seyed morteza hosseini - istituto nazionale di fisica nuclearehosseini/pdf/flat ee.pdf · 2016. 1....

45
Entanglement and flat space holography Seyed Morteza Hosseini University of Milano-Bicocca November 17, 2015 Seyed Morteza Hosseini University of Milano-Bicocca Entanglement and flat space holography 1 / 21

Upload: others

Post on 04-Feb-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Entanglement and flat space holography

    Seyed Morteza Hosseini

    University of Milano-Bicocca

    November 17, 2015

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 1 / 21

  • Outline

    1. Motivations

    2. The BMS3/GCA2 correspondence

    3. Gravitational anomaly in CFT2

    4. İnönü-Wigner contraction

    5. Zero temperature entanglement entropy (EE) for GCFT2

    6. Finite temperature EE for GCFT2

    7. Holographic EE from BMS3/GCA2

    8. Outlook

    Based on

    S. M. Hosseini and A. Veliz-Osorio, “Gravitational anomalies, entanglement

    entropy, and flat-space holography,” arXiv:1507.06625 [hep-th].

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 2 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • Motivations

    Main motivation

    Holography beyond the AdS/CFT correspondence!

    focus of this talk: Flat space holography!

    1. Microstate counting from BMS3/GCA2?!

    2. (Holographic) Weyl anomaly?!

    3. (Holographic) c-function?!

    4. (Holographic) entanglement entropy?!

    5. . . .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 3 / 21

  • The BMS3/GCA2 correspondence

    Galilean conformal algebra (GCA)

    The GCA is the infinite dimensional algebra generated by theconformal isometries of Galilean spacetimes. In 1+1 dimensions thevector fields that generate these transformations are given by

    Ln = −(n+ 1)xnt∂t − xn+1∂x , Mn = xn+1∂t ,

    which satisfy the algebra

    [Lm, Ln] = (m− n)Ln+m +cLL12

    m(m2 − 1)δm+n,0 ,

    [Lm,Mn] = (m− n)Mn+m +cLM12

    m(m2 − 1)δm+n,0 ,

    [Mm,Mn] = 0 . (1)

    (Bagchi et al., Barnich et al.)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 4 / 21

  • The BMS3/GCA2 correspondence

    BMS3 algebra (Einstein gravity) (Barnich, Compere ‘06)

    For (2+1)-dimensional asymptotically flat spacetimes, the symmetryalgebra at null infinity is given by the semi-direct sum of theinfinitesimal diffeomorphisms on the circle with an Abelian ideal ofsupertranslations.

    [Jm,Jn] = (m− n)Jn+m , [Pm,Pn] = 0 , (2)

    [Jm,Pn] = (m− n)Pn+m +1

    4Gm(m2 − 1)δm+n,0 .

    This algebra is isomorphic to a GCA2 with cLL = 0 and cLM = 3/G.

    The BMS3/GCA2 correspondence!

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 5 / 21

  • The BMS3/GCA2 correspondence

    BMS3 algebra (Einstein gravity) (Barnich, Compere ‘06)

    For (2+1)-dimensional asymptotically flat spacetimes, the symmetryalgebra at null infinity is given by the semi-direct sum of theinfinitesimal diffeomorphisms on the circle with an Abelian ideal ofsupertranslations.

    [Jm,Jn] = (m− n)Jn+m , [Pm,Pn] = 0 , (2)

    [Jm,Pn] = (m− n)Pn+m +1

    4Gm(m2 − 1)δm+n,0 .

    This algebra is isomorphic to a GCA2 with cLL = 0 and cLM = 3/G.

    The BMS3/GCA2 correspondence!

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 5 / 21

  • Gravitational anomaly in CFT2

    EE in a CFT2 (T=0) for a single interval A = [z1, z2].

    SEE(A) =[cL

    6log(zδ

    )+cR6

    log( z̄δ

    )],

    where z2 − z1 = z. (Holzhey et al. ’94, Calabrese, Cardy ’04)

    Let us rotate z in the complex plane to z = Reiθ. Under this rotation,the EE transforms into

    SEE =cL + cR

    6log

    (R

    δ

    )+cL − cR

    6iθ .

    Notice that the second term vanishes for theories where the Lorentzsymmetry is non-anomalous (i.e., cL = cR), but is present otherwise!

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 6 / 21

  • Gravitational anomaly in CFT2

    EE in a CFT2 (T=0) for a single interval A = [z1, z2].

    SEE(A) =[cL

    6log(zδ

    )+cR6

    log( z̄δ

    )],

    where z2 − z1 = z. (Holzhey et al. ’94, Calabrese, Cardy ’04)

    Let us rotate z in the complex plane to z = Reiθ. Under this rotation,the EE transforms into

    SEE =cL + cR

    6log

    (R

    δ

    )+cL − cR

    6iθ .

    Notice that the second term vanishes for theories where the Lorentzsymmetry is non-anomalous (i.e., cL = cR), but is present otherwise!

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 6 / 21

  • Gravitational anomaly in CFT2

    In terms of spacetime variables, under the analytic continuationz = x− t, z̄ = x+ t, the angle θ corresponds to a boost parameter κas θ = iκ. Therefore,

    EE for the boosted interval

    SEE =cL + cR

    6log

    (R

    δ

    )− cL − cR

    6κ . (3)

    (Wall ’11, Castro, Detournay, Iqbal, Perlmutter ’14)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 7 / 21

  • İnönü-Wigner contraction

    Identify the GCA generators with the linear combinations

    Ln = Ln + L̄n , Mn = −�(Ln − L̄n

    ),

    of their Virasoro counterparts, where � is a small parameter at thelevel of algebra.

    [Lm, Ln] = (m− n)Ln+m +cLL12

    m(m2 − 1)δm+n,0 ,

    [Lm,Mn] = (m− n)Mn+m +cLM12

    m(m2 − 1)δm+n,0 ,

    [Mm,Mn] = 0 .

    From the spacetime point of view it corresponds to ∆t→ �∆t and∆x→ ∆x, in the �→ 0 limit.(Bagchi et al., Barnich et al.)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 8 / 21

  • Zero temperature EE for GCFT2

    Shortcut to EE in GCFTs

    1. Decompose R into space and time as

    R2 = (∆x)2 − (∆t)2 , κ = arctanh(

    ∆t

    ∆x

    ).

    2. Make İnönü-Wigner contraction.

    EE of GCFT2 at zero temperature

    SGCFT2EE =cLL6

    log

    (∆x

    δ

    )+cLM

    6

    (∆t

    ∆x

    ). (4)

    (Bagchi et al. ’14, SMH, Veliz-Osorio ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 9 / 21

  • Zero temperature EE for GCFT2

    Shortcut to EE in GCFTs

    1. Decompose R into space and time as

    R2 = (∆x)2 − (∆t)2 , κ = arctanh(

    ∆t

    ∆x

    ).

    2. Make İnönü-Wigner contraction.

    EE of GCFT2 at zero temperature

    SGCFT2EE =cLL6

    log

    (∆x

    δ

    )+cLM

    6

    (∆t

    ∆x

    ). (4)

    (Bagchi et al. ’14, SMH, Veliz-Osorio ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 9 / 21

  • Finite temperature EE for GCFT2

    The EE for a CFT2 with gravitational anomaly (cL 6= cR) can bewritten as

    SEE =cL6

    log

    [βLπδ

    sinh

    (πz

    βL

    )]+cR6

    log

    [βRπδ

    sinh

    (πz̄

    βR

    )],

    where βL (βR) is the left (right)-moving inverse temperature.(Holzhey et al. ’94, Calabrese, Cardy ’04)

    Once again we want to break the Lorentz invariance of the theory,thus we boost the interval and follow the same strategy used for thezero temperature case.

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 10 / 21

  • Finite temperature EE for GCFT2

    The EE for a CFT2 with gravitational anomaly (cL 6= cR) can bewritten as

    SEE =cL6

    log

    [βLπδ

    sinh

    (πz

    βL

    )]+cR6

    log

    [βRπδ

    sinh

    (πz̄

    βR

    )],

    where βL (βR) is the left (right)-moving inverse temperature.(Holzhey et al. ’94, Calabrese, Cardy ’04)

    Once again we want to break the Lorentz invariance of the theory,thus we boost the interval and follow the same strategy used for thezero temperature case.

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 10 / 21

  • Finite temperature EE for GCFT2

    SGCFT2EE =cLL6

    log

    [βLLπδ

    sinh

    (π∆x

    βLL

    )]− cLM

    6

    βLMβLL

    +cLMπ

    6βLL

    (∆t+

    βLMβLL

    ∆x

    )coth

    (π∆x

    βLL

    ),

    where we defined

    βLL = lim�→0

    1

    2(βL + βR) , βLM = lim

    �→0

    1

    2�(βL − βR) ,

    which can be understood as the inverse temperatures of a GCFT2.(SMH, Veliz-Osorio ’15)

    Cardy formula for GCFTs

    SGCFT2thermal =π2

    3β2LL(cLLβLL + cLMβLM ) .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 11 / 21

