september 2008 - uni-giessen.de · 1 planar chromatography in practice camag bibliography service...

52
- 101 CAMAG BIBLIOGRAPHY SERVICE CAMAG BIBLIOGRAPHY SERVICE PLANAR CHROMATOGRAPHY CBS 101 September 2008 Automatic Sample Application 1974 and today Automatic Sample Applicator for conventional TLC plates 1974 Automatic TLC Sampler 4 for TLC and HPTLC

Upload: vuhanh

Post on 23-Apr-2019

228 views

Category:

Documents


2 download

TRANSCRIPT

­101

CAMAG BIBLIOGRAPHY SERVICE

CAM

AG B

IBLI

OGR

APHY

SER

VICE

PLA

NAR

CHR

OM

ATO

GRAP

HYCB

S 10

1 •

Sept

embe

r 20

08

Automatic Sample Application 1974 and today

Automatic Sample Applicator for conventional TLC plates 1974

Automatic TLC Sampler 4 for TLC and HPTLC

1

Planar Chromatography in Practice

CAMAG BIBLIOGRAPHY SERVICE

No. 101, September 2008CAMAG Bibliography Service Planar Chromatography Edited by Gerda Morlock [email protected] published by CAMAG Switzerland

CAMAG (Switzerland) Sonnenmattstr. 11 • CH-4132 Muttenz 1 Tel. +41 61 4673434 • Fax +41 61 4610702 [email protected] • www.camag.com

CAMAG Scientific Inc. (USA) 515 Cornelius Harnett Drive Wilmington, NC 28401 Phone 800 334 3909 • Fax 910 343 1834 [email protected] • www.camagusa.com

IN THIS ISSUE

Procedures, applicationsIdentification and quantification of amino acids in peptides ............ 2–4

Use of reversed phase (RP)-modified pre-coated plates ......................... 5–7

Fast identification of unknown impurities by HPTLC/MS ............................. 9–11

Use of HPTLC as a problem solving technique in pharmaceutical analysis ........ 12–13

Validation of HPTLC methods for the identification of botanicals ............................ 14–15

Products and services featured in this issue

TLC Visualizer: the powerful evaluation, visualization and archiving system ........................ 7

Automatic TLC Sampler 4 (ATS4) ..................... 11

Automatic Developing Chamber (ADC 2) ......... 16

Column: Know CAMAGCAMAG 50 years ............................. 8

Identification and quantification of amino acids in peptides

Presented at the

International Symposium for HPTLC,

Helsinki, June 11–13, 2008

From left to right: L. Hamon, F. Diancourt, L. Roy and R. Sbaffo-Poasevara

Ipsen is an international specialty pharmaceutical group, which markets more than 20 drugs, employing nearly 4,000 people around the world. It is specialized on primary care and therapeutic areas, like oncology, endo-crinology and neuromuscular disorders. At the Institute Henri Beaufour, which is one of the Ipsen research and development centers in Les Ulis near Paris, Mrs. Roseline Sbaffo-Poasevara* is the head of the Analytical Development Laboratory for API. One focus of research is laid on synthetic peptides for pharmaceutical products. These peptides are synthesized from natural and non-natural amino acids or are linked with small molecules. For registration a monograph has to be set up with an identification test of the amino acids after hydrolysis of the peptide. But also during the development, it could be helpful to quantify the free amino acids in the peptide. To accomplish all of this they use different analytical methods and recently they started with HPTLC.

IntroductionCurrently identification of amino acids is performed after hydrolysis of the peptide in a strong acidic medium. During acidic hydrolysis some amino acids are partially degraded. Only 7 amino acids are stable. The hydrolyzate is then analyzed by a HPLC method with ninhydrin derivatization. How-ever, the HPLC analysis with the amino acid analyzer is time-consuming and expensive, only to give semi-quantitative results for unstable amino acids. This method is not flexible regarding the common gradient for non-natural amino acids or for small molecules linked to the peptide. For trace analysis of free amino acids in the peptide, the peptide is not hydrolyzed and a huge amount of peptide has to be loaded onto the chromatographic column, which can have an immense effect on chromatography due to the fact that the peptide elutes during the aqueous gradient. However, with single use HPTLC the peptide fixed at the starting region or in the front does not matter, making HPTLC the technique of choice for this stage. An HPTLC method was established as the limit test for free amino acids in the peptide and for quantification of amino acids after hydrolysis of the peptide.

