short-term effects of conversion to direct seeding mulch-based cropping systems on macro-fauna and...

Upload: api-287767058

Post on 07-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    1/20

    Full Terms & Conditions of access and use can be found athttp://www.tandfonline.com/action/journalInformation?journalCode=wcim20

    Download by: [Rémy Kulagowski] Date: 10 February 2016, At: 02:42

     Journal of Crop Improvement

    ISSN: 1542-7528 (Print) 1542-7536 (Online) Journal homepage: http://www.tandfonline.com/loi/wcim20

    Short-Term Effects of Conversion to Direct SeedingMulch-Based Cropping Systems on Macro-Faunaand Weed Dynamics

    Rémy Kulagowski, Laura Riggi & Anaïs Chailleux

    To cite this article: Rémy Kulagowski, Laura Riggi & Anaïs Chailleux (2016) Short-Term Effects

    of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and WeedDynamics, Journal of Crop Improvement, 30:1, 65-83

    To link to this article: http://dx.doi.org/10.1080/15427528.2015.1113222

    Published online: 09 Feb 2016.

    Submit your article to this journal

    View related articles

    View Crossmark data

    http://crossmark.crossref.org/dialog/?doi=10.1080/15427528.2015.1113222&domain=pdf&date_stamp=2016-02-09http://crossmark.crossref.org/dialog/?doi=10.1080/15427528.2015.1113222&domain=pdf&date_stamp=2016-02-09http://www.tandfonline.com/doi/mlt/10.1080/15427528.2015.1113222http://www.tandfonline.com/doi/mlt/10.1080/15427528.2015.1113222http://www.tandfonline.com/action/authorSubmission?journalCode=wcim20&page=instructionshttp://www.tandfonline.com/action/authorSubmission?journalCode=wcim20&page=instructionshttp://dx.doi.org/10.1080/15427528.2015.1113222http://www.tandfonline.com/loi/wcim20http://www.tandfonline.com/action/journalInformation?journalCode=wcim20

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    2/20

    Short-Term Effects of Conversion to Direct Seeding

    Mulch-Based Cropping Systems on Macro-Fauna and WeedDynamics

    Rémy Kulagowskia, Laura Riggib, and Anaïs Chailleuxc

    aChamber of Agriculture of Alpes de Haute Provence, Oraison, France;  bDepartment of Ecology, SwedishUniversity of Agricultural Sciences, Uppsala, Sweden;   cCIRAD, UPR HortSys, Montpellier, France

    ABSTRACT

    Agroecosystem biodiversity could provide essential servicessuch as pest control. One approach currently used to promote

    ecosystem services in agricultural systems is to reduce tillageand increase plant diversity. In this study, we assessed theshort-term effects of conversion from reduced tillage (RT) todirect seeding mulch-based cropping systems (DMC) on thedynamics of arthropods (detritivores and predators), and majorpests (slugs and weeds). The study was conducted in twocommercial fields: one cropped with sorghum (Sorghum bicolor L.) and one with maize ( Zea mays   L.). We found that bothbeneficial and detrimental groups monitored were more abun-dant in DMC than in RT treatment and that the dominantspecies differed between treatments. Because of their majorrole in agroecosystems by contributing to the control of weedseeds, insects, and slugs, carabid beetles (Carabidae) were

    investigated in greater detail, and the results showed theirdiversity was also higher in DMC than in RT. The dominantspecies found were Poecillus cupreus and  Pseudofonus rufipes inthe maize and sorghum fields, respectively. The increase inbiological control agents shortly after conversion suggestedthat cover crops should be considered as a pest managementtool, even on a short-term scale.

    ARTICLE HISTORY

    Received 1 September 2015Accepted 23 October 2015

    KEYWORDS

    Adoption; biological control;conservation agriculture;ecosystem services; maize;sorghum

    Introduction

    Biodiversity underpins many ecosystem processes; hence increased biodiver-sity in agroecosystems could provide important ecosystem services for farm-

    ers (Altieri 1999; Moonen and Barberi 2008). While many studies have dealt

    extensively with the relationship between diversity and ecosystem services in

    natural ecosystems, few have focused on this relationship in agricultural

    ecosystems. Increasingly, research suggests that the level of natural regulation

    in agroecosystems is largely dependent on the level of plant and animal

    biodiversity present (Altieri  1999; Ratnadass et al.   2012). However, changes

    in food demand, conversion to modern, high-input agriculture, land-use

    CONTACT  Rémy Kulagowski   [email protected]   Chamber of Agriculture of Alpes de HauteProvence, Avenue Charles Richaud, 04700 Oraison, France.

    JOURNAL OF CROP IMPROVEMENT

    2016, VOL. 30, NO. 1, 65–83

    http://dx.doi.org/10.1080/15427528.2015.1113222

    © 2016 Taylor & Francis

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    3/20

    changes, and the globalization of agricultural markets have caused rapid

    agricultural biodiversity loss. In particular, crop-management practices have

    been shown to directly affect the stability and functioning of agroecosystems

    through their impacts on functional biodiversity, potentially disrupting

    trophic webs (Grime   1998; Duyck et al.   2011). Intercropping, agroforestry,

    shifting cultivation, and conservation agriculture are examples of methodsthat aim at maintaining biodiversity and enhancing the sustainability and

    autonomy of agroecosystems (Malézieux 2012; Chailleux et al. 2014).

    Conservation tillage is currently promoted to sustainably improve soil

    quality. It involves soil-management practices that minimize disruption of 

    the soil structure, composition, and natural biodiversity, thereby reducing

    erosion and degradation. Soil tillage adversely affects soil macro-fauna

    because of direct mortality or as a result of indirect losses via dispersal

    caused by habitat deterioration (Shearin et al.  2007). The two main concerns

    regarding conservation tillage are increases in slug and weed populations. Inmany parts of the world, slugs are serious pests of cereals, oilseeds, protein,

    and vegetable crops (Godan   1983; South   1992; Barker   2002), but were

    unknown as major pests until conservation-tillage practices were adopted

    along with changes in cropping patterns (Stinner and House   1990; Glen

    2002). Conservation tillage could also increase weed infestation (Phillips

    et al.   1980; Hinkle   1983; Koskinen and McWhorter   1986) and alter the

    species composition, favoring perennials and annuals (mostly grasses) that

    do not require seed burial (Chancellor and Froud-Williams  1986).

    As conservative soil management plays a major role in maintaining bio-diversity in agricultural fields (Brussaard et al. 2007), it should be regarded as

    a tool to improve ecosystem services in pest management. Many different

    soil-conservation practices exist, from reduced tillage (RT) to direct seeding

    mulch-based cropping systems (DMC), with variable effects on soil quality 

    and biodiversity. In conservation-tillage practices, cover crops can also be

    used to avoid soil erosion (Langdale et al.   1991) and affect soil quality and

    humidity. Hence, conservation practices impact biodiversity through (i)

    reduced soil disruption and (ii) cover-crop introduction (Landis et al.  2000;

    Ratnadass et al.  2012).Generalist predators, such as carabids, staphylinids, and spiders, have been

    shown to provide important natural biological control services in agroeco-

    systems (Lundgren et al.  2006; Northfield et al.  2012). However, their effec-

    tiveness in controlling pests is negatively affected by intensive crop

    management, such as tillage (Kromp   1999). In Europe, conservation tillage

    is a recent practice as compared with North and South America (Holland

    2004). Most studies assessing the impact of this practice on natural enemies

    and pests have therefore been carried out in North America (Allen   1979),

    and field studies concerning the impacts of different soil conservation prac-tices on macro-fauna and potential ecosystem services are lacking in Europe

    66 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    4/20

    (Kromp  1999). Therefore, we carried out on-farm experiments in southern

    France on maize and sorghum fields to assess the short-term effects of DMC

    adoption in fields managed through RT. We focused on RT to DMC con-

     version because farmers more easily adopt RT that does not require a drastic

    change in habits, contrary to DMC that is a new soil-management strategy 

    (Lahmar 2010; Scopel et al. 2013). Thus, conversion generally occurs step by step, with a first conversion from plowing to RT and a second from RT to

    DMC, which requires accurate knowledge of the ecological processes

    (Kulagowski and Chailleux   2015). This study (i) assessed the seasonal

    dynamics of the aboveground arthropod community and of the major pests

    (i.e., slugs and weeds) on maize and sorghum crops, and (ii) involved a

    detailed analysis of carabid beetle diversity and abundance. Our aim was to

    evaluate the impact of soil practices when fields are managed by farmers

    using their regular practices. The first objective was to obtain data for further

    improvement of aboveground arthropod-mediated ecosystem services inarable fields, and the second was to assess any benefits of DMC adoption

    on a short-term scale.

