sjtu1 chapter 10 sinusoidal steady-state analysis

29
SJTU 1 Chapter 10 Sinusoidal steady- state analysis

Upload: kayli-sund

Post on 14-Dec-2015

248 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 1

Chapter 10

Sinusoidal steady-state analysis

Page 2: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 2

Steps to analyze ac circuit

1. Transform the circuit to the phasor or frequency domain

2. Solve the problem using circuit techniques(nodal analysis, mesh analysis, superposition,etc)

3. Transform the resulting phasor to the time domain

Page 3: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 3

Nodal analysis

Fig. 8-28: An example node

Page 4: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 4

Mesh analysis

planar circuits: Circuits that can be drawn on a flat surface with no crossovers

Fig. 8-29: An example mesh

the sum of voltages around mesh A is

Page 5: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 5

EXAMPLE 8-21Use node analysis to find the current IX in Fig. 8-31.

Fig. 8-31

SOLUTION:

075VC :C Node

or

Page 6: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 6

Page 7: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 7

EXAMPLE 8-24 The circuit in Fig. 8-32 is an equivalent circuit of an ac induction motor. The current IS is called the stator current, IR the rotor current, and IM the magnetizing current. Use the mesh-current method to solve for the branch currents IS, IR and IM.

Page 8: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 8

Page 9: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 9

EXAMPLE 8-25

Use the mesh-current method to solve for output voltage V2 and input impedance ZIN of the circuit below.

SOLUTION:

Page 10: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 10

Page 11: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 11

Example

Frequency domain equivalent of the circuit

Page 12: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 12

Example

Page 13: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 13

Find Vo/Vi, Zi

See F page417

Page 14: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 14

Circuit Theorems with Phasors

PROPORTIONALITY

The proportionality property states that phasor output responses are proportional to the input phasor

where X is the input phasor, Y is the output phasor, and K is the proportionality constant.

Page 15: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 15

EXAMPLE 8-13

Use the unit output method to find the input impedance, current I1, output voltage VC, and current I3 of the circuit in Fig. 8-20 for Vs= 10 0°∠

SOLUTION:

1.Assume a unit output voltage             . 2.By Ohm's law,                        . 3.By KVL,                             4.By Ohm's law,                                  5.By KCL,                             6.By KCL,                                  

Page 16: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 16

Given K and ZIN, we can now calculate the required responses for an input

Page 17: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 17

Two cases:

1. With same frequency sources.

2. With different frequency sources

EXAMPLE 8-14

Use superposition to find the steady - state voltage vR (t) in Fig. 8 - 21 for R=20 , L1 = 2mH, L2 = 6mH, C = 20 F, V s1= 100cos 5000t V , and Vs2=120cos (5000t +30 )V.

SUPERPOSITION

Page 18: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 18

SOLUTION:

Fig. 8-22

Page 19: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 19

Page 20: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 20

EXAMPLE 8-15

Fig. 8-23

 Use superposition to find the steady-state current i(t) in Fig. 8-23 for R=10k , L=200mH, vS1=24cos20000t V, and vS2=8cos(60000t+30 ° ).

SOLUTION: With source no. 2 off and no.1 on

Page 21: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 21

With source no.1 off and no.2 on

The two input sources operate at different frequencies, so that phasors responses I1 and I2 cannot be added to obtain the overall response. In this case the overall response is obtained by adding the corresponding time-domain functions.

Page 22: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 22

More examples

See F page403

Page 23: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 23

The thevenin and Norton circuits are equivalent to each other, so their circuit parameters are related as follows:

THEVENIN AND NORTON EQUIVALENT CIRCUITS

Page 24: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 24

Source transformation

Page 25: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 25

EXAMPLE 8-17

Both sources in Fig. 8-25(a) operate at a frequency of =5000 rad/s. Find the steady-state voltage vR(t) using source transformations.

SOLUTION:

+

Page 26: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 26

EXAMPLE 8-18 Use Thevenin's theorem to find the current Ix in the bridge circuit shown in Fig. 8-26.

Fig. 8-26

Page 27: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 27

SOLUTION:

Page 28: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 28

Page 29: SJTU1 Chapter 10 Sinusoidal steady-state analysis

SJTU 29