CBS 101 3

Standard solutionsAmino acids (Abu, Ala, Arg, Asp, Aib, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Nal, Phe, Pro, Ser, Thr, Trp, Tyr, Val, D-Bal, Apc, Inp) were dissolved in water (1 mg/mL each).

Sample preparationAfter 24 h hydrolysis with HCl (6 M, stabi-lized with 1% phenol) at 110 °C the residue was dissolved in water (0.15 µg/mL).

LayerHPTLC plates silica gel 60 F254, HPTLC plates diol F254, and HPTLC aluminum foil cellulose, 20 x 10 cm (foils had to be cut to size, all Merck)

ApplicationBandwise with the Automated TLC Sampler ATS4, band length 6 mm, track distance minimal 8 mm, distance from lower edge 8 mm, dosage speed 80 nL/s, heated spray nozzle 50 °C, application volume 0.5 µL for each amino acid standard solution, 1 µL for cysteine solution and 10 µL for the hydro-lyzate solution.

ChromatographyIn the twin trough chamber or horizontal chamber with either 2-butanol - acetic acid – pyridine - water 15:3:10:12 or 2-butanol - NH3 – pyridine – water 39:10:34:26.

Note: Generally the layer is faced downwards in the horizontal chamber; however using aluminum foils, the layer can be faced upwards to monitor the solvent

front.

Post-chromatographic derivatizationWith the Chromatogram Immersion Device III, the plate is dipped into the ninhydrin solu-tion (0.5 % in 2-propanol) with a dipping speed of 4.5 cm/s and 1 s immersion time. As another option ninhydrin can directly be added to the mobile phase at a 0.5 %-level. Both techniques are followed by heating on the TLC Plate Heater at 110 °C for 5 min.

RF-values of the amino acids on 3 different layers, i.e. cellulose (blue), silica gel (red) and diol phase (green)

The selection of the chromatographic system depended on the task, i.e. which amino acids have to be separated. A general recommendation could not be given. However, two observations were made: 1) the development in the horizontal mode produced less diffusion of the zones, was more repeatable and allowed a better sensitivity on the silica gel plate compared to the vertical mode, and 2) the ammonia-containing mobile phase produced more diffuse zones compared to the acetic acid-containing mobile phase.

DensitometryAbsorption measurement at 440 nm with TLC Scanner 3 and winCATS software

Results and discussionThe method on cellulose with a 2-butanol – acetic acid – pyridine – water mixture [1] was investigated first for analy-sis of the 24 amino acids of interest. The hRF-values were more repeatable using the development in the horizontal chamber compared to the twin trough chamber due to the flexibility of positioning the aluminum foil in the verti-cal development mode. The selectivity and the sensitiv-ity were good despite some critical pairs of amino acids. Thus, besides cellulose, the diol and silica gel phase were investigated as stationary phase (also faced upwards in the horizontal chamber). On the diol phase the amino acids migrated in the hRF-range of 51-91 whereas the hRF-range was wider on the silica gel (25–94) and cellulose phase (17–77). Hence, selectivity was found to be better on the cellulose and silica gel phase.

2

RF

4 CBS 101

3

Abu Arg Asp Aib Ala Cys Gln Glu Gly His Ile Leu Lys Nal Phe Pro Ser Thr Trp Tyr Val D-Bal Apc Inp

4

Abu Arg Asp Aib Ala Cys Gln Glu Gly His Ile Leu Lys Nal Phe Pro Ser Thr Trp Tyr Val D-Bal Apc Inp

Based on these initial investigations with standard solu-tions, a peptide sample was to be analyzed. For this chro-matography was chosen on cellulose with the acetic mobile phase. The hydrolyzed peptide containing two natural (Phe and Trp) and three non-natural amino acids (D-Bal, Apc and Inp) was well separated. All five amino acids were identified and quantified to be between 70 and 130 % of the theoretical value for non-stable amino acids which can show degradation from 5 to 30 %.

Chromatogram showing the hydrolyzed peptide (PeptA) containing two natural (Phe and Trp) and three non-natural amino acids (D-Bal, Apc and Inp) and standard mixtures in different concentrations as well as the single amino acids

Note: For Trp not identical isomers had been used (D-Trp for sample and L-Trp for standard) which was found out afterwards.

The ninhydrin derivatization was most con-venient by direct addition of ninhydrin to the mobile phase. Using this mode, the baseline noise was decreased by a factor of 2. The selective derivatization with ninhydrin is advantageous for sample analysis because non-derivatized matrix does not interfere with the detection.