    Materials and methods

    Study site and crop management description

    This study was conducted on two commercial fields of two farms located in

    the same catchment basin (latitude 43°N and longitude 5°E, altitude: 376 m)at Oraison, France. The area experiences an inland Mediterranean type

    climate (i.e., sunny with low humidity). It rains less than 90 days per year,

    with an irregular pattern during the summer. The mean annual rainfall is

    695 mm, with a mean annual temperature of 12.9°C. The two fields had a

    clayey loam soil, which is classified under the Food and Agriculture

    Organization (FAO) system (Driessen et al.  2001) as a typical Fluvisol.

    The trial was set up in autumn 2011 in fields that were previously 

    managed under reduced-tillage practices. Conditions were similar between

    the treatments in each plot from the non-crop period. All cultivation opera-tions were conducted by farmers; thus, the two fields differed slightly in their

    crop rotation and management practices. The experiment was carried out on

    one field cropped with maize (field M) and on one field cropped with

    sorghum (field S). Table 1 contains information on the crop rotations used.

    Soil-management practices applied to each field during the experiment are

    Table 1.  Crop rotations per field.

    Field Rotation

    M Rape or winter pea Durum wheat MaizeS Rape or winter pea Durum wheat Sorghum or sunflower

    JOURNAL OF CROP IMPROVEMENT 67

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    5/20

    shown in Table 2. Field M was irrigated using a pivot irrigation system and

    field S using a hose reel irrigation system. Care was exercised to ensure that

    irrigation was similar between treatments in each field. Monitoring of para-

    meters was carried out during spring and summer 2012.

    Table 2.  Relevant crop management practices for the study carried out: soil preparation, maincropping operations, and pest management practices.

    Maize (field M) Sorghum (field S)

    Month Date Operations Date Operations

    August 2011 30/08/2011 Only for the DMC†

    treatment: Cover crop

    direct sowing;irrigation: two times

    15 mm

    25/08/2011 Only for the DMC

    treatment: Cover crop

    direct sowing;irrigation: 25 mm

    September 2011 27/10/2011 Only for the RT‡

    treatment: 12 cm

    plowing

    10/11/2011 Only for the RT

    treatment: 13 cm

    plowing

    February 2012 28/02/2012 Only for the RT

    treatment: 15 cm soil

    loosening

    27/02/2012 Only for the RT

    treatment: 8 cm

    depth tine harrowing

    March 2012 14/03/2012 Herbicide treatment:

    Glyfoflash® 3 L ha−1

    (glyphosate 360 g L−1)

    28/03/2012 Herbicide treatment:

    Glyfoflash® 3 L ha−1

    (glyphosate 360 g L−1)

    29/03/2012   Maize sowing (cv. Maggi

    CS®): 81 000 seeds ha−1

    (seed treatment:

    Cruiser® (thiametoxam

    350 g L−1))

    30/03/2012 Herbicide treatment:

    Trophée® 5 L ha−1

    (acetochlore 400 g L−1)

    + Lagon® 0.5 L ha−1

    (isoxaflutole 75 g L−1

    and aclonifen 500 g

    L−1)

    April 2012 21/04/2012 Molluscicide treatment:

    Sluxx® 6 kg ha−1

    (ferricphosphate 29.7 g kg−1)

    May 2012 11/05/2012 Herbicide treatment:

    Elumis® 0.4 L ha−1

    (mesotrione 75 g L−1

    and nicosulfuron 30 g

    L−1)

    11/05/2012   Sorghum sowing  (cv.

    Solarius®): 350 000

    seeds ha−1; Row

    treatment: Super 45

    (0-45-0) 90 kg ha−1 +

    Belem® 12 kg ha−1

    (cypermethrine 8 g

    kg−1)

    17/05/2012 Herbicide treatment:

    Elumis® 0.4 L ha−1

    (mesotrione 75 g L−1

    and nicosulfuron 30 gL−1)

    05/06/2012 Irrigation beginning 20/06/2012 Irrigation beginning

    August 2012 31/08/2012 Irrigation end

    (410 mm)

    21/08/2012 Irrigation end

    (260 mm)

    October 2012 17/10/2012 Harvest 04/10/2012 Harvest

    †  DMC = direct seeding mulch-based cropping system,   ‡  RT = reduced tillage.

    68 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    6/20

    Experimental design

    Two soil treatments were set up in each field: (1) DMC and (2) RT (tillage to

    15 cm deep and without a cover crop). Three replicates (i.e., plots) were

    performed for each treatment in a homogeneous area in the center of each

    field to avoid edge effects. The experimental area was 150 x 28 m. The

    treatments were randomized; each plot was 50 x 14 m. Grain yields for the

    maize field were 15.80 (±0.56) t ha−1 in RT and 18.84 (±0.94) t ha−1 in DMC,

    and 5.45 (±0.20) t ha−1 for RT and 7.60 (±0.32) t ha−1 for DMC in the

    sorghum field (Kulagowski and Chailleux  2015).

    The cover crops in the DMC treatment were consistent across fields,

    consisting of a mixture of species, mainly legumes, with low C/N ratio and

    biomass of around 3 t ha−1 at the time of the first frost (Table 3).

    Weed abundance and diversity were monitored using a quadrat (0.25 m2),

    from seeding to harvest for maize and until full recovery of the inter-row for

    sorghum. Two random samples were monitored for each plot once a week.

    Traps creating 0.25 m2-wet artificial refuges (Schrim and Byers   1980;

    Hommay et al.  2003) were used to monitor slug density and diversity. One

    trap was placed in each plot. Aboveground arthropods were collected weekly 

    from crop seeding to harvest using one Barber pitfall trap (Barber   1931;

    Kromp 1999) per plot. Slugs were counted before seeding until the end of the

    crop sensitive stages (i.e., with a two-month interval). Collected arthropod

    specimens were identified down to the family level when species could not be

    identified using a binocular microscope and determination keys (with thecollaboration of the Luberon Regional Nature Park, Apt, and PSH Unit,

    INRA, Avignon) (Jeannel   1941,   1942; Roberts   1985; Trautner and

    Geigenmuller 1987; Nentwig et al.  2003; Helsdingen 2009).

    Statistical analyses

    All statistical analyses were performed using R software (R Development

    Core Team,   2009) with the geepack package. For statistical analyses,

    Table 3. Cover crop composition in the direct seeding mulch-based cropping system (DMC)treatment for each field during the previous winter (2011–2012) and characteristics on 15December 2011.

    Composition

    Dry matter

    (DM) (t ha−1)

    Nitrogen content

    (% of DM) C/N

    Maize (field M) Field pea (10 kg ha−1), grasspea

    (10 kg ha−1), lentil (5 kg ha−1), fenugreek 

    (3 kg ha−1), common vetch (5 kg ha−1),

    faba bean (10 kg ha−1).

