simulation of disperse particle-laden gas flows with with ......particle dispersion overpredicted in...

17
Franziska Greifzu, Rüdiger Schwarze Institute of Mechanics and Fluid Dynamics Chair for Numerical Modeling of Granular Flows Lampadiusstraße 4 09599 Freiberg Simulation of Disperse Particle-Laden Gas Flows with with OpenFOAM and ANSYS FLUENT 10th September 2015 Halle (Saale)

Upload: others

Post on 07-May-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Franziska Greifzu, Rüdiger SchwarzeInstitute of Mechanics and Fluid DynamicsChair for Numerical Modeling of Granular FlowsLampadiusstraße 409599 Freiberg

Simulation of Disperse Particle-LadenGas Flows with with OpenFOAM andANSYS FLUENT

10th September 2015

Halle (Saale)

Page 2: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Motivation

Simulations for engineering application in processing plant:

Analysis of flow structure in static and dynamic air classifier

CFD simulation of particle-laden flow considering particle-fluid andparticle-particle interaction

Derive feasible simplifications of CFD model

→ Validation of models with simple test cases→ Comparison of CFD packages

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 1

Page 3: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Model equations

Averaged conservation equations for incompressible, isothermal andturbulent flow of Newtonian fluid:

∇ · u = 0 (1)∂u

∂t+ % (u · ∇) u = −∇p+ η∆u−∇ · τRS + f

W(2)

with: τRS =(% u′u′

)(3)

Force balance in Lagrangian framework:

dxPdt

= uP (4)

mPduPdt

= FD + FB + FG (5)

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 2

Page 4: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Model equations

Drag force:

FD =3

4

%

%P

mP

dP· CD (u− uP) |u− uP| (6)

Implementation of drag coefficient CD in CFD programs:

ANSYS FLUENTMorsi and Alexander1

CD = a1 +a2ReP

+a3Re2P

(7)

OpenFOAMEmpirical relation

CD =

{24ReP

(1 + 1

6Re2/3P

);ReP ≤ 1000

0.424 ;ReP ≥ 1000(8)

1Morsi1972.

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 3

Page 5: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Model equationsCoupling

Classification of coupling schemes and interaction between disperse andcontinuous phase according to Elghobashi2:

×10-1

×100

×101

×102

×103

×104

×105

×106

×10-8

×10-6

×10-4

×10-2

×100×10

-3

×10-2

×10-1

×100

×101

×102

×103

×104

τP /

τK

τP /

τe

αP

¬:­:®:¯:

One-way coupling fW

= 0

Two-way coupling, particles enhance turbulence productionTwo-way coupling, particles enhance turbulence dissipationFour-way coupling

fW6= 0

2Elghobashi1994.

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 4

Page 6: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepDescription

Geometry according to Fessler and Eaton3

Channel flow BFS flow

Channel height h 40 mm Step height H 26.7 mmChannel width w 457 mm w/H 17:1

h/H 5:3

3Fessler1999.

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 5

Page 7: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepApplied meshes

Mesh A Mesh D

Name Dimension Cells in z-direction BC front and back

A 2D 0 -B 3D 1 emptyC 3D 1 symmetryD 3D 10 symmetry

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 6

Page 8: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepSetup

RANS and URANS

k-ω-SST turbulence model

isothermal

1- and 2-way coupling

Continuous phase

Inlet profile with uavg = (9.39 0 0)m/s

Ux,0 = 10.5m/sk = 0.45m2/s2

ω = 2800 1/sOutlet p = 0PaWall u = (0 0 0)m/s

Disperse phase

Particle diameter dP = 70µmParticle density %P = 8800 kg/m3

Particle mass flow rate mP = 1.58 · 10−5 kg/sInjection velocity uP,avg = (10.5 0 0)T m/s

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 7

Page 9: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepFluid flow

00.5

11.5

22.5

3

-2 0 2 4 6 8 10 12 14

y/H

2ux/U0 + x/H

00.5

11.5

22.5

3

-2 0 2 4 6 8 10 12 14

y/H

10u′/U0 + x/H

Fluent OpenFOAM Experiment

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 8

Page 10: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepDisperse phase

1-waycoupling

2-waycoupling

0

0.5

1

1.5

2

2.5

-2 0 2 4 6 8 10 12 14

y/H

2 · uP,x/U0 + x/H

0

0.5

1

1.5

2

2.5

-2 0 2 4 6 8 10 12 14

y/H

2 · uP,x/U0 + x/H

AF Mesh C

AF Mesh A

OF Mesh C

OF Mesh B

Experiment

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 9

Page 11: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepDisperse phase

1-waycoupling

2-waycoupling

0

0.5

1

1.5

2

2.5

-2 0 2 4 6 8 10 12 14

y/H

2 · uP,x/U0 + x/H

0

0.5

1

1.5

2

2.5

-2 0 2 4 6 8 10 12 14

y/H

2 · uP,x/U0 + x/H

AF Mesh D OF Mesh D Experiment

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 10

Page 12: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case confined bluff bodyDescription

Geometry according to Borée et al.4

4Boree1999.

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 11

Page 13: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case confined bluff bodySetup

URANS

Standard k-ε turbulence model

isothermal, incompressible

2-way coupling

Continuous phase

Central jet inflow uj,avg = (0 0 3.01)m/s

Uz,j = 3.4m/sAnnular jet inflow ua,avg = (0 0 5.36)m/s

Outlet p = 0PaWall u = (0 0 0)m/s

Disperse phase

Particle diameter dP = 63µmParticle density %P = 2470 kg/m3

Particle mass flow rate mP = 2.78 · 10−4 kg/sInjection velocity uP,avg = (4.08 0 0)m/s

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 12

Page 14: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepFluid flow

-0.5

0

0.5

1

1.5

0 5 10 15 20 25 30 35 40

uz/U

j

z/Rj

ANSYS FLUENT OpenFOAM Experiment

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50

r

3 ∗ uz/Uj + z/Rj

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 13

Page 15: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Test case backward facing stepDisperse phase

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-5 0 5 10 15 20 25 30 35 40 45 50

r

3 · uP,z/Uz,j + z/Rj

ANSYS FLUENT OpenFOAM Experiment

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 14

Page 16: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Conclusion

Good agreement of numerically modeled flow fieldsDisperse phase simulation results fit experimental data - differences inshear layers

Particle dispersion underpredicted in ANSYS FLUENTParticle dispersion overpredicted in OpenFOAM

Minor influence of coupling scheme due to low volume loadings

Incorrect computation of particle motion in ANSYS FLUENT 2-D model:neglect of three-dimensional character of turbulence

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 15

Page 17: Simulation of Disperse Particle-Laden Gas Flows with with ......Particle dispersion overpredicted in OpenFOAM Minor influence of coupling scheme due to low volume loadings Incorrect

Thanks for your Attention.

10th September 2015 Greifzu, Schwarze IMFDTU Bergakademie Freiberg 16