Separation on cellulose (left side) compared to that on silica gel (right side) using acidic (top) or alkaline (below) mobile phases

[1] Merck Application for detection of amino acids and peptides

Further information is available from the authors on request.

* Roseline Sbaffo-Poasevara, API Analytical Develop- ment, IPSEN, 5 avenue du Canada, 91966 Les Ulis, France, [email protected]

CBS 101 5

5

Planar Chromatography in Practice

Use of reversed phase (RP)-modified pre-coated plates

Michael Schulz, Susanne Minarik

Since 1966 Merck KGaA in Darmstadt has sold pre-coated plates for thin-layer chromatography. 1975 they started to sell HPTLC pre-coated plates. Reversed phases have been available since 1978; middle-polar phases were commercialized later on (1982–1987). Since 2007 Michael Schulz*, head of the laboratory PC-RLP-SIL (Performance & Life Science Chemicals, Research & Development, Silica Synthesis), has been responsible for research and development for thin-layer chromatography. This article was made together with Susanne Minarik.

IntroductionMost of all separations in planar chromatography are performed on pre-coated plates with polar adsorbents like silica gel, aluminum oxide or cel-lulose. The most commonly used stationary phase is silica gel 60 with a pore size of 6 nm. Although hydrophobic layers (reversed phases) offer several advantages they have not widely been used in pla-nar chromatography.

RP-modified pre-coated plates can be used over a broad range of selectivity for all substance classes. Complex multi-component mobile phases are not necessary. Normally two-com-ponent mobile phases, e.g. of methanol and water, are sufficient. By variation of the water content in the mobile phase the retention can systematically be affected. The potential for the formation of artifacts of sensitive substances can be avoided because of the comparatively low surface activity of RP-adsorbents. The in-

fluence of the relative humidity on retention is not significant because of the hydrophobic surface properties and the use of an aqueous mobile phase. Another advantage of RP-layers is the transferability to HPLC methods, mostly performed on RP-18 columns.

In the following the influence of the hydrophobic surface property of two different reversed phases is discussed on the example of steroids separation. HPTLC plates RP-18 F254s are compared with water-wettable HPTLC plates RP-18W F254s.

Standard solutionsSteroids were dissolved in methanol (1.25 mg/mL each).

LayerHPTLC plates RP-18W F254s and HPTLC plates RP-18 F254s, both 10 x 10 cm (Merck)

ApplicationBandwise with Automated TLC Sampler 4 (ATS 4), band length 6 mm, track distance 9 mm, distance from the lower edge 10 mm, application volume 1 µL

ChromatographyDevelopment in the Flat Bottom Chamber 10 x 10 cm with methanol – water 3:2

Post-chromatographic derivatizationUsing the TLC/HPTLC-Sprayer the plate is sprayed with perchloric acid (20 % in ethanol) and heated on the TLC Plate Heater at 100 °C for 5 min.

Results and discussionIn conventional thin-layer chromatography the mobile phase migrates because of capillary forces inside the layer. Lipophilic layers like the HPTLC RP-18 layer with a high degree of surface modification slow down or stop migration of the mobile phase depending on its water content. The maximal water content on layers with a high modification degree is between 40–70% depending on the degree of modification, the chain length of the alkyl group, and the composition of the mobile phase.

6 CBS 101

Plate Degree of surface modification [µmol/m²]

Merck article

HPTLC RP-2 F254s 3,9 1.13726.0001

HPTLC RP-8 F254s 3,0 1.13725.0001

HPTLC RP-18 F254s 2,6 1.13724.0001

HPTLC RP-18W F254s 0,5 1.13124.0001

TLC RP-2 F254 2,5 1.05747.0001

TLC RP-8 F254s 2,0 1.15388.0001

TLC RP-18 F254s 1,7 1.15389.0001

Thus TLC RP plates and HPTLC plates RP-18W can be used up to a water content of 100 % in the mo-bile phase. The dependence of the water content in the mobile phase acetone – water on migration time is shown for different RP-plates in the following.

Dependence of the water content in the mobile phase acetone – water on migration time

The following separation of steroids illustrates the difference between the HPTLC plate RP-18 F254s and the HPTLC plate RP-18W F254s. Both plates were developed with methanol – water 3:2. The degree of surface modification was extremely different, i.e. 2.6 µmol/m² for the HPTLC plate RP-18 F254s compared to just 0.5 µmol/m² for the HPTLC plate RP-18W F254s. In spite of the different degree of modification, the difference in retention was low. Free residual silanol groups were blocked by the water of the mobile phase and therefore they had almost no interaction with the sample molecules.