    2.8 4.1247 10.18

    Sorghum

    (field S)

    Field pea (28 kg ha−1), grasspea

    (28 kg ha−1), faba bean (28 kg ha−1),

    lentil (9.5 kg ha−1), soybean (16 kg ha−1),oat (14 kg ha−1), radish (6 kg ha−1).

    4.0 3.6471 11.5

    JOURNAL OF CROP IMPROVEMENT 69

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    7/20

    aboveground arthropods were separated depending on their functionality 

    (Northfield et al.   2012): (i) predators, which mainly consisted of carabid

    beetles and arachnids, each evaluated separately, and (ii) detritivores.

    Density differences among treatments in predators (carabid beetles and

    arachnids), detritivores, and pests (weeds and slugs) were analyzed separately 

    using generalized estimating equations (GEE) adapted to repeated measuresacross time based on the Poisson distribution. The soil treatment and the

    date were included as factors in the model.

    For carabid beetles, two biodiversity indexes were calculated, the

    Shannon–Wiener index and the Simpson index. The Shannon–Wiener (H ’ )index was calculated as follows (Lacoste and Salanon 2005):

    H 0 ¼ XS

    i¼1

     pilog2 pi

    where pi  ¼niN  is the proportional abundance of each species, and S is the total

    number of species. The Shannon–Wiener index is commonly used to char-

    acterize species diversity in a community. It accounts for both the abundance

    and evenness of a species and can range from 0.5 (low diversity) to 5 (high

    diversity) (Lacoste and Salanon 2005).

    An equitability index, also called evenness, the Simpson index ( J 0) wascalculated as follows:

     J 0 ¼ H 0=H max 

    where H max   is the log2  of the total number of species (Lacoste and Salanon2005). This index can range from 0 to 1, and is at minimum when a large

    proportion of the total community is represented by a small number of 

    species.

    Results

    The trapped aboveground arthropods generally belonged to beneficial func-

    tional groups. Therefore, we focused our results on these main groups:predators (mainly consisting of carabid beetles and arachnids) and

    detritivores.

    Pests

    The weed density was significantly higher in the DMC treatments for both

    crops (field M: soil treatment:   χ   2 = 4.96, df = 1,  P   = 0.026; field S: soiltreatment:   χ  2 = 8.00, df = 1,  P  = 0.0047) irrespective of the date (field M:

    soil treatment*date:   χ  2 = 0.96, df = 1,  P   = 0.326; field S: soil treatment*-date:   χ   2 = 0.66, df = 1,   P   = 0.4161), but remained low in the sorghum

    70 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    8/20

    field (i.e., under 20 weeds m−2). The weed density varied significantly 

    across the weeks (field M: date:   χ    2 = 21.36, df = 1,   P   < 0.001; field S:date:  χ   2 = 8.87, df = 1, P  = 0.0029), with the highest levels obtained in July and August (Figure 1).  Lolium perenne   L. (Poaceae) was the most abun-dant weed species in both fields, peaking at 32 plants m−2 (maize field)

    and 25 plants m−2 (sorghum field), and reaching higher levels in the DMC

    treatments. In the maize field, the main weeds found were   L. perenne,Solanum nigrum   L. (Solanaceae),   Amaranthus retroflexus   L.(Amaranthaceae). Representatives of   Sonchus   spp. (Asteraceae),   Fumariaofficinalis   L. (Fumariaceae),   Veronica   spp. (Scrophulariaceae), andChenopodium album   L. (Chenopodiaceae) were occasionally recorded. Inthe sorghum field,   L. perenne   and   Sonchus   spp. (Asteraceae) dominated;however, Sonchus  spp. (Asteraceae) died before reaching full development,possibly because of competition with sorghum (personal observation). In

    addition,   Papaver rhoeas   L. (Papaveraceae),   Amaranthus retroflexus   L.

    (Amaranthaceae), and   Chenopodium album   L. (Chenopodiaceae) wereoccasionally recorded.

    Figure 1.  Weed population dynamics over time for the reduced tillage (RT) and direct seedingmulch-based cropping system (DMC) treatments for each field. Mean numbers of weeds per m2

    (±SEM) are shown.

    JOURNAL OF CROP IMPROVEMENT 71

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    9/20

    Slugs were only found in the spring, with higher densities in the DMC

    treatment (field M: soil treatment: χ   2 = 14.00, df = 1, P  = 0.00019; field S: soil

    treatment:  χ   2

    = 4.00, df = 1, P  = 0.0463) (Figure 2). The interaction betweenthe soil treatment and the date was significant in both fields (field M: soil

    treatment*date:  χ   2 = 40.2, df = 1, P  < 0.001; field S: soil treatment*date:  χ   2 =6.9, df = 1,  P  = 0.0084). Two slug species recorded were  Deroceras reticula-tum (Gastropoda: Pulmonata) and Arion hortensis (Gastropoda: Pulmonata);however, A. hortensis  was only trapped in the maize field at low densities.

    Predators

    The statistical results are presented in   Table 4. Most of the arachnidspecies found belonged to the following families: Gnaphosidae,

    Figure 2.   Slug population dynamics over time for the reduced tillage (RT) and direct seedingmulch-based cropping system (DMC) treatments for each field. Mean numbers of slugs per m2

    (±SEM) are shown.   “S”  indicates the date of sowing, and   “T”  indicates the date of the mollusci-cide treatment.

    72 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    10/20

    Lycosidae, Philodromidae, Pisauridae, Salticidae, Sparassidae, and

    Thomisidae. Their densities reached the highest levels in June and July 

    in both fields (Figure 3). The  Pardosa   genus, belonging to the Lycosidaefamily, was the most affected by the treatment, with densities in the DMC

    treatment reaching nearly two-fold that of the RT treatment (in June andJuly).

    Table 4.   Results of aboveground arthropod fauna statistical analyses (GLM with adapted disper-sion laws) for the two fields.  P -values for the soil treatment and date factors and their interactionfor the three arthropod groups studied are shown.

    Detritivores Carabids Spiders

    Maize (field M) Soil treatment < 0.001 0.035 0.001

    Date < 0.001 < 0.001 < 0.001

    Soil treatment*Date 0.596 0.501 0.281Sorghum (field S) Soil treatment < 0.001 < 0.001 < 0.001

    Date < 0.001 < 0.001 < 0.001

    Soil treatment*Date 0.397 0.014 0.011

    Figure 3.  Aboveground arthropod fauna population dynamics over time for the reduced tillage(RT) and direct seeding mulch-based cropping system (DMC) treatments for each field. Meannumbers of individuals per trap (±SEM) are shown.

    JOURNAL OF CROP IMPROVEMENT 73

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    11/20

    Potentially predatory ground beetles found belonged mainly to the

    Carabidae (Coleoptera) family and Staphylinidae (Coleoptera) were only 

    occasionally recorded. Carabid densities peaked in July in the maize field

    and in August in the sorghum field, and were constantly higher in maize

    than in sorghum.

    Because of their relevance for biological control, carabid beetles wereinvestigated in further detail (Table 5). Eleven species of carabid beetles

    were recorded; species varied significantly in their abundance and period of 

    activity. The dominant species found were Poecillus cupreus and  Pseudofonusrufipes in the maize and sorghum fields, respectively. They were both presentthroughout the cropping season, but their population dynamics differed, with

    P. cupreus population peaking in June and July at more than 170 individuals/trap, and  P. rufipes  population peaking later in the season, in August, withmore than 30 individuals/trap. In the maize field,   Anchomenus dorsalis  was

    the second most abundant species, followed by   Pterosticus melanarius.Pterosticus melanarius   peaked in April, and then almost disappeared beforebeing trapped again in August and September, reaching more than 30

    individuals/trap. In sorghum, all species other than  P. rufipes  were found atlow levels, while in RT a slight increase in  Calathus fucipes  was observed atthe end of August and the other species remained at very low levels, with

    single individuals occasionally trapped. In the DMC treatment, species other

    than P. rufipes  were at higher levels than in RT, with numbers of individualsranging from 0 to 5 individuals/trap. The biodiversity indexes were relatively 

    low for the two treatments, with the appearance of new species at low levelsnoted in August and September in the maize field (Figure 4). Differences

    were more clear-cut with the Shannon index, which was generally higher in

    DMC (Figure 4).

    Detritivores

    Detritivores were represented by the Anthicidae (Coleoptera), Julidae

    (Julida), Scarabidae (Coleoptera), Sylphidae (Coleoptera), and

    Armadillidiidae (Isopoda) families, and the highest abundance was recordedin the maize field, with more than 50 individuals/trap in June in the DMC

    treatment (i.e., two-fold that of the RT treatment) (Figure 3 and  Table 4). In

    the sorghum field, populations remained low but were also significantly more

    abundant in the DMC treatment (Table 4).

    Discussion

    Result trends were consistent between the two fields irrespective of the crop

    and farm. Every group monitored—predators, detritivores, and pests—weremore abundant in the DMC treatment than in the RT treatment.

    74 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    12/20

           T      a        b        l      e

           5  .     C    a    r    a      b     i      d      b    e    e     t      l    e    s    p    e    c     i    e    s      f    o    u    n      d     i    n     t      h    e    e    x    p    e    r     i    m    e    n     t ,     t      h    e     i    r    r    e      l    a     t     i    v    e    a      b

        u    n      d    a    n    c    e    a    n      d    s     t    a     t     i    s     t     i    c    a      l    r    e    s    u      l     t    s    o      f     t      h    e     i    m    p    a    c     t    o      f     t      h    e    s    o     i      l     t    r    e    a     t    m    e    n     t     (    e     i     t      h    e    r     i    n     i    n     t    e    r    a    c     t     i    o    n

        w     i     t      h     t      h    e      d    a     t    e      f    a    c     t    o    r    o    r    n    o     t     )    :     (    +     )      h     i    g      h    e    r

          d    e    n    s     i     t    y ,

         (   -     )      l    o    w    e    r      d    e    n    s     i     t    y ,

         (   =     )    n    o      d

         i      f      f    e    r    e    n    c    e    s ,

         (    n    o    n    e     )    a      b    s    e    n    c    e    o      f     t      h    e

        s    p    e    c     i    e    s .

         F    o    o      d    p    r    e      f    e    r    e    n    c    e    s      b    a    s    e      d    o

        n    p    u      b      l     i    s      h    e      d    r    e    s    u      l     t    s

        a    r    e    p    r    e    s    e    n     t    e      d .

         M    a     i    z    e     (      f     i    e      l      d     M     )

         S    o    r    g      h    u    m

         (      f     i    e      l      d     S     )

         R    e      l    a     t     i    v    e

        a      b    u    n      d    a    n    c    e

         P   -    v    a      l    u

        e

         R    e      l    a     t     i    v    e

        a      b    u    n      d    a    n    c    e

         P   -    v    a      l    u    e

         S    p    e    c     i    e    s

         F    o    o      d    p    r    e      f    e    r    e    n    c    e    s

         R     T

            ‡

         D     M     C

            †

         S    o     i      l

         t    r    e    a     t    m    e    n     t

          f    a    c     t    o    r

         I    n     t    e    r    a    c     t     i    o    n     S    o     i      l

         t    r    e    a

         t    m    e    n     t     *     D    a     t    e

         R     T

         D     M     C

         S    o     i      l

         t    r    e    a     t    m    e    n

         t

          f    a    c     t    o    r

         I    n     t    e    r    a    c     t     i    o    n     S    o     i      l

         t    r    e    a     t    m    e    n     t     *     D    a     t    e

         A    m    a    r

        a    a    e    n    e    a     (     D    e

         G    e

        e    r     1     7     7     4     )

         M    a     i    n      l    y    p      h    y     t    o    p      h    a    g    o

        u    s     (    s    e    e      d      d     i    e     t     )    o    c    c    a    s     i    o    n    a      l      l    y    p    r    e      d    a     t    o    r

         (     R     i      b    e    r    a    e     t    a      l .     1     9     9     9     )

     .

        +

       -

         0 .     3

         4

        <

         0 .     0

         0     1

        +

       -

         0 .     1

         6

        <

         0 .     0

         0     1

         A    n    c     h    o    m    e    n    u    s     d    o    r    s    a     l     i    s

         (     P    o

        n     t    o    p    p     i      d    a    n

         1     7     6     3     )

         G    e    n    e    r    a      l     i    s     t    p    r    e      d    a     t    o    r

         (     R     i      b    e    r    a    e     t    a      l .     1     9     9     9     ) .

       -

        +

         0 .     0

         0     1

         0 .     4

         7     9

       -

        +

         0 .     0

         0     5

         0 .     6

         4     4

         B    a     d     i    s

         t    e    r    u    n     i    p    u    s     t    u     l    a     t    u    s

         (     B    o

        n    e      l      l     i     1     8     1     3     )

         N    o    n    s    e    e      d      d     i    e     t     (     L    u    n      d    g    r    e    n    e     t    a      l .     2     0     0     6     ) .

       =

         0 .     6

         3

         0 .     8

         1

        n    o    n    e

        +

         0 .     0

         0     5

         0 .     6

         4     4

         B    r    a    c     h

         i    n    u    s    c    r    e    p     i     t    a    n    s

         (     L .

         1     7     5     8     )

         E    c     t    o    p    a    r    a    s     i     t    o     i      d     (    p    a    r     t     i    c    u      l    a    r      l    y     A    m    a    r    a    s    p .     )

         (     S    a    s      k    a    a    n      d     H    o    n    e      k

         2     0     0     4     ) .

        +

        n    o    n    e

        <

         0 .     0

         0     1

         1

        n    o    n    e

        +

         0 .     0

         0     5

         0 .     6

         4     4

         B    r    a    c     h

         i    n    u    s    s    c     l    o    p    e     t    a

         (     F    a

          b    r     i    c     i    u    s     1     7     9     2     )

         E    c     t    o    p    a    r    a    s     i     t    o     i      d     (     C    e      l    a    n    o    a    n      d     H    a    n    s    e    n     1     9     9     9     ) .

       -

        +

         0 .     0

         0     1

         0 .     9

         7     3

        n    o    n    e

        n    o    n    e

         0 .     0

         0     5

         0 .     6

         4     4

         C    a     l    a     t     h    u    s     f    u    s    c     i    p    e    s

         (     G    o    e    z    e     1     7     7     7     )

         P    r    e      d    a     t    o    r ,    o    c    c    a    s     i    o    n    a

          l      l    y    p      h    y     t    o    p      h    a    g    o    u    s     (     R     i      b    e    r    a    e     t    a      l .     1     9     9     9     )     (    s      l    u    g

        c    o    n    s    u    m    p     t     i    o    n     [     C    r    o    s    s    e     t    a      l .     2     0     0     1     ]     ) .

       -

        +

         0 .     0

         5     6

         0 .     0

         3     8

       =

         0 .     8

         1

         0 .     4

         7

         D    o     l     i    c     h    u    s     h    a     l    e    n    s     i    s

         (     S    c

          h    a      l      l    e     1     7     8     3     )

         P    r    e      d    a     t    o    r     (     S    u    e    n    g    a    a

        n      d     H    a    m    a    m    u    r    a     1     9     9     8 ,

         2     0     0     1     ) .

       -

        +

         0 .     2

         9     9

         0 .     0

         0     2

       -

        +

         0 .     0

         0     1

         0 .     0

         9     7

         H    a    r    p    a     l    u    s    a     f     f     i    n     i    s

         (     S    c

          h    r    a    n      k     1     7     8     1     )

         M    a     i    n      l    y    p      h    y     t    o    p      h    a    g    o

        u    s     (     R     i      b    e    r    a    e     t    a      l .     1     9     9     9     )     (     S    e    e      d    c    o    n    s    u    m    p

         t     i    o    n

         [     H    o      l      l    a    n      d     2     0     0     2     ]     )

        n    o    n    e

        +

         0 .     6

         7

        <

         0 .     0

         0     1

        n    o    n    e

        +

        <

         0 .     0

         0     1

         1

         P    o    e    c     i     l    u    s    c    u    p    r    e    u    s

         (     L .

         1     7     5     8     )

         P    o      l    y    p      h    a    g    o    u    s ,

         (     H    o      l      l    a    n      d     2     0     0     2     )

       -

        +

         0 .     1

         1

         0 .     6

         1

       -

        +

         0 .     0

         0     1

         0 .     2

         8     5

         P    s    e    u     d

        o    o    p     h    o    n    u    s

        r    u     f

         i    p    e    s

         (     D    e    g    e    e    r     1     9     7     4     )

         P    o      l    y    p      h    a    g    o    u    s ,

         (     H    o      l      l    a    n      d     2     0     0     2     )     (    s    e    e      d    a    n      d    s      l    u    g    c    o    n    s    u    m    p     t     i    o

        n

         [     M    a    r     t     i    n      k    o    v    a    e     t    a      l .     2

         0     0     6     ]     ) .

       -

        +

         0 .     0

         0     8

         0 .     0

         0     9

       -

        +

         0 .     2

         0 .     2

         3

         P     t    e    r    o    s     t     i    c     h    u    s

        m    e

         l    a    n    a    r     i    u    s

         (      l      l      l     i    g    e    r     1     7     9     8     )

         G    e    n    e    r    a      l     i    s     t    p    r    e      d    a     t    o    r

     ,    o    c    c    a    s     i    o    n    a      l      l    y    p      h    y     t    o    p      h    a    g    o    u    s     (     R     i      b    e    r    a    e

         t    a      l .

         1     9     9     9     )     (    s      l    u    g    c    o    n    s    u    m

        p     t     i    o    n     [     P     i    a    n    e    z    z    o      l    a    e     t    a      l .     2     0     1     3     ]     ) .

        +

       -

         0 .     0

         4     3

         0 .     9

         2

       -

        +

        <

         0 .     0

         0     1

         0 .     0

         0     4

             †

         D     M     C

       =

          d     i    r    e    c     t    s    e    e      d     i    n    g    m    u      l    c      h   -      b    a    s    e      d    c    r    o    p    p

         i    n    g    s    y    s     t    e    m ,

             ‡

         R     T   =

        r    e      d    u    c    e      d     t     i      l      l    a    g    e .

    JOURNAL OF CROP IMPROVEMENT 75

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    13/20

    Weed densities were up to three-fold higher under DMC than under RT

    management. The results were in accordance with those of previous studies

    where DMC increased the weed population because of a lack of physical

    destruction and of seed burial (Peigné et al.   2007). Cover crops have been

    considered a means to overcome this negative effect (Creamer et al.   1996;

    Teasdale 1996). The establishment of a winter cover crop in the DMC fields

    was expected to outcompete weeds, during the intercrop period, for nutrientresources, light, and space, thus reducing weed infestation (Teasdale et al.

    2007; Lawley et al.   2012). Cover crop mulch is also expected to limit weed

    germination and development (Teasdale and Mohler   2000). This phenom-

    enon may have occurred here, but may not have been sufficient to achieve a

    similar weed level as in the RT treatment. This may be attributed to the facts

    that (i) the cover crop residues were not persistent enough (because of low C/

    N) to provide an effective light shield, and (ii) the herbicide strategy was

    more adapted to RT than DMC, thus explaining the better results obtained in

    the RT treatment. The herbicide strategy was that usually applied by thefarmers who owned the field. This strategy mainly relied on a root absorption

    mode of action, but the presence of residues on the surface in the DMC

    treatment may have created a physical barrier between the sprayed herbicides

    and roots. Moreover, when the soil surface horizon has a high level of 

    organic matter, as is generally the case under DMC, herbicide molecules

    may be adsorbed by colloids and degraded by microorganisms (see, e.g.,

    Locke and Bryson 1997; Jones and Bryan 1998; Chauhan et al. 2006). Hence,

    an herbicide with a foliar absorption mode of action may be a better alter-

    native under DMC management, but this should be assessed in furtherexperiments. Another way to improve weed control, using an agroecological

    Figure 4.  Biodiversity index dynamics over time for the reduced tillage (RT) and direct seeding

    mulch-based cropping system (DMC) treatments in each field. Mean index (±SEM) are shown.

    76 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    14/20

    strategy, would be to favor cover crops with allelopathic effects (Weston

    1996) (i.e., the   “harmful effect produced in one plant through toxic chemicals

    released into the environment by another,” Rice 1974, p.1). Among the cover

    crop species used in the experiment, field pea and faba bean (Fields M and S),

    and oat (Field S) are known to have some allelopathic effects (Fujii   2001;

    Kato-Noguchi  2003), but allelopathic species are not always efficient whenmixed with other species (Creamer et al.  1996).

    The other major pests at the experimental site were slugs. The lower

    presence of slugs in the RT treatment could be explained by the tillage,

    which killed them directly and destroyed their shelters (Glen and

    Symondson   2003). Conversely, in the DMC treatment, mulch provided

    shelters and food sources for slugs, and maintained favorable conditions

    (humidity) for their dispersal (Glen and Symondson   2003). Despite the

    higher slug densities in the DMC treatment, the final yield (see the

    Materials and Methods section) was higher in the DMC treatment than inthe RT treatment. Other studies have shown an increase in the number of 

    slugs in no-till conditions as compared with tillage, but rarely has there been

    any evidence of economic consequences (Stinner and House 1990), possibly 

    because the plants compensate the lower population density by a greater

    development and yield. In addition, the experiment revealed differences in

    slug densities between the two fields. This may be related to the time elapsed

    between the cover crop destruction and the crop sowing, and the crop sowing

    date itself. Sorghum was sown on May 11th, six weeks after destruction of the

    cover crop and in the absence of slugs, and thus no molluscicide treatmentwas necessary. Conversely, maize was sown on March 29th, two weeks after

    destruction of the cover crop and large slug populations were present. Other

    studies have highlighted the importance of the sowing timing to limit slug

    damage (Byers and Templeton 1988; Douglas and Tooker 2012). The choice

    of cover crop composition is also a key factor to reduce slug infestation. For

    example, Vernavá et al. (2004) observed more slugs in a crop after a clover

    (Trifolium pratense) or vetch (Vicia villosa) cover crop than after ryegrass(Lolium perenne). In our experiment, the cover crops included faba species,

    with high nitrogen content, which is generally very palatable for slugs(Gebauer   2002). When compared with the findings of other studies, these

    results highlighted the many different impacts of cover crops, which could

    thus be used to improve slug and weed control.

    The overall abundance of arthropods was also higher in the DMC treat-

    ment than in the RT treatment. Other studies have shown the same trend

    between   “conventional tillage” and   “no-till” (i.e., the arthropod diversity was

    higher when the soil was not disturbed) (Shenk and Saunders 1994; Stubbs

    et al.   2004; Dubie et al.   2011; Errouissi et al.   2011). Highest detritivore

    abundance was found in DMC, as expected, as mulch provides both protec-tion and food resources for this group. The lower detritivore abundance

    JOURNAL OF CROP IMPROVEMENT 77

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    15/20

    during summer could have been caused by (i) unfavorable climatic condi-

    tions in the summer (drought), (ii) mulch degradation across time, leading to

    fewer food resources and less shelter, and (iii) an increase in the abundance

    of their predators. Detritivores, which are widely known to improve the soil

    quality (e.g., Heemsbergen et al.  2004; Vos et al.  2011), also play an impor-

    tant role as alternative prey for generalist predators, such as carabid beetlesand spiders, when target prey are scarce. This leads to complex indirect

    interactions that can indirectly enhance biological control (Settle et al.

    1996; Sigsgaard 2000; Eitzinger and Traugott 2011; Chailleux et al.  2014).

    Aboveground predators were also more abundant in the DMC than in the

    RT treatment. Similar findings were reported by Holland and Reynolds

    (2003) when comparing plowed and non-plowed plots. In our study, the

    higher abundance of  Pardosa sp. (i.e., hunter species) in the DMC treatmentcould be interesting for biological control, as some species of this genus have

    been reported to be biocontrol agents of midges and plant- and leaf-hoppers(Oraze and Grigarick   1989; Sigsgaard   2000). Carabid beetles are known to

    feed, depending on species, on eggs and juvenile slugs (Symondson et al.

    1996; Bohan et al.   2000) or weed seeds (Honek et al.   2003; Lundgren and

    Rosentrater 2007; Bohan et al. 2011). Our experimental design did not allow 

    us to determine whether such predation occurred, but we observed that the

    increase in the carabid population alone was not sufficient to offset the

    increase in slug and weed numbers on a short-term scale. Indeed, direct

    destruction of slugs and the absence of shelters in RT appeared to keep their

    populations at a low level (Yenish et al.   1992; Glen and Symondson   2003).Pterosticus melanarius, a known slug predator (Symondson et al.  1996), wastrapped, but its preference for one of the two treatments was not clear-cut in

    our experiment, with opposite trends observed between the sorghum and the

    maize fields. Indeed, unlike most carabids, this species does not seem to be

    disrupted by soil tillage (Baguette and Hance  1997).

    Carabids were further investigated because of their important role in the

    biological control of weeds and slugs. The diversity indexes of this group

    were relatively low in the two treatments and the dominant species (i.e.,  P.

    cupreus   in maize and   P. rufipes   in sorghum) are both opportunistic poly-phagous species that are not of major interest for biological control.

    Although   Carabus   species are well-known slug predators (e.g., Holland2004; Pianezzola et al.   2013; Renkema et al.   2014), none were collected in

    this study. Indeed, this genus is very sensitive to the regular disruption of 

    arable habitats by cultivation practices (Kromp 1999). This may explain why 

    slug control was low in the monitored fields, but the  Carabus  genus couldrecolonize undisturbed fields, which could require additional time.

    Interestingly, the slug predator Pterostichus melanarius exhibited a key func-

    tional slug control trait (Northfield et al.  2012; Welch and Harwood 2014): itwas more abundant at the beginning of the season, when slugs are the most

    78 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    16/20

    detrimental to crops. This species should thus be promoted using conserva-

    tion biological control strategies. However, as noted earlier, soil practices

    promoting this species seem unclear as trends were opposite between the two

    fields, maybe because of the different crop species grown.

    Our results showed that soil practices and cover crops had a marked

    impact on fields regarding species abundance in the short-term, evenunder different field conditions. Our findings indicate that cover crops

    should be regarded as a tool to improve ecosystem services, not only on a

    long-term scale, but also when converting to DMC by (i) favoring natural

    enemies and (ii) disfavoring pests. The functional traits of cover crops

    (e.g., low attractiveness for slugs, allelopathy, and biomass production for

    weed competition) should be identified to facilitate choices for practi-

    tioners and DMC adoption.

    Acknowledgments

    We express our thanks to the following farmers for providing access to the study sites and for

    crop management: Guy Giraud and Robert Ristorto. We thank Caroline Bertrand (Chamber

    of Agriculture of Alpes de Haute Provence) for technical assistance; Yvan Capowiez (PSH

    Unit, INRA, Avignon), Christophe Mazzia (Avignon University, Avignon), and Pierre Frapa

    (Luberon Regional Nature Park, Apt) for their help in arthropod identification. We are

    grateful to Josephine Peigné (ISARA, Lyon) for helpful comments on the experimental design

    and Alain Ratnadass (UPR HortSys, CIRAD, Montpellier) for useful comments on an earlier

     version of the manuscript.

    Funding

    We thank the Chamber of Agriculture of Alpes de Haute Provence for funding Rémy 

    Kulagowski.

    References

    Allen, R. T. 1979. The occurrence and importance of ground beetles in agricultural andsurrounding habitats. In Carabid beetles, 485–505. Netherlands: Springer.

    Altieri, M. A. 1999. The ecological role of biodiversity in agroecosystems.   Agr. Ecosyst.Environ. 74(1):19–31.

    Baguette, M., and T. Hance. 1997. Carabid beetles and agricultural practices: Influence of soil

    ploughing. Biol. Agric. Hortic. 15(1–4):185–190.Barber, H. S. 1931. Traps for cave-inhabiting insects. J. Elisha Mitchell Sci. Soc. 46(3):259–266.Barker, G. M. Ed. 2002. Molluscs as crop pests Wallingford, UK: CABI Publishing.

    Bohan, D. A., A. C. Bohan, D. M. Glen, W. O. Symondson, C. W. Wiltshire, and L. Hughes.

    2000. Spatial dynamics of predation by carabid beetles on slugs.  J. Anim. Ecol . 69(3):367–379.

    Bohan, D. A., A. Boursault, D. R. Brooks, and S. Petit. 2011. National-scale regulation of the

    weed seedbank by carabid predators.  J. Appl. Ecol . 48(4):888–898.

    JOURNAL OF CROP IMPROVEMENT 79

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    17/20

    Brussaard, L., P. C. De Ruiter, and G. G. Brown. 2007. Soil biodiversity for agricultural

    sustainability. Agr. Ecosyst. Environ. 121(3):233–244.Byers, R. A., and W. C Templeton. 1988. Effects of sowing date, placement of seed, vegetation

    suppression, slugs, and insects upon establishment of no-till alfalfa in orchardgrass sod.

    Grass Forage Sci. 43(3):279–289.Celano, V., and H. Hansen. 1999. La Carabidofauna e l ’Aracnofauna di una bonifica della

    Laguna di Venezia. Bollettino del Museo Civico di Storia Naturale di Venezia  49(1998):55–97.

    Chailleux, A., E. K. Mohl, M. Teixeira-Alves, G. J. Messelink, and N. Desneux. 2014. Natural

    enemy-mediated indirect interactions among prey species: Potential for enhancing biocon-

    trol services in agro-ecosystems.  Pest Manag. Sci. 70(12):1769–1779.Chancellor, R. J., and R. J. Froud-Williams. 1986. Weed problems of the next decade in

    Britain Crop Prot . 5:66–72.Chauhan, B. S., G. S. Gill, and C. Preston. 2006. Tillage system effects on weed ecology,

    herbicide activity and persistence: A review. Anim. Prod. Sci. 46(12):1557–1570.Creamer, N. G., M. A. Bennett, B. R. Stinner, J. Cardina, and E. E. Regnier. 1996. Mechanisms

    of weed suppression in cover crop-based production systems.  Hort. Science 31(3):410–

    413.Cross, J. V., M. A. Easterbrook, A. M. Crook, D. Crook, J. D. Fitzgerald, P. J. Innocenzi, C. N.

    Jay, and M. G. Solomon. 2001. Review: Natural enemies and biocontrol of pests of 

    strawberry in northern and central Europe.  Biocontrol. Sci. Techn  11(2):165–216.Douglas, M. R., and J. F. Tooker. 2012. Slug (Mollusca: Agriolimacidae, Arionidae) ecology 

    and management in no-till field crops, with an emphasis on the mid-Atlantic region.   J.Integr. Pest Manag . 3(1):C1–C9.

    Driessen, P., J. Deckers, O. Spaargaren, and F. Nachtergaele. 2001. Lecture notes on the major

    soils of the world. World Soil Resources Reports 2000, 94, Food and Agriculture

    Organization (FAO).

    Dubie, T. R., C. M. Greenwood, C. Godsey, and M. E. Payton. 2011. Effects of tillage on soil

    microarthropods in winter wheat. Southwest Entomol . 36(1):11–20.Duyck, P. F., A. Lavigne, F. Vinatier, R. Achard, J. N. Okolle, and P. Tixier. 2011. Addition of 

    a new resource in agroecosystems: Do cover crops alter the trophic positions of generalist

    predators? Basic Appl. Ecol . 12(1):47–55.Eitzinger B., and M. Traugott. 2011. Which prey sustains cold-adapted invertebrate generalist

    predators in arable land? Examining prey choices by molecular gut-content analysis.   J. Appl. Ecol . 48:591–599.

    Errouissi, F., S. Ben Moussa-Machraoui, M. Ben-Hammouda, and S. Nouira. 2011. Soil

    invertebrates in durum wheat (Triticum durum   L.) cropping system underMediterranean semi arid conditions: A comparison between conventional and no-tillage

    management. Soil Till Res. 112(2):122–

    132.Fujii, Y. 2001. Screening and future exploitation of allelopathic plants as alternative herbicides

    with special reference to hairy vetch.  J. Crop Prod . 4(2):257–275.Gebauer, J. 2002. Survival and food choice of the grey field slug (Deroceras reticulatum) on

    three different seed types under laboratory conditions. Anz. Schadl. 75(1):1–5.

    Glen, D. 2002. Integrated control of slug damage.  Pesticide Outlook  13(4):137–141.Glen, D. M., and W. O. C. Symondson. 2003. Influence of soil tillage on slugs and their

    natural enemies. In  Soil tillage in agroecosystems, ed. A. El Titi, 207–227. Florida: CRCPress.

    Godan, D. 1983. Pest slugs and snails.  Biology and control . Berlin, Germany: Springer Verlag.Grime, J. P. 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder

    effects.  J. Ecol . 86(6):902–910.

    80 R. KULAGOWSKI ET AL.

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    18/20

    Heemsbergen, D. A., M. P. Berg, M. Loreau, J. R. Van Hal, J. H. Faber, and H. A. Verhoef.

    2004. Biodiversity effects on soil processes explained by interspecific functional dissim-

    ilarity. Science  306(5698):1019–1020. van Helsdingen, P. J. 2009. Araneae. In: Fauna Europaea Database European spiders and their

    distribution   —   Distribution   —Version 2009. 1.  http://www.european-arachnology.org;

    Accessed 11 October 2012.

    Hinkle, M. K. 1983. Problems with conservation tillage.  J. Soil Water Conserv . 38(3):201–206.Holland, J. M. 2002.  The agroecology of Carabid beetles. Andover, Hampshire UK: 1–356.Holland, J. M. 2004. The environmental consequences of adopting conservation tillage in

    Europe: reviewing the evidence.  Agr. Ecosyst. Environ. 103(1):1–25.Holland, J. M., and Reynolds, C. J. 2003. The impact of soil cultivation on arthropod

    (Coleoptera and Araneae) emergence on arable land.  Pedobiologia  47(2):181–191.Hommay, G., Kienlen, J. C., Jacky, F., and Gertz, C. 2003. Daily variation in the number of 

    slugs under refuge traps.  Ann. Appl. Biol . 142(3):333–339.Honek, A., Martinkova, Z., and Jarosik, V. 2003. Ground beetles (Carabidae) as seed

    predators. Eur. J. Entomol . 100(4):531–544.

    Jeannel, R. 1941. Faune de France, n°39, Coléoptères Carabiques, première partie. Librairie dela Faculté des Sciences, Paris.

    Jeannel R. 1942. Faune de France, n°40, Coléoptères Carabiques, deuxième partie. Librairie de

    la Faculté des Sciences, Paris.

    Jones, M. N., and N. D. Bryan. 1998. Colloidal properties of humic substances. Adv. Colloid.Interfac. 78(1):1–48.

    Kato-Noguchi, H. 2003. Isolation and identification of an allelopathic substance in  Pisumsativum. Phytochemistry  62(7):1141–1144.

    Koskinen, W. C., and C. G. McWhorter. 1986. Weed control in conservation tillage.   J. Soil Water Conserv . 41(6), 365–370.

    Kromp, B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy,

    cultivation impacts and enhancement. Agr. Ecosyst. Environ. 74(1):187–228.Kulagowski, R., and A. Chailleux. 2015. Short-term effects of conversion from reduced tillage

    to direct-seeding mulch-based cropping systems.  J. Crop Improvement . 29(5):650–668.Lacoste A. and R. Salanon. 2005.  Éléments de géographie et d ’ écologie. 2e éd. Armand Colin,

    Coll. Fac. Géographie, France.

    Lahmar, R. 2010. Adoption of conservation agriculture in Europe: Lessons of the KASSA

    project. Land Use Policy  27(1):4–10.Landis, D. A., S. D. Wratten, and G. M. Gurr. 2000. Habitat management to conserve natural

    enemies of arthropod pests in agriculture.  Ann. Rev. Entomol . 45(1):175–201.Langdale, G. W., R. L. Blevins, D. L. Karlen, D. K. McCool, M. A. Nearing, E. L. Skidmore, A.

    W. Thomas, D. D. Tylerv, and, J. R. Williams. 1991. Cover crop effects on soil erosion by wind and water. Cover crops for clean water. Soil and Water Conserv. Soc., Ankeny, IA,

    15–22.

    Lawley, Y. E., J. R. Teasdale, and R. R. Weil. 2012. The mechanism for weed suppression by a

    forage radish cover crop. Agron. J . 104(2):205–214.Locke, M. A., and C. T. Bryson. 1997. Herbicide-soil interactions in reduced tillage and plant

    residue management systems.  Weed Sci. 45:307–320.Lundgren, J. G., and K. A. Rosentrater. 2007. The strength of seeds and their destruction by 

    granivorous insects. Arthropod.-Plant Inte. 1(2):93–99.Lundgren, J. G., J. T. Shaw, E. R. Zaborski, and C. E. Eastman. 2006. The influence of organic

    transition systems on beneficial ground-dwelling arthropods and predation of insects and

    weed seeds.  Renew Agr. Food Syst . 21(04):227–237.

    JOURNAL OF CROP IMPROVEMENT 81

    http://www.european-arachnology.org/http://www.european-arachnology.org/

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    19/20

    Malézieux, E. 2012. Designing cropping systems from nature.  Agron. Sustain Dev . 32(1):15–29.

    Martinkova, Z., P. Saska, and A. Honek. 2006. Consumption of fresh and buried seed by 

    ground beetles (Coleoptera: Carabidae).  Eur. J. Entomol . 103(2):361–364.Moonen, A. C., and P. Barberi. 2008. Functional biodiversity: an agroecosystem approach.

     Agr. Ecosyst. Environ. 127(1):7–21.

    Nentwig, W., A. Hänggi, C. Kropf, and T. Blick. 2003. Central European spiders. An internetidentification key. http://www.araneae.unibe.ch (Version 04.2013); Accessed 11 October 2012.

    Northfield, T. D., D. W. Crowder, R. Jabbour, and W. E. Snyder. 2012. Natural enemy 

    functional identity, trait-mediated interactions and biological control. In   Trait-mediated indirect interactions: Ecological and evolutionary perspectives, 450–465. New York:Cambridge University Press.

    Oraze, M. J., and A. A. Grigarick. 1989. Biological control of aster leafhopper (Homoptera:

    Cicadellidae) and midges (Diptera: Chironomidae) by   Pardosa ramulosa   (Araneae:Lycosidae) in California rice fields.  J. Econ. Entomol . 82(3):745–749.

    Peigné, J., B. C. Ball, J. Roger-Estrade, and C. David. 2007. Is conservation tillage suitable for

    organic farming? A review.  Soil Use Manage. 23(2):129–

    144.Phillips, R. E., R. L. Blevins, G. W. and Thomas. 1980. No-tillage agriculture.  Science  208:6.Pianezzola, E., S. Roth, and B. A. Hatteland. 2013. Predation by carabid beetles on the

    invasive slug Arion vulgaris  in an agricultural semi-field experiment.  B Entomol. Res. 103(2):225–232.

    R Development Core Team. 2009. R: A language and environment for statistical computing.

    R Foundation for Statistical Computing, Vienna, Austria.

    Ratnadass, A., P. Fernandes, J. Avelino, and R Habib. 2012. Plant species diversity for

    sustainable management of crop pests and diseases in agroecosystems: A review.  Agron.Sustain. Dev . 32(1):273–303.

    Renkema, J. M., G. C. Cutler, D. Blanchard, and A. Hammermeister. 2014. Using ground

    beetles (Coleoptera: Carabidae) to control slugs (Gastropoda: Pulmonata) in salad greensin the laboratory and greenhouse.  The Canadian Entomologist   1–12. DOI: http://dx.doi.org/10.4039/tce.2014.8.

    Ribera, I., G. N. Foster, I. S. Downie, D. I. McCracken, and V. J. Abernethy. 1999. A

    comparative study of the morphology and life traits of Scottish ground beetles

    (Coleoptera, Carabidae). Ann. Zool. Fenn. 36(1):21–37.Rice, E. L. 1974.  Allelopathy . New York: Academic Press.Roberts, M. 1985.   The spiders of Great Britain and Ireland . Volume 1:   Atypidae to

    Theridiosomatidae. Colchester: Harley Books.Saska, P., and A. Honek. 2004. Development of the beetle parasitoids,  Brachinus explodens

    and B. crepitans  (Coleoptera: Carabidae).  J. Zool . 262(1):29–

    36.Schrim, M., and R. A. Byers. 1980. A method for sampling three slug species attacking sod-

    seeded legumes [Derocerus reticulatum, Derocerus laeve]. Melsheimer EntomologicalSeries.

    Scopel, E., B. Triomphe, F. Affholder, F. A. M. Da Silva, M. Corbeels, J. H. V. Xavier, R.

    Lahmar, S. Recous, M. Bernoux, E. Blanchart, I. De Carvalho Mendes, S. De Tourdonnet.

    2013. Conservation agriculture cropping systems in temperate and tropical conditions,

    performances and impacts. A review. Agron. Sustain. Dev . 33(1):113–130.Séguy, L., S. Bouzinac, and O. Husson. 2006. In   Biological approaches to sustainable soil 

    systems, eds. N. T. Uphoff, A. S. Ball, E. C. M. Fernandes, H. R. Herren, O. Husson, M. V.Laing, C. Palm, J. Pretty, P. Sanchez, N. Sanginga, J. Thies, 323–342. Boca Raton: CRC

    Press.

    82 R. KULAGOWSKI ET AL.

    http://www.araneae.unibe.ch/http://www.araneae.unibe.ch/

  • 8/18/2019 Short-Term Effects of Conversion to Direct Seeding Mulch-Based Cropping Systems on Macro-Fauna and Weed Dy…

    20/20

    Settle, W. H., H. Ariawan, E. T. Astuti, W. Cahyana, A. L. Hakim, D. Hindayana, and A. S.

    Lestari. 1996. Managing tropical rice pests through conservation of generalist natural

    enemies and alternative prey. Ecology  77(7):1975–1988.Shearin, A. F., S. C. Reberg-Horton, and E. R. Gallandt. 2007. Direct effects of tillage on the

    activity density of ground beetle (Coleoptera: Carabidae) weed seed predators.  Environ.Entomol . 36(5):1140–1146.

    Shenk, M., and J. L. Saunders. 1984. Vegetation management systems and insect responses inthe humid tropics of Costa Rica.  Int. J. Pest Manage. 30(2):186–193.

    Sigsgaard, L. 2000. Early season natural biological control of insect pests in rice by spiders-

    and some factors in the management of the cropping system that may affect this control. In

    European Arachnology 2000 Proceedings of the 19th Colloquium of Arachnology, Aarhus,

    57–64.

    South, A. 1992.  Terrestrial slugs. Biology, ecology and control . London, UK: Chapman andHall, Ltd.

    Stinner, B. R., and G. J. House. 1990. Arthropods and other invertebrates in conservation-

    tillage agriculture. Ann. Rev. Entomol . 35(1):299–318.

    Stubbs, T. L., A. C. Kennedy, and W. F. Schillinger. 2004. Soil ecosystem changes during thetransition to no-till cropping. J. Crop. Improvement  11(1):105–135.Suenaga, H., and T. Hamamura. 1998. Laboratory evaluation of carabid beetles (Coleoptera:

    Carabidae) as predators of diamondback moth (Lepidoptera: Plutellidae) larvae.  Environ.Entomol . 27(3):767–772.

    Suenaga, H., and T. Hamamura. 2001. Occurrence of carabid beetles (Coleoptera: Carabidae)

    in cabbage fields and their possible impact on lepidopteran pests.  Appl. Entomol. Zool . 36(1):151–160.

    Symondson, W. O. C., D. M. Glen, C. W. Wiltshire, C. J. Langdon, and J. E. Liddell. 1996.

    Effects of cultivation techniques and methods of straw disposal on predation by 

    Pterostichus melanarius  (Coleoptera: Carabidae) upon slugs (Gastropoda: Pulmonata) in

    an arable field.  J. Appl. Ecol . 33:741–753.Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable

    agricultural systems. J. Prod. Agric. 9(4):475–479.Teasdale, J. R., and C. L. Mohler. 2000. The quantitative relationship between weed emer-

    gence and the physical properties of mulches.  Weed Sci. 48(3):385–392.Teasdale, J. R., L. O. Brandsaeter, A. Calegari, and F. S. Neto. 2007. Cover crops and weed

    management. In Non-chemical weed management: Principles, concepts and technology , eds.M. K. Upadhyaya, and R. E. Blackshaw, 49–64. Wallingford, UK: CABI.

    Trautner, J., and K. Geigenmuller 1987. Tiger beetles, ground beetles. Illustrated key to the

    Cicindelidae and Carabidae of Europe. Germany: Margraf, Aichtal.

    Vernavá, M. N., P. M. Phillips-Aalten, L. A. Hughes, H. Rowcliffe, C. W. Wiltshire, and D. M.Glen. 2004. Influences of preceding cover crops on slug damage and biological control

    using Phasmarhabditis hermaphrodita. Ann. Appl. Biol . 145(3):279–284.Vos, V. C.A., J. van Ruijven, M. P. Berg, E. T. Peeters, and F. Berendse. 2011. Macro-

    detritivore identity drives leaf litter diversity effects. Oikos  120(7):1092–1098.Welch, K. D., and J. D. Harwood. 2014. Temporal dynamics of natural enemy-pest interac-

    tions in a changing environment.  Biol. Control  75:18–27.Weston,   L. A. 1996. Utilization of allelopathy for weed management in agroecosystems.

     Agron. J . 88(6):860–866.Yenish, J. P., J. D. Doll, and D. D. Buhler. 1992. Effects of tillage on vertical distribution and

     viability of weed seed in soil. Weed Sci. 429–433.

    JOURNAL OF CROP IMPROVEMENT 83