simulating tropical meteorology for air quality studies

25
Simulating tropical meteorology for air quality studies Andrew Wiebe, Ella Castillo, Tania Haigh, Adam Thomas and Anthony Parkinson September 10, 2013

Upload: katestone

Post on 10-Dec-2014

759 views

Category:

Technology


1 download

DESCRIPTION

Presented at the 2013 CASANZ conference by Katestone air quality consultant Tania Haigh. Paper presents a review of two meteorological models, TAPM and WRF at simulating basic meteorological parameters in a tropical location.

TRANSCRIPT

Page 1: Simulating tropical meteorology for air quality studies

Simulating tropical meteorology

for air quality studies

Andrew Wiebe, Ella Castillo, Tania Haigh, Adam Thomas and

Anthony Parkinson September 10, 2013

Page 2: Simulating tropical meteorology for air quality studies

Outline

• Motivation/objective

• Intro to TAPM and WRF – ease of use, features, flexibility

• Model setup

• Model evaluation

– surface data

– upper air data

• Conclusions

Page 3: Simulating tropical meteorology for air quality studies

Motivation

• Models for generating meteorological data for

air quality assessments include

– WRF

– TAPM

• Potential industrial development in tropical

regions

Page 4: Simulating tropical meteorology for air quality studies

Objective

• In-depth evaluation of the potential complex

model-generated meteorological datasets in

these regions

– Surface and upper level data

– Ability to capture meteorological features that may be important

for dispersion in tropical regions

Page 5: Simulating tropical meteorology for air quality studies

TAPM and WRF features

TAPM WRF

Development CSIRO, 2008

NCAR, NOAA, FSL, AFWA,

FAA

Open source contributions

Physics options Default, few options No default, a number of

options

User interface User-friendly GUI Limited user interface, mostly

command line operated

Customisability Geographical features

Geographical features

Microphysics

Cloud parametrisation

Boundary layer

Radiation schemes

etc

Data assimilation Surface wind speed, direction

Surface wind speed, direction

Temperature, relative

humidity, rainfall, upper air

data

Page 6: Simulating tropical meteorology for air quality studies

Study location

Weipa, QLD

Page 7: Simulating tropical meteorology for air quality studies

Study location: Weipa, QLD

• Tropical

• Coastal

• Less populated area

• Some industrial activity

• Sufficient surface data

• Sufficient upper air data

Weipa, QLD

Page 8: Simulating tropical meteorology for air quality studies

Model setup

• 5 days (11 – 14th Feb, 2011)

• Modelled using – TAPM v4.0.5

– WRF v3.4

• YSU

• AMC2

• QNSE

• Similar model setups where possible

• Best practice for each model setup

• No data assimilation

• Refined landuse for all model runs

Page 9: Simulating tropical meteorology for air quality studies

Study period

Page 10: Simulating tropical meteorology for air quality studies

Study period

Page 11: Simulating tropical meteorology for air quality studies

Study period

Page 12: Simulating tropical meteorology for air quality studies

Model evaluation- surface data

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11/02/2011 12/02/2011 13/02/2011 14/02/2011

Diu

rna

l C

yc

le I

nte

nsit

y (°C

)

Observed YSU ACM2 QNSE TAPM

Page 13: Simulating tropical meteorology for air quality studies

Model evaluation- surface data

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

Te

mp

era

ture

(°C

)

Observed YSU ACM2 QNSE TAPM

Page 14: Simulating tropical meteorology for air quality studies

Model evaluation -surface data

0%

5%

10%

15%

20%

25%

30%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Win

d S

pee

d (

m/s

)

Observed-WS YSU-WS ACM2-WS QNSE-WS TAPM-WS

Page 15: Simulating tropical meteorology for air quality studies

Model evaluation- surface data

0

50

100

150

200

250

300

350

400

Win

d D

irec

tio

n (°)

Observed YSU ACM2 QNSE TAPM

Page 16: Simulating tropical meteorology for air quality studies

Model evaluation- surface data

0

500

1000

1500

2000

2500

3000

3500

Bo

un

da

ry L

aye

r h

eig

ht

(m)

YSU-PBL ACM2-PBL QNSE-PBL TAPM-PBL

Page 17: Simulating tropical meteorology for air quality studies

Model evaluation- surface data

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

201102102300 201102112300 201102122300 201102132300 201102142300

Dail

y A

cc

um

ula

ted

Rain

fall

(m

m)

Observed YSU ACM2 QNSE TAPM

Page 18: Simulating tropical meteorology for air quality studies

Model evaluation– upper air

11/2/2011 9pm

local time

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35

Tc

Td

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

WS

WS

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

WDIR

WDIR

Observations:

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35

TEMP(C)

DewPt

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

WSPD(m/s)

0

200

400

600

800

1000

1200

1400

1600

0 50100150200250300350

WDIR(deg)

TAPM

Page 19: Simulating tropical meteorology for air quality studies

Model evaluation– upper air

11/2/2011 9pm

local time

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35

Tc

Td

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

WS

WS

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

WDIR

WDIR

Observations:

WRF - YSU

0

200

400

600

800

1000

1200

1400

1600

1800

0 15 30

TC

TD

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14

WSPD

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350

WDIR

Page 20: Simulating tropical meteorology for air quality studies

Model evaluation – upper air

11/2/2011 9pm

local time

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35

Tc

Td

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

WS

WS

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

WDIR

WDIR

Observations:

WRF – ACM2

0

200

400

600

800

1000

1200

1400

1600

1800

0 15 30

TC

TD

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18

WSPD

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350

WDIR

Page 21: Simulating tropical meteorology for air quality studies

Model evaluation – upper air

11/2/2011 9pm

local time

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25 30 35

Tc

Td

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

WS

WS

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350

WDIR

WDIR

Observations:

WRF – QNSE

0

200

400

600

800

1000

1200

1400

1600

1800

0 15 30

TC

TD

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18

WSPD

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300 350

WDIR

Page 22: Simulating tropical meteorology for air quality studies

Summary/conclusions

• All models captured some parameters well

• WRF captured dry air moving in from north-east, and rainfall on 12th. TAPM did not.

• Not enough analysis to determine if any one model is ‘better’

• Identifying the ‘best’ model and setup depends on understanding where/why you are using it, e.g. are surface or upper air winds more important?

• In this study:

– Typically has SE to NE winds

– Occasional northerlies could blow pollution towards residences

– Should select a model that captures these winds well

Page 23: Simulating tropical meteorology for air quality studies

Simulating tropical meteorology

for air quality studies

Andrew Wiebe, Ella Castillo, Tania Haigh, Adam Thomas and

Anthony Parkinson September 10, 2013

Page 24: Simulating tropical meteorology for air quality studies

Model setup - TAPM

• TAPM v4.0.5 was configured as follows: – Four nests with grid resolutions of 30, 10, 3, and 1 km.

– All nests centred at a latitude of -12 ° 41' and a longitude of 141

° 55'.

– 40 x 40 grids for all nests.

– 25 vertical levels, set at the default heights.

– Geoscience Australia 9-second digital elevation model (DEM)

terrain data supplied with TAPM was used.

– Synoptic data provided with TAPM were used to initialise.

– No data assimilation was used

– Coastline delineation and land-use refinement using aerial

imagery

Page 25: Simulating tropical meteorology for air quality studies

Model setup - WRF

• WRF V3.4 using the ARW dynamical core was

configured as follows: – Three nests with resolutions of 25, 5, and 1 km.

– All nests centred at a latitude of -12.667° and a longitude of

141.917°

– 41 x 41 grids for all nests

– 20-category MODIS-based land use data used with the NOAA

land surface model option

– Input GRIB meteorological reanalysis data “NCEP FNL

Operational Model Global Tropospheric Analyses” ds083.2

dataset (NOAA, 2000) was used to initialise WRF

– Same physics options for all domains