However, the difference in the migration time was huge. The migration time on the hydrophobic HPTLC plate RP-18 F254s took 130 min compared to just 39 min on the water-wettable HPTLC plate RP-18W F254s. This longer migration time led to greater band diffusion. In the case of the highly hydropho-bic phases the maximal water content was 40 %, whereas the water-wettable HPTLC plates RP-18W F254s can be used with water content up to 100 %.

RP-modified pre-coated plates are well suited for solving a lot of different separation problems and offer several advantages compared to pure silica gel layers. However, its degree of surface modification correlates with its wettability by water and thus RP-plates of a high degree of surface modification can only be used up to a defined water content in the mobile phase. If separations require highly aqueous mobile phases water-wettable layers with a low de-gree of surface modification are recommended. The higher price of such layers is highly compensated by its applicative advantages.

6

TLC pre-coated RP plates and water-wettable HPTLC plates RP-18W have a significant lower degree of modification compared to HPTLC plates RP-18. These layers are manufactured via a controlled modi- fication process to modify only a defined amount of the available silanol groups. Chemically bonded alkyl chains support the RP-properties and the rest of the hydroxyl groups support the hydrophilic cha- racter of the adsorbent and its wettability by water.

CBS 101 7

7

8

9

10

CAMAG TLC Visualizer

This completely new designed system for evaluation, visualization and archiving of planar chromatograms is the successor to CAMAG‘s DigiStore systems that were configured with the well known CAMAG Reprostar family.

• Image acquisition under UV 254 nm, UV 366 nm and visible light

• Powerful high-resolution 12 bit CCD digital camera with outstanding linearity

• Automatic image optimization and back-ground correction

The TLC Visualizer with winCATS software conforms with cGMP, can be IQ/OQ qualified and is 21 CFR Part 11 compliant.

With the CAMAG TLC Visualizer the quality of the chromatograms is unsurpassed, as is shown by the documented example below (Passiflora extracts).

Further information is available from the authors on request.

* Michael Schulz, Merck KGaA, PC-RLP-SIL, Frankfurter Str. 250, 64293 Darmstadt, Germany, Tel. +49(0)6151-722830, [email protected]

Separation of steroids, i.e. (1) cholesterol, (2) stanozolol, (3) methyl testosterone, (4) Reichstein’s S, and (5) hydrocortisone on a HPTLC plate RP-18 F254s with a migration time of 130 min (top) and on a HPTLC plate RP-18W F254s with a migration time of 39 min (bottom)

8 CBS 101

11

12

13

Know CAMAG

We proudly look back at 50 years CAMAG. Several occasions have provided opportunities to celebrate this milestone.

The first highlight was a reception for our in-ternational distributors at the Analytica 2008 in Munich.

In 67 countries we are represented by contractual distributors. Most of these distributors have CAMAG product specialists, who were initially trained at our headquarters in Muttenz and regularly return for refresher courses. We invited these distributors for a reception at our Analytica stand and are very happy that 37 delegates turned up, mostly the bosses. As a result the meeting was a kind of family get together, because most of them knew one another and were all there on the same mission, to support CAMAG costumers to the best of their ability.

International HPTLC Symposium in Helsinki, 11.–13. June 2008

Another occasion for celebration was the Interna-tional Symposium where many of our customers and their CAMAG distributors got together. During a cruise between Helsinki and Stockholm 40 oral pa-pers and 32 posters on planar chromatography were presented. The CAMAG cocktail reception at the end of the cruise fittingly and appreciatively served as a symposium round-up and as a farewell party.

Summer meeting of the CAMAG managers in Muttenz, 15.–19. August 2008

It has become a tradition that the managers of our daughter companies and our top distributors in China, India and France get together with CAMAG Muttenz management to exchange their experi-ences and plan strategies for the coming years. This year the meeting began with a convocation in Titisee, Black Forest. Excursions with walking tours around the lakes gave occasion for exchange of ideas and deepened personal relationships, before serious business discussions the following days.

Business partners from Asia at the CAMAG Analytica stand

International top distributors celebrating with the CAMAG management

CAMAG reception on board of the Silja Symphony

101

CAMAG LITERATURDIENSTCAMAG BIBLIOGRAPHY SERVICEPLANAR CHROMATOGRAPHY

Liebe Freunde

Mit Ihnen feiern wir 50 Jahre CAMAG – 5 De- kaden im Dienste der Dünnschicht-Chromato- graphie, der Analysenmethode, die schon mehr- fach totgesagt wurde.