  • Finite temperature EE for GCFT2

    SGCFT2EE =cLL6

    log

    [βLLπδ

    sinh

    (π∆x

    βLL

    )]− cLM

    6

    βLMβLL

    +cLMπ

    6βLL

    (∆t+

    βLMβLL

    ∆x

    )coth

    (π∆x

    βLL

    ),

    where we defined

    βLL = lim�→0

    1

    2(βL + βR) , βLM = lim

    �→0

    1

    2�(βL − βR) ,

    which can be understood as the inverse temperatures of a GCFT2.(SMH, Veliz-Osorio ’15)

    Cardy formula for GCFTs

    SGCFT2thermal =π2

    3β2LL(cLLβLL + cLMβLM ) .

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 11 / 21

  • Holographic EE from BMS3/GCA2

    Topological massive gravity (TMG)

    ITMG =1

    16πG

    ∫d3x√−g[R− 2Λ + 1

    2µCS(Γ)

    ],

    where the Chern-Simons contribution is given by

    CS(Γ) = εαβγΓρασ

    (∂βΓ

    σγρ +

    2

    3ΓσβηΓ

    ηγρ

    ).

    Canonical analysis of TMG yields the BMS3 algebra with

    cLL =3

    Gµ, cLM =

    3

    G.

    The Einstein gravity limit corresponds to taking µ→∞.

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 12 / 21

  • Holographic EE from BMS3/GCA2

    Topological massive gravity (TMG)

    ITMG =1

    16πG

    ∫d3x√−g[R− 2Λ + 1

    2µCS(Γ)

    ],

    where the Chern-Simons contribution is given by

    CS(Γ) = εαβγΓρασ

    (∂βΓ

    σγρ +

    2

    3ΓσβηΓ

    ηγρ

    ).

    Canonical analysis of TMG yields the BMS3 algebra with

    cLL =3

    Gµ, cLM =

    3

    G.

    The Einstein gravity limit corresponds to taking µ→∞.

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 12 / 21

  • Holographic EE from BMS3/GCA2

    BTZ black hole

    The equations of motion of TMG admit a rotating BTZ solution,

    ds2BTZ`2

    = −(r2 − r2+)(r2 − r2−)

    r2dτ2 +

    r2

    (r2 − r2+)(r2 − r2−)dr2

    + r2(dφ+

    r+r−r2

    dτ)2

    , (5)

    where ` is the AdS radius of curvature. We define the quantities

    m =r2+ − r2−

    8G`2, j =

    r+r−4G`

    .

    In pure Einstein gravity m and j correspond to the mass and angularmomentum of the black hole.

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 13 / 21

  • Holographic EE from BMS3/GCA2

    Due to the Chern-Simons term in the action there is a shift in theconserved quantities associated to the TMG-BTZ black hole

    M = m− jµ`2

    , J = j − mµ.

    Holographic EE for the BTZ geometry in TMG

    SBTZEE =cL + cR

    12log

    [βLβRπ2δ2

    sinh

    (πz

    βL

    )sinh

    (πz̄

    βR

    )]

    − cL − cR12

    log

    sinh(πz̄βR

    )βR

    sinh(πzβL

    )βL

    . (6)where

    βL =2π`

    r+ − r−, βR =

    2π`

    r+ + r−.

    (Hubeny et al. ’07, Castro et al. ’14)Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 14 / 21

  • Holographic EE from BMS3/GCA2

    Flat space analogue of the rotating BTZ black hole solution!

    Flat space cosmology (FSC)!

    These geometries describe expanding (contracting) universes and canbe viewed as the flat space (Λ→ 0) limit of rotating BTZ black holes.

    ds2FSC = r̂2+

    (1− r

    20

    r2

    )dτ2 − dr

    2

    r̂2+

    (1− r

    20

    r2

    ) + r2(dφ− r̂+r0r2

    )2,

    r+ → `√

    8Gm = `r̂+ , r− →√

    2G

    m|j| = r0 .

    (Cornalba, Costa ’02)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 15 / 21

  • Holographic EE from BMS3/GCA2

    Flat space analogue of the rotating BTZ black hole solution!

    Flat space cosmology (FSC)!

    These geometries describe expanding (contracting) universes and canbe viewed as the flat space (Λ→ 0) limit of rotating BTZ black holes.

    ds2FSC = r̂2+

    (1− r

    20

    r2

    )dτ2 − dr

    2

    r̂2+

    (1− r

    20

    r2

    ) + r2(dφ− r̂+r0r2

    )2,

    r+ → `√

    8Gm = `r̂+ , r− →√

    2G

    m|j| = r0 .

    (Cornalba, Costa ’02)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 15 / 21

  • Holographic EE from BMS3/GCA2

    Claim

    The holographic EE of FSC can be found by following ourprescription to implement an İnönü-Wigner contraction on theholographic EE of the rotating BTZ black hole!

    Holographic EE of FCS

    SFSCEE =cLL6

    log

    [β+πδ

    sinh

    (π∆x

    β+

    )]− cLM

    6

    β0β+

    +cLMπ

    6β+

    (∆t+

    β0β+

    ∆x

    )coth

    (π∆x

    β+

    ), (7)

    β+ =2π

    r̂+, β0 =

    2πr0r̂2+

    , cLL =3

    Gµ, cLM =

    3

    G.

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 16 / 21

  • Holographic EE from BMS3/GCA2

    Claim

    The holographic EE of FSC can be found by following ourprescription to implement an İnönü-Wigner contraction on theholographic EE of the rotating BTZ black hole!

    Holographic EE of FCS

    SFSCEE =cLL6

    log

    [β+πδ

    sinh

    (π∆x

    β+

    )]− cLM

    6

    β0β+

    +cLMπ

    6β+

    (∆t+

    β0β+

    ∆x

    )coth

    (π∆x

    β+

    ), (7)

    β+ =2π

    r̂+, β0 =

    2πr0r̂2+

    , cLL =3

    Gµ, cLM =

    3

    G.

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 16 / 21

  • Holographic EE from BMS3/GCA2

    I Einstein gravity. We recover Einstein gravity by considering thelimit µ→∞.

    cLM6β+

    (∆t+

    β0β+

    ∆x

    )coth

    (π∆x

    β+

    )− β0

    ].

    I Boost orbifold. This limit corresponds to taking the angularmomentum j to zero (β0 = 0).

    cLL6

    log

    [β+πδ

    sinh

    (π∆x

    β+

    )]+cLMπ

    6β+∆t coth

    (π∆x

    β+

    ).

    (Bagchi et al. ’14)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 17 / 21

  • Holographic EE from BMS3/GCA2

    I Einstein gravity. We recover Einstein gravity by considering thelimit µ→∞.

    cLM6β+

    (∆t+

    β0β+

    ∆x

    )coth

    (π∆x

    β+

    )− β0

    ].

    I Boost orbifold. This limit corresponds to taking the angularmomentum j to zero (β0 = 0).

    cLL6

    log

    [β+πδ

    sinh

    (π∆x

    β+

    )]+cLMπ

    6β+∆t coth

    (π∆x

    β+

    ).

    (Bagchi et al. ’14)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 17 / 21

  • Holographic EE from BMS3/GCA2

    I Thermal entropy. The thermal entropy of the system can berecovered by considering a large entangling region.

    SFSCthermal =2πr04G

    +2πr̂+4Gµ

    .

    (Bagchi, Basu ‘13)

    I Flat space chiral gravity. Finally, we consider the case where thebulk theory consists only of the gravitational Chern-Simonspiece.

    Conformal Chern-Simons gravity (CSG)

    G→∞,while keeping µG = 1/8k fixed.

    cLL = 24k , cLM = 0 ,

    (Bagchi, Detournay, Grumiller ’12)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 18 / 21

  • Holographic EE from BMS3/GCA2

    I Thermal entropy. The thermal entropy of the system can berecovered by considering a large entangling region.

    SFSCthermal =2πr04G

    +2πr̂+4Gµ

    .

    (Bagchi, Basu ‘13)

    I Flat space chiral gravity. Finally, we consider the case where thebulk theory consists only of the gravitational Chern-Simonspiece.

    Conformal Chern-Simons gravity (CSG)

    G→∞,while keeping µG = 1/8k fixed.

    cLL = 24k , cLM = 0 ,

    (Bagchi, Detournay, Grumiller ’12)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 18 / 21

  • Holographic EE from BMS3/GCA2

    I Thermal entropy. The thermal entropy of the system can berecovered by considering a large entangling region.

    SFSCthermal =2πr04G

    +2πr̂+4Gµ

    .

    (Bagchi, Basu ‘13)

    I Flat space chiral gravity. Finally, we consider the case where thebulk theory consists only of the gravitational Chern-Simonspiece.

    Conformal Chern-Simons gravity (CSG)

    G→∞,while keeping µG = 1/8k fixed.

    cLL = 24k , cLM = 0 ,

    (Bagchi, Detournay, Grumiller ’12)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 18 / 21

  • Holographic EE from BMS3/GCA2

    Conformal Chern-Simons gravity action

    ICSG =k

    ∫d3x√−gCS(Γ) .

    The asymptotic symmetry algebra for CSG reduces to a chiral copy ofthe Virasoro algebra.

    SχEE =cLL6

    log

    [β+πδ

    sinh

    (π∆x

    β+

    )].

    It has exactly the form of a chiral CFT at finite temperature!

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 19 / 21

  • Holographic EE from BMS3/GCA2

    Conformal Chern-Simons gravity action

    ICSG =k

    ∫d3x√−gCS(Γ) .

    The asymptotic symmetry algebra for CSG reduces to a chiral copy ofthe Virasoro algebra.

    SχEE =cLL6

    log

    [β+πδ

    sinh

    (π∆x

    β+

    )].

    It has exactly the form of a chiral CFT at finite temperature!

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 19 / 21

  • Outlook

    • Entanglement c-function?!

    cLL(∆x,∆t) =

    [∆x

    ∂(∆x)+ ∆t

    ∂(∆t)

    ]SEE(∆x,∆t) ,

    cLM (∆x,∆t) = ∆x∂

    ∂(∆t)SEE(∆x,∆t) .

    (SMH, work in progress.)

    • Entanglement of localized excited states?!• Generalization to 4D?!• And many other open issues. . .

    Longterm plan

    A topologically twisted index for three-dimensional supersymmetric theories.

    (Benini, Zaffaroni ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 20 / 21

  • Outlook

    • Entanglement c-function?!

    cLL(∆x,∆t) =

    [∆x

    ∂(∆x)+ ∆t

    ∂(∆t)

    ]SEE(∆x,∆t) ,

    cLM (∆x,∆t) = ∆x∂

    ∂(∆t)SEE(∆x,∆t) .

    (SMH, work in progress.)

    • Entanglement of localized excited states?!• Generalization to 4D?!• And many other open issues. . .

    Longterm plan

    A topologically twisted index for three-dimensional supersymmetric theories.

    (Benini, Zaffaroni ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 20 / 21

  • Outlook

    • Entanglement c-function?!

    cLL(∆x,∆t) =

    [∆x

    ∂(∆x)+ ∆t

    ∂(∆t)

    ]SEE(∆x,∆t) ,

    cLM (∆x,∆t) = ∆x∂

    ∂(∆t)SEE(∆x,∆t) .

    (SMH, work in progress.)

    • Entanglement of localized excited states?!

    • Generalization to 4D?!• And many other open issues. . .

    Longterm plan

    A topologically twisted index for three-dimensional supersymmetric theories.

    (Benini, Zaffaroni ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 20 / 21

  • Outlook

    • Entanglement c-function?!

    cLL(∆x,∆t) =

    [∆x

    ∂(∆x)+ ∆t

    ∂(∆t)

    ]SEE(∆x,∆t) ,

    cLM (∆x,∆t) = ∆x∂

    ∂(∆t)SEE(∆x,∆t) .

    (SMH, work in progress.)

    • Entanglement of localized excited states?!• Generalization to 4D?!

    • And many other open issues. . .

    Longterm plan

    A topologically twisted index for three-dimensional supersymmetric theories.

    (Benini, Zaffaroni ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 20 / 21

  • Outlook

    • Entanglement c-function?!

    cLL(∆x,∆t) =

    [∆x

    ∂(∆x)+ ∆t

    ∂(∆t)

    ]SEE(∆x,∆t) ,

    cLM (∆x,∆t) = ∆x∂

    ∂(∆t)SEE(∆x,∆t) .

    (SMH, work in progress.)

    • Entanglement of localized excited states?!• Generalization to 4D?!• And many other open issues. . .

    Longterm plan

    A topologically twisted index for three-dimensional supersymmetric theories.

    (Benini, Zaffaroni ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 20 / 21

  • Outlook

    • Entanglement c-function?!

    cLL(∆x,∆t) =

    [∆x

    ∂(∆x)+ ∆t

    ∂(∆t)

    ]SEE(∆x,∆t) ,

    cLM (∆x,∆t) = ∆x∂

    ∂(∆t)SEE(∆x,∆t) .

    (SMH, work in progress.)

    • Entanglement of localized excited states?!• Generalization to 4D?!• And many other open issues. . .

    Longterm plan

    A topologically twisted index for three-dimensional supersymmetric theories.

    (Benini, Zaffaroni ’15)

    Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 20 / 21

  • Seyed Morteza Hosseini University of Milano-Bicocca

    Entanglement and flat space holography 21 / 21