state  current  i  by  the  phasor  method.    

Electric Circuits 27

Page 28: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Solu:on  for  Example  #4

Electric Circuits 28

Page 29: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Electric Circuits 29

Source  Transforma4ons  and  Thévenin-­‐Norton  Equivalent  Circuits

The  Node-­‐Voltage  Method  (Example) The  Mesh-­‐Current  Method

Page 30: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Example  #5

Use  the  node-­‐voltage  method  to  find  the  branch  currents  Ia,  Ib,  and  Ic  in  the  circuit.    

Electric Circuits 30

Page 31: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Solu:on  for  Example  #5

Electric Circuits 31

1 2 V1 V2

Node  1:  

Node  2:  

Page 32: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Electric Circuits 32

Check

Page 33: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  Transformer

A   transformer   is   a   device   that   is   based   on   magne:c  coupling.  Transformers  are  used  in  both  communica4on  and  power  circuits.    •  linear   transformer:   is   found  primarily   in  communica-­‐  4on  circuits    

•  Ideal  transformer:  is  used  to  model  the  ferromagne4c  transformer  found  in  power  systems.    

Electric Circuits 33

Page 34: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The  Analysis  of  a  Linear  Transformer  Circuit

A  simple  transformer  is  formed  when  two  coils  are  wound  on  a  single  core  to  ensure  magne:c  coupling.    •  Primary  winding:  the  transformer  winding  connected  to  the  source;  •  Secondary  winding:  the  winding  connected  to  the  load  as  the.    

 R1 =  the  resistance  of  the  primary  winding  R2  =  the  resistance  of  the  secondary  winding  L1  =  the  self-­‐inductance  of  the  primary  winding    L2 =  the  self-­‐inductance  of  the  secondary  winding    M  =  the  mutual  inductance    

Electric Circuits 34

Page 35: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Electric Circuits 35

The impedance Zab is independent of the magnetic polarity of the transformer!

Page 36: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Reflected  Impedance

Electric Circuits 36

Reflected  impedance  Zr

Page 37: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

The    Ideal  Transformer

An   ideal   transformer   consists   of   two   magne4cally  coupled  coils  having  N1  and  N2  turns,  respec4vely,  and  exhibi4ng  these  three  proper4es:    1.  The  coefficient  of  coupling  is  unity  (k = 1).  2.  The  self-­‐inductance  of  each  coil  is  infinite  (L1 = L2 = ∞).    3.  The  coil  losses,  due  to  parasi4c  resistance,  are  negligible.    

Electric Circuits 37

Page 38: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Exploring  Limi:ng  Values

Electric Circuits 38

M2 = L1L2

X22 = ωL2 + XL

Page 39: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Electric Circuits 39

Factoring  ωL2  out  of  the  numerator  and  denominator  yields:

L1/L2 = (N1/N2)2

Scaling  factor

Page 40: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Determining  the  Voltage  and  Current  Ra:os

Electric Circuits 40

R1 = R2 = 0

M2 = L1L2

L1/L2 = (N1/N2)2

(a)

(b)

Page 41: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Determining  the  Polarity  of  the  Voltage  and  Current  Ra:os

Electric Circuits 41

a.  If  the  coil  voltages  V1  and  V2  are  both  posi:ve  or  nega:ve  at  the  dot-­‐marked  terminal,  use  a  plus  sign,  Otherwise,  use  a  nega4ve  sign.  

b.  If  the  coil  currents  I1  and  I2  are  both  directed  into  or  out  of  the  dot-­‐  marked  terminal,  use  a  minus  sign.  Otherwise,  use  a  plus  sign.  

Page 42: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Electric Circuits 42

Important parameter for ideal transformer!

Page 43: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Ideal  Transformer  Used  for  Impedance  Matching

Electric Circuits 43

Thus,   the   ideal   transformer's   secondary   coil   reflects   the   load  impedance  back  to  the  primary  coil,  with  the  scaling  factor  1/a2.

Note  that  the  ideal  transformer  changes  the  magnitude  of  ZL  but  does  not  affect  its  phase  angle.  Whether  ZIN  is  greater  or  less  than  ZL depends  on  the  turns  ra4o  a.

Page 44: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Example  #6 The  load  impedance  connected  to  the  secondary  winding  of  the  ideal  transformer  consists  of  a  237.5 mΩ resistor  in  series  with  a  125 µH inductor.    If   the   sinusoidal   voltage   source   (vg)   is   generat-­‐   ing   the   voltage  2500 cos 400t V ,  find  the  steady-­‐  state  expressions  for:  (a)  i1;  (b)  v1;  (c)  i2;  and  (d)  v2.    

Electric Circuits 44

Page 45: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Solu:on  for  Example  #6

Electric Circuits 45

Phasor domain equivalent circuit

jωL

Page 46: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Phasor  Diagrams

Electric Circuits 46

Construc4ng   phasor   diagrams   of   circuit  quan44es  generally  involves  both  currents   and   voltages.   As   a   result,   two   different   magnitude   scales   are   necessary,   one   for  currents  and  one  for  voltages.  

The  ability  to  visualize  a  phasor  quan4ty   on   the   complex-­‐number   plane   can   be   useful   when   you   are   checking   pocket  calculator  calcula4ons.  

Page 47: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Example  #7  

•  For   the   given   circuit,   use   a   phasor   diagram   to   find  the   value   of  R   that   will   cause   the   current   through  that   resistor,   iR,   to   lag   the  source  current,   is,  by  45°  when  ω  =  5  krad/s.    

Electric Circuits 47

Page 48: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Solu:on  for  Example  #7

Electric Circuits 48 R = 1/3 Ω

Page 49: Sinusoidal Steady-State Analysis - xuanqi-net.com · Sinusoidal Steady-State Analysis Qi Xuan Zhejiang University of Technology Nov 2015. Structure Electric Circuits 2 ... • Steady;state!sinusoidal!behavior!oAen!simplifies!the!design!of!

Summary

Electric Circuits 49