Dass die Planar-Chromatographie, wie wir die Methode zur Abgrenzung von der Technik von vor einem halben Jahrhundert bevorzugt nen-nen, heute leistungsfähiger denn je ist, verdan-ken wir nicht zuletzt dem ständigen Austausch mit unseren Kunden. Von ihnen erhielten wir immer wieder wertvolle Anregungen, Bedarfs-hinweise und in vielen Fällen sogar Lösungs-vorschläge. Die engagierten und kreativen Mitarbeiter unseres Hauses entwickelten das komfortable und praxisgerechte Instrumentari-um, das wir Ihnen heute anbieten können, und worauf wir stolz sind.

Aber wir lehnen uns nicht zurück. Es ist nach wie vor unser Bestreben, für Qualität und Inno-vation zu sorgen. So können wir bereits instru-mentelle Lösungen für den heute sehr aktuellen Bereich der wirkungsbezogenen Detektion an-bieten, und wir sind dabei, die Kopplung der Planar-Chromatographie mit der Massenspek-trometrie instrumentell online zu realisieren.

Liebe Freunde, begleiten Sie uns weiter auf die-sem Weg, den unser Firmengründer Dr. Dieter Jänchen vor 50 Jahren mit grossem Einsatz, Professionalität und Vision vorgegeben hat.

Mit freundlichen Grüssen

Gerda Morlock [email protected]

Dear friends

We are happy to celebrate with you 50 years CAMAG – 5 decades of supporting Thin-Layer Chromatography, the analytical technique that has been declared dead several times.

We are proud that Planar Chromatography, as we pre- ferably call it in order to distinguish it from the technique of half a cen-tury ago, is today more efficient than ever. This we owe to a great extent to the perpetual feed-back from our customers from whom we have received valuable suggestions, requirements, and often even technical solutions. Based on such input our highly motivated and creative staff members have developed the convenient and practical systems we can offer today.

But, we can not rest on our laurels. We must continue to strive for quality and innovation. Just recently we brought out the instrumental solution for utilizing selective detection of bioactive compounds, and we are in the process of finalizing online coupling of planar chroma-tography with mass spectrometry.

Dear friends, we ask for your continued loyal support and hope that you will accompany us down the pathway that the founder of our com-pany, Dr. Dieter Jänchen initiated 50 years ago, a pathway based on strong effort, professionalism and vision.

Sincerely,

Gerda Morlock [email protected]

SEPTEMBER 2008

THE CBS CLASSIFICATION SYSTEM1. Reviews and books

a) Books on TLC b) Books containing one or several chapters on TLC c) Books containing frequent TLC information spread over several chapters of other information

2. Fundamentals, theory and general a) General b) Thermodynamics and theoretical relationship c) Relationship between structure and chrom. behaviour d) Measurement of physico-chemical and related values e) Optimization of solvent systems f) Validation of methods

3. General techniques (unless they are restricted to the application within one or two classification sections) a) New apparatus/techniques for sample preparation b) Separation material c) New apparatus for sample application/dosage d) New apparatus/techniques for chromatogram development e) New apparatus/techniques for pre- or post- chromatographic derivatization f) New apparatus/techniques for quantitative evaluation g) New apparatus/techniques for other TLC steps (distinguished from section 4)

4. Special techniques a) Automation of sample preparation/application b) Automation of complex chromatogram developing techniques c) Automation, computer application in quantitative chromatogram evaluation d) Combination of TLC with other chromatographic techniques e) Combination of TLC with other (non-chromatogra- phic) techniques...MS, IR...etc.

5. Hydrocarbons and halogen derivatives a) Aliphatic hydrocarbons b) Cyclic hydrocarbons c) Halogen derivatives d) Complex hydrocarbon mixtures

6. Alcohols

7. Phenols

8. Substances containing heterocyclic oxygen a) Flavonoids b) Other compounds with heterocyclic oxygen

9. Oxo compounds, ethers and epoxides

10. Carbohydrates a) Mono- and oligosaccharides, structural studies b) Polysaccharides, mucopolysaccharides, lipopolysaccharides

11. Organic acids and lipids a) Organic acids and simple esters b) Prostaglandins c) Lipids and their constituents d) Lipoproteins and their constituents e) Glycosphingolipids (gangliosides, sulfatides, neutral glycosphingolipids)

12. Organic peroxides

13. Steroids a) Pregnane and androstane derivatives b) Estrogens c) Sterols d) Bile acids and alcohols e) Ecdysones and other insect steroid hormones

14. Steroid glycosides, saponins and other terpenoid glycosides

15. Terpenes and other volatile plant ingredients a) Terpenes b) Essential oils

16. Nitro and nitroso compounds

17. Amines, amides and related nitrogen compounds a) Amines and polyamines b) Catecholamines and their metabolites c) Amino derivatives and amides (excluding peptides)

18. Amino acids and peptides, chemical structure of proteins a) Amino acids and their derivatives b) Peptides and peptidic proteinous hormones

19. Proteins

20. Enzymes

21. Purines, pyrimidines, nucleic acids and their constituents a) Purines, pyrimidines, nucleosides, nucleotides b) Nucleic acids, RNA, DNA

22. Alkaloids

23. Other substances containing heterocyclic nitrogen a) Porphyrins and other pyrroles b) Bile pigments c) Indole derivatives d) Pyridine derivatives e) other N-heterocyclic compounds

24. Organic sulfur compounds

25. Organic phosphorus compounds (other than phospholipids)

26. Organometallic and related compounds a) Organometallic compounds b) Boranes, silanes and related non-metallic compounds c) Coordination compounds

27. Vitamins and various growth regulators (non-peptidic)

28. Antibiotics, Mycotoxins a) Antibiotics b) Aflatoxins and other mycotoxins

29. Pesticides and other agrochemicals a) Chlorinated insecticides b) Phosphorus insecticides c) Carbamates d) Herbicides e) Fungicides f) Other types of pesticides and various agrochemicals

30. Synthetic and natural dyes a) Synthetic dyes b) Chloroplasts and other natural pigments

31. Plastics and their intermediates

32. Pharmaceutical and biomedical applications a) Synthetic drugs b) Pharmacokinetic studies c) Drug monitoring d) Toxicological applications e) Plant extracts f) Clinico-chemical applications and profiling body fluids g) Herbal and traditional medicines

33. Inorganic substances a) Cations b) Anions

34. Radioactive and other isotopic compounds

35. Other technical products and complex mixtures a) Surfactants b) Antioxidants and preservatives c) Various specific technical products d) Complex mixtures and non-identified compounds

36. Thin-layer electrophoresis

37. Environmental analysis a) General papers b) Air pollution c) Water pollution d) Soil pollution

38. Chiral separations

XX. (abstract number underlined) refers to HPTLC related publication or application using HPTLC materials

CAMAGBIBLIOGRAPHYSERVICE No.101�

1. Reviews and books

101001 N.ANGELOVA,H.KONG(KongHong),R.HEIDEN*,S.YANG(YangShih),Y.CHOI(ChoiYoung),H.KIM(KimHye),M.WANG(WangMei),T.HANKEMEIER,J.GREFF,G.XU(XuGuowang),R.VERPOORTE(*DivisionofAnalyticalBiosciences,Leyden/AmsterdamCenterforDrugResearch,LeydenUniversity,2�00RALeyden,TheNetherlands,[email protected]):Recentmethodology in thephytochemicalanalysisofGinseng.Phytochem.Anal.19,2-16(2008).Recentdevelopments in thephytochemicalanalysisofPanaxginsengarede-scribed, including different approaches such as the determination of the total saponin contentandtargetcompoundandgroup-specificanalysisusingHPTLC-MS.Inmetaboliteprofiling,thepaperdescribes theuseofnuclearmagnetic resonancespectroscopyandhigh-resolutionmassspectrometry.

foodanalysis,herbal,quantitativeanalysis,comparisonofmethods,review,HPTLC 1a

101002 TeresaKOWALSKA,J.SHERMA(Eds):Thin-layerchromatography inchiral separationsandanalysis.ChromatographicScienceSeries,Vol.98,CRCPress,BocaRaton,NewYork,2007.XVI+420pp.;ISBN978-0-849�-4�69-8.Theproblemofanalysisofenantiomersbecameacutewiththerealizationthattheenantiomersofadrugmayhavequitedifferentbiologicalactivity.TLCforchiralseparationsissimplerandlessexpensivethanHPLCandenablessimultaneousanalysisofseveralsamplesinashorttime.Densitometryandvideoscanningenablequantitativeanalysiswithsatisfactoryaccuracy,and-incertaincases-chiralplatescanberegenerated.In15chapters24authorscoverallimportantaspectsoftheseparationandanalysisofenantiomersbyplanarchromatography.Inthefirstandsecondchapteranoverviewandgeneralinformationonchiralityispresented;theuseofprecoatedplates,ofnoncommercialplates,ofcellulose-andsilicagel-basedadsorbentsisdiscussedinthechapters�to5.Chapter6summarizestheuseofmobilephasescontainingchiralselectors.Informationonthemolecularmechanismsandthese-parationofstableortransientdiastereoisomerscanbefoundinchapter7and8,whereasthenextchapterisdevotedtoespeciallydifficultseparationsusing2DTLC.ThenextfivechaptersreviewapplicationsofTLCintheanalysisofenantiomersofimportantcompounds.Extensiveliteratureiscitedbytheauthors.

1a

3. General techniques

10100� L.W.BEZUIDENHOUT*,M.J.BRETT(*UniversityofAlberta,DepartmentofECE,2ndFloor,ECERF,Edmonton,AB,CanadaT6G2V4):Ultrathinlayerchromatographyonnanostructuredthinfilms.J.Chromatogr.A118�(1-2),179-185(2008).Ultrathinlayerchromatography(UTLC)witha10µmthickmonolithicsilicasorbent layerprovidesfastseparationswith lowlimitsofdetectionandreducedanalyteandsolventvolumes.ProductionofUTLCplateswithcontrollablenanostructureandthickness.Theseparationcharacteristicsofthelayerdependonthenanostruc-tureofthefilm.Layersmadewithin-planeanisotropicnanostructuresexhibitadecouplingeffect,wheretheanalytespotsdonotdevelopinthesamedirectionasthesolventfrontmoves.Discus-sionofthepossibilityofapplicationinmulti-dimensionalTLCbyaddedlayermorphologyandmaterialselection.

quantitativeanalysis,qualitativeidentification �d

101004 S.ERGÜL*,S.SAVASCI(*DepartmentofScienceEducation,FacultyofEducation,Ondokuz

MayisUniversity55200,AtakumYerleskesi-Samsun,Turkey):Acidmodifieddiatomaceousearth-a sorbentmaterial for thin layer chromatography. J.Chromatogr.Sci. 46 (4), �08-�15 (2008).Investigationoftheusefulnessoffluxcalcinateddiatomaceousearth(FCDE-I)(modifiedfromnaturaldiatomaceousearthandcharacterizedbymicroscopical,physical,andchemicalanalyses)asasorbentmaterialforTLC.TLCofsodiumdiethyldithiocarbamate(DEDTC)andammoniumpyrrolidinedithiocarbamate(PyDTC)asCoorCucomplexesonsilicagelandFCDE-Ilayerin-dividually,andonvariousFCDE-Iandsilicagelmixtures.Developmentwithtoluene,toluene-cyclohexane�:1,1:1,1:2,1:�.Thebestseparationswereobtainedwithpuretoluene,toluene-cyclohexane�:1,and1:1respectively,usinglayersofFCDE-I-silicagel1:�,and1:1respective-

CAMAGBIBLIOGRAPHYSERVICE No.1014

ly.QualitativeanalysisofmixturesofCu2+andCo2+cationsispossiblewiththesamesystem.

comparisonofmethods �b101005 JolantaFLIEGER*,MalgorzataTATARCZAK(*DepartmentofInorganicandAnalyticalChe-

mistry,MedicalUniversityofLublin,20-081Lublin,Staszica6,Poland):Influenceofinorganicmobilephaseadditivesontheretentionandseparationefficiencyofselectedaminoacidsinthin-layerchromatographyoncelluloselayers.J.Chromatogr.Sci.46(6),565-57�(2008).Investiga-tionofselectedaminoacidstandardsoncelluloselayersusingorganic-aqueouseluentsystemsmodifiedwithneutralandchaotropicsalts:chlorides,iodides,nitrates,thiocyanates,perchlorates,andhexafluorophosphatesatlowconcentrationsfrom10to80mMinthemobilephase.Theef-fectofsaltsusedasmobilephasemodifierswasevaluatedbycomparisonofdensitograms,peaksymmetrycoefficients,andtheoreticalplatenumbers.Theefficiencyoftheinvestigatedchroma-tographicsystemsdependsprimarilyonthekindofsaltandorganicsolventinthemobilephase.Thebestefficiencywasobtainedbyaddingammoniumthiocyanatetothemobilephasewhichcontainedacetonitrileasanorganicmodifier.

HPTLC,densitometry,qualitativeidentification,quantitativeanalysis �d,18a101006 M. LANCASTER*, D.M. GOODALL, E.T. BERGSTRÖM, S. MCCROSSEN, P. MYERS

(*DepartmentofChemistry,UniversityofYork,YorkYO105DD,UK):Quantitativeultravioletmeasurementsonwettedthin-layerchromatographyplatesusingacharge-coupleddevicecame-ra.J.Chromatogr.A1182(2),219-225(2008).UVimagingofspotsonTLCplateswhilestillwetwithsolvent.Imagingofspotsofbenzophenoneduringandafterdevelopmentbyusingacharge-coupleddevicecamera.Thelimitofdetectionwas5ngonawettedplateand�ngonadryplate.Therelationshipbetweenpeakareaandsampleloadingwaslinear in thelownanogramrangeoveranorderofmagnitudeforbothwetanddrymodes.ItwasshownthatUVmeasurementsonwetglassplatessufferfromlowsensitivity;however,increasedsensitivitywasachievedbyusingaluminiumplates.TheseparationprocesscanbemonitoredbymeasurementofUVabsorbanceduringTLCdevelopmentonaluminium-backedplates.

qualitycontrol,quantitativeanalysis,qualitativeidentification, �f101007 M.LOPPACHER(CAMAG,Sonnenmattstr.11,CH-41�2Muttenz,Switzerland,matthias.lop-

[email protected]):Controllingbestthedryingstep.CBS100,9(2008).Thedryingstepcon-tributessignificantlytotheoverallexperimentalvariabilityof theTLCsystem.Comparisonofdifferentdryingproceduresdemonstratedthathomogenous,rapidandheatlessdryingbytheau-tomaticdevelopingchamberADC2reducedtheoverallstandarddeviationbyuptoafactorof�comparedtomanualuseofahairdryer.

HPTLC,comparisonofmethods �d

101008 E. MINCSOVICS (OPLC-NIT Ltd.,Andor u. 60, H-1119 Budapest, Hungary; and CorvinusUniversity,FacultyofHorticulturalSciences,DepartmentofGeneticsandPlantBreeding,Bu-dapest,Hungary;[email protected]):Potentialoftheflowingeluentwallandaliquoton-linedetectionintheOPLC50and100systems.J.PlanarChromatogr.21,97-102(2008).Theflowing-eluent-wall(FEW)procedureissuitableforsingleandmulti-channelOPLCseparationbyoperationalsegmentationofanon-segmentedabsorbentbed.OPLCofPTH-aminoacidswithchloroform-ethylacetate9:1andofglycerol,diethyleneglycol,ethyleneglycol,1,4-butanediol,1,2-propanediol,1,�-butanediol,2,�-butanediol,and1,6-hexanediolonsilicagelwithdichloro-methane-n-dibutylether-acetone-aceticacid-water50:15:20:1�:�.Detectionbyderivatiza-tionwithchromium(VI)oxidereagent,followedbyheatingat120°Cfor5min.Densitometryat540nm.

densitometry �d

101009 T. TANG (Tang Tie-Xin )*, W. HONG (Hong Wu) (*Center for Medicinal Plants Research,SouthChinaAgriculturalUniversity,Guangzhou510642,China):Animageanalysissystemforthin-layerchromatographyquantificationanditsvalidation.J.Chromatogr.Sci.46(6),560-564

CAMAGBIBLIOGRAPHYSERVICE No.1015

(2008).QuantitativeTLCisperformedwithadigitalimagingsystemwithsimpleequipmentandsoftware.ThemethodwasusedforthequantitativeassayofcichoricacidinEchinaceapurpurea.TLConpolyamidephasewithchloroform-methanol-formicacid-water�:6:1:1.Detectionbysprayingwith�%aqueousaluminumchloridesolution.ImagesofchromatogramswereacquiredwithastandarddigitalcameraunderaUVlampat�65nminadarkroom.Thethree-dimensionalgrayscaledigitalimagedataset(x,y,gray)wasreducedtoatwo-dimensionaldataset(distance,accumulativegray)andthenplottedasacurve.Forquantificationtheareaunderthecurve(cor-respondingtocichoricacid)wasintegrated.

qualitativeidentification,HPTLC,densitometry �f

101010 T.TUZIMSKI(MedicalUniversityofLublin,FacultyofPharmacy,DepartmentofPhysicalChe-mistry,Staszica6,20-081Lublin,Poland;[email protected]):Strategyforseparati-onofcomplexmixturesbymultidimensionalplanarