sic mosfet+sbd simulation using ltspice

33
All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1 SPICEモデルの作成方法も紹介 超低損失!新素材パワー半導体の実力 SiCデバイスLTspicでシミュレーション 堀米

Upload: tsuyoshi-horigome

Post on 05-Dec-2014

3.747 views

Category:

Technology


26 download

DESCRIPTION

SiC MOSFET+SBD Simulation using LTspice

TRANSCRIPT

Page 1: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1

SPICEモデルの作成方法も紹介超低損失!新素材パワー半導体の実力SiCデバイスをLTspicでシミュレーション

堀米 毅

Page 2: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 2

発表の流れ

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。2.常温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。3.常温におけるシリコンデバイスとSiCデバイスのケースで損失比較を行う。4.必要な電子部品のSPICEモデル(高温モデル)を揃える。5.高温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。6.シリコンデバイスとSiCデバイスのケースで比較する。

目的:シリコンデバイスをSiCデバイスに置き換える事で、損失がどのくらい削減出来るのか?高温の場合はどうなのか?

手段:回路解析シミュレータ(LTspice:フリーの回路解析シミュレータ)を活用し、損失を簡単に早く求める。

対象回路:誘導負荷回路

シリコンデバイス構成Si MOSFET:TK10A60D

FRD:DF10L60

SiCデバイス構成SiC MOSFET:SCU210AX

SiC SBD:SCU210AX

Page 3: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 3

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

Inductive load

ID

SiC SBD

SiC MOSFETSi MOSFET

Inductive load

Si Diode

(Super Fast Recovery)

ID

シリコンデバイス構成Si MOSFET:TK10A60D

FRD:DF10L60

SiCデバイス構成SiC MOSFET:SCU210AX

SiC SBD:SCU210AX

Page 4: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 4

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

Si MOSFET:TK10A60D SiC MOSFET:SCU210AX

*$

*PART NUMBER: TK10A60D

*MANUFACTURER: TOSHIBA

*VDS=600V,ID=10A

*All Rights Reserved Copyright (c) Bee Technologies Inc.2008

.SUBCKT TK10A60D G D S

M_M1 D G S S MTK10A60D

D_D1 S D DTK10A60D

.MODEL MTK10A60D NMOS

+ LEVEL=3 L=2.0900E-6 W=.594 KP=11.500E-6 RS=10.000E-3

+ RD=.55757 VTO=4.024 RDS=60.000E6 TOX=100.00E-9

+ CGSO=1.7618E-9 CGDO=33.500E-12 RG=4.05

+ CBD=354.93E-12 MJ=.7831 PB=11.512

+ RB=1 N=5 IS=0.001p ETA=0.01

.MODEL DTK10A60D D

+ IS=37.194E-9 N=1.5803 RS=8.8065E-3 IKF=.9804

+ CJO=3.0000E-12 BV=600 IBV=1E-6 TT=1.1E-6

.ENDS

*$

*$

*PART NUMBER: SCU210AX

*MANUFACTURER: ROHM

*VDS=600V,ID=10A

*All Rights Reserved Copyright (c) Bee Technologies Inc.2011

.SUBCKT SCU210AX G D S

M_M1 D G S S MSCU210AX

D_D1 S D DSCU210AX

.MODEL MSCU210AX NMOS

+ LEVEL=3 L=2.0900E-6 W=.3 KP=2.2000E-6 RS=10.000E-3

+ RD=12.702E-3 VTO=3.4500 RDS=600.00E6 TOX=100.00E-9

+ CGSO=2.8E-9 CGDO=125E-12 RG=14

+ CBD=1.6005E-9 MJ=.44139 PB=.9988

+ RB=1 N=5 IS=1E-15 GAMMA=0 KAPPA=0 ETA=25m

.MODEL DSCU210AX D

+ IS=51.575E-18 N=1.0096 RS=25.293E-3 IKF=0

+ CJO=3.0000E-12 BV=630 IBV=1.0000E-6 TT=30.0000E9

.ENDS

*$

常温の特性データからデバイスモデリングを行った。%Errorは5%以内のモデルを使用した。SPICEモデル配信サービス(www.spicepark.com)からダウンロードしました。

Page 5: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 5

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

MOSFET LEVEL

LEVEL=1 Shichman-Hodges Model

LEVEL=2 形状に基づいた解析モデルLEVEL=3 半経験則短チャネルモデルLEVEL=4 BSIM Model

LEVEL=6 BSIM3 MODEL

・・・・・・・・・

Page 6: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 6

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

STEP1

STEP2

STEP3

調査L:channel length(チャネル長) Unit:m

W:channel width(チャネル幅) Unit:m

TOX:thin oxide thickness(ゲート酸化膜厚) Unit:m

Transconductance Characteristic→KP

Measurement

→Table(Id,gfs)

Id:Contunuous Drain Current(DC) (ドレイン電流(直流))

Gfs:Forward Transconductance (順伝達コンダクタンス)

Transfer Curve Characteristic→VTO

Measurement

→Table(Vgs,Id)

Vgs:Gate-Source Voltage (ゲート・ソース間電圧)

Id:Contunuous Drain Current(DC) (ドレイン電流(直流))

Page 7: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 7

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

STEP4

STEP5

Rds(on) Resistance Characteristic→RD

Data Sheet

→Id(A),Vgs(V),Rds(on)

Id:Contunuous Drain Current(DC) (ドレイン電流(直流))

Vgs:Gate-Source Voltage (ゲート・ソース間電圧)

Rds(on):Static Drain-Source On-state Resistance

(ドレイン・ソース間オン抵抗)

Zero-bias Leakage Characteristic→RDS

Data Sheet

→Idss(A),Vds(V)

Idss:Zero Gate Voltage Drain Current (ドレイン遮断電流)

Vds:Drain-Source Voltage (ドレイン・ソース間電圧)

Page 8: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 8

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

STEP6

Turn-on Charge Characteristic→CGSO,CGDO

Data Sheet(Gate Charge Characteristic)

→Qgd(C),Qgs(C),Id(A),Vds(V)

Qgd:

Qgs:

Id:Contunuous Drain Current(DC) (ドレイン電流(直流))

Vds:Drain-Source Voltage (ドレイン・ソース間電圧)

Page 9: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 9

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

STEP7

Capacitance Characteristic→MJ,PB

Data Sheet

→Vds(V), Coss(F),Crss(F)

MJ→M(Diode Model Parameter)

PB→VJ(Diode Model Parameter)

Data Sheet(Capacitance Characteristic)よりCoss(F),Crss(F)を抽出し、Cbd(F)を算出する。

Diode Capacitance 特性と同様の考え方を適応させる。Vds: Drain-Source Voltage (ドレイン・ソース間電圧)

Coss:Output Capacitance (出力容量)

Crss:Reverse Transfer Capacitance (帰還容量)

Cbd(F)=Coss(F)-Crss(F)

Page 10: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 10

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

STEP8

Switching Time Characteristic→RG

Circuit for MOSFET Switching TimeにてMOSFET SPICE MODELを回路に組み込みMOSFET MODEL PARAMETER:RGを変化させてtd(on)の合わせ込みを行なう。

Circuit for MOSFET Switching Timeには測定条件を反映させる。td(on)は調査する。

STEP9

Body Diode

V-I Characteristic→IS,N,RS,IKF

Measurement

→Table(VSD,Is)

Page 11: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 11

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

STEP10

Body Diode

Reverse Recovery Characteristic→TT

Measurement

→Output

STEP11

Body DIODEの抽出OrCAD Release9 PSpice Model Editor(DIODE)で抽出

①V-I Characteristic→IS,N,RS,IKF

②Reverse Recovery Characteristic→TT

Page 12: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 12

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

SiC MOSFET:SCU210AX

[MOSFET本体] MOSFET LEVEL=3 Model

IV特性伝達特性(Id-gfs特性)

Vgs-Id特性Rds(on)特性

CV特性(Vds-Cbd特性)=>cbd=Coss-Crss

ゲートチャージ特性:等価回路モデルでミラー効果を再現スイッチング特性[ボディ・ダイオード] Diode Model

IV特性逆回復特性

U1SCU210AX

G

S

D

Time*1mA

0 5n 10n 15n 20n 25n 30n 35n 40n

V(W1:3)

0V

2V

4V

6V

8V

10V

12V

14V

16V

18V

20V

等価回路モデル

LEVEL=3 Model

2

Page 13: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 13

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

FRD:DF10L60 SiC SBD:SCS110AG

*$

.MODEL DF10L60 D

+ IS=721.93E-6

+ N=4.6215

+ RS=17.488E-3

+ IKF=1.2303

+ EG=1.11

+ CJO=256.53E-12

+ M=.46498

+ VJ=.7537

+ ISR=0

+ BV=630

+ IBV=10.000E-6

+ TT=20E-9

*$

*$

.MODEL SCS110AG D

+ IS=1.3286E-18

+ N=1

+ RS=33.943E-3

+ IKF=2.0124

+ EG=3

+ CJO=553.61E-12

+ M=.48432

+ VJ=1.0481

+ ISR=0

+ BV=615

+ IBV=2.0000E-6

+ TT=7.65E-9

*$

Page 14: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 14

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

Page 15: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 15

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

Page 16: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 16

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

Page 17: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 17

1.必要な電子部品のSPICEモデル(常温モデル)を揃える。

Page 18: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 18

2.常温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

ID

VDS

VGS

Test Circuit Measurement Waveform

Si MOSFET

Inductive load

Si Diode

(Super Fast Recovery)

ID

シリコンデバイス構成Si MOSFET:TK10A60D

FRD:DF10L60

Page 19: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 19

2.常温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

シリコンデバイス構成Si MOSFET:TK10A60D

FRD:DF10L60

Si MOSFET Model,

with Body Diode Standard Model

ID

Simulation Circuit Simulation Waveform

Si Diode

(Super Fast Recovery)

Inductive load

VGS

ID

VDS

Page 20: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 20

2.常温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

シリコンデバイス構成Si MOSFET:TK10A60D

FRD:DF10L60

ID VDS

Ploss

Si MOSFET Model,

with Body Diode Standard Model

ID

Simulation Circuit

Si Diode

(Super Fast Recovery)

Inductive load

Simulation Waveform

3

Page 21: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 21

2.常温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

VDS

Test Circuit Measurement Waveform

SiC SBD

SiC MOSFET

Inductive load

ID

ID

VGS

SiCデバイス構成SiC MOSFET:SCU210AX

SiC SBD:SCU210AX

Page 22: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 22

2.常温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

SiCデバイス構成SiC MOSFET:SCU210AX

SiC SBD:SCU210AX

Inductive load

ID

Simulation Circuit Simulation Waveform

SiC SBD

SiC MOSFET

VGS

ID

VDS

DEMO

Page 23: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 23

2.常温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

SiCデバイス構成SiC MOSFET:SCU210AX

SiC SBD:SCU210AX

Simulation Waveform

Inductive load

ID

Simulation Circuit

SiC SBD

SiC MOSFET

ID

VDS

Ploss

DEMO

Page 24: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 24

3.常温におけるシリコンデバイスとSiCデバイスで損失比較を行う。

ピーク・ターンオン損失(W)

オン時の飽和損失(W)

ピーク・ターンオフ損失(W)

Si Devices 175.23 36.90 285.57

SiC Devices 177.60 15.17 282.75

損失削減の効果(Addition)

(1.4%) 58.9% 1.0%

SiC MOSFETの低オン抵抗が貢献している。

4

Page 25: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 25

4.必要な電子部品のスパイスモデル(高温モデル)を揃える。

Si MOSFET:TK10A60D SiC MOSFET:SCU210AX

*$

*PART NUMBER: TK10A60D

*MANUFACTURER: TOSHIBA

*VDS=600V,ID=10A

*REMARK: Ta=125C

*All Rights Reserved Copyright (c) Bee Technologies Inc.2011

.SUBCKT TK10A60D_ta125 G D S

M_M1 D G S S MTK10A60D

D_D1 S D DTK10A60D

.MODEL MTK10A60D NMOS

+ LEVEL=3 L=2.0900E-6 W=.594 KP=5.5000E-6 RS=10.000E-3

+ RD=1.3834 VTO=2.6625 RDS=24.490E6 TOX=100.00E-9

+ CGSO=1.4926E-9 CGDO=39.334E-12 RG=7.5

+ CBD=399.60E-12 MJ=.67956 PB=6.3869

+ RB=1 N=5 IS=1E-15 GAMMA=0 KAPPA=0

.MODEL DTK10A60D D

+ IS=6.0180E-6 N=1.2519 RS=23.223E-3 IKF=82.132E-3

+ CJO=3.0000E-12 BV=630 IBV=24.500E-6 TT=807.91E-9

.ENDS

*$

*$*PART NUMBER: SCU210AX

*MANUFACTURER: ROHM

*VDS=600V,ID=10A

*REMARK: Ta=125C

*All Rights Reserved Copyright (c) Bee Technologies Inc.2011

.SUBCKT SCU210AX_125C G D S

M_M1 D G S S MSCU210AX_125C

D_D1 S D DSCU210AX_125C

.MODEL MSCU210AX_125C NMOS

+ LEVEL=3 L=2.0900E-6 W=.3 KP=2.95E-6 RS=10.000E-3

+ RD=.15311 VTO=2.4162 RDS=600.00E6 TOX=100.00E-9

+ CGSO=3.65E-9 CGDO=125E-12 RG=15.5

+ CBD=1.6005E-9 MJ=.44139 PB=.9988

+ RB=1 N=5 IS=1E-15 GAMMA=0 KAPPA=0 ETA=25m

.MODEL DSCU210AX_125C D

+ IS=474.25E-15 N=.99676 RS=60.221E-3 IKF=84.568E-3

+ CJO=3.0000E-12 BV=630 IBV=11.260E-6 TT=29.0000E-9

.ENDS

*$

高温特性データからデバイスモデリングを行った。%Errorは5%以内のモデルを使用した。

Page 26: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 26

SiC SBD

Ta=25℃ Ta=125℃

4.必要な電子部品のスパイスモデル(高温モデル)を揃える。

Si Diode

Page 27: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 27

FRD:DF10L60 SiC SBD:SCS110AG

4.必要な電子部品のスパイスモデル(高温モデル)を揃える。

*$

.model DF10L60_125c D

+ IS=10.000E-6

+ N=1.26

+ RS=58.282E-3

+ IKF=65.613E-3

+ EG=1.11

+ CJO=540.06E-12

+ M=.46254

+ VJ=.19254

+ ISR=0

+ BV=630

+ IBV=10.000E-6

+ TT=54.0000E-9

*$

*$

.MODEL SCS110AG_125C D

+ IS=328.00E-18

+ N=1

+ RS=48.143E-3

+ IKF=.11029

+ EG=3

+ CJO=582.54E-12

+ M=.47985

+ VJ=.93871

+ ISR=0

+ BV=615

+ IBV=2.0000E-6

+ TT=7.6500E-9

*$

Page 28: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 28

5.高温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

シリコンデバイス構成Si MOSFET:TK10A60D

FRD:DF10L60

VGS

Simulation Circuit

Inductive load

ID

Si Diode(Super Fast Recovery)

Ta=125C

ID

VDS

Si MOSFET Model,

with Body Diode Standard Model

Ta=125C

Ta = 125C

Simulation Waveform

Page 29: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 29

5.高温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

シリコンデバイス構成Si MOSFET:TK10A60D

FRD:DF10L60

ID

VDS

Ploss

Si MOSFET Model,

with Body Diode Standard Model

Ta=125C

Inductive load

ID

Simulation Circuit

Si Diode(Super Fast Recovery)

Ta=125C

Ta = 125C

Simulation Waveform

Page 30: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 30

5.高温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

SiCデバイス構成SiC MOSFET:SCU210AX

SiC SBD:SCU210AX

DEMO

VGS

Simulation Circuit

Inductive load

ID

SiC SBD

(Ta=125C)

SiC MOSFET (Ta=125C)

ID

VDS

Simulation Waveform

Ta = 125C

Page 31: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 31

5.高温モデルを活用して、LTspiceで過渡解析を行い、損失計算を行う。

SiCデバイス構成SiC MOSFET:SCU210AX

SiC SBD:SCU210AX

DEMO

ID

VDS

Ploss

Simulation WaveformSimulation Circuit

Ta = 125C

Inductive load

ID

SiC SBD

(Ta=125C)

SiC MOSFET (Ta=125C)

Page 32: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 32

ピーク・ターンオン損失(W)

オン時の飽和損失(W)

ピーク・ターンオフ損失(W)

Si Devices 175.23 36.90 285.57

SiC Devices 177.60 15.17 282.75

損失削減の効果(Addition)

(1.4%) 58.9% 1.0%

6.高温におけるシリコンデバイスとSiCデバイスで損失比較を行う。

ピーク・ターンオン損失(W)

オン時の飽和損失(W)

ピーク・ターンオフ損失(W)

Si Devices 208.25 86.58 273.88

SiC Devices 169.77 19.14 273.68

損失削減の効果 18.5% 77.9% 0.1%

常温

高温

SiC MOSFETの低オン抵抗が貢献している。

SiC SBDの逆回復特性が貢献している。

5

Page 33: SiC MOSFET+SBD Simulation using LTspice

All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 33

1 採用するスパイスモデルの解析精度=回路解析シミュレーションの解析精度

スパイスモデルはネットリストであり、人間が見てもSPICEモデルの精度は解りません。評価シミュレーションで精度の把握をしよう。

2 パラメータモデルには弱点があります。弱点は等価回路で克服しよう

3 回路解析シミュレーションで過渡解析を行い損失計算が簡単にできる

4 SiC MOSFETは、ピーク飽和損失の低減に貢献している

5 SiC SBDは、高温において逆回復時間に変化がないため、ピーク・ターンオン損失の低減に貢献している

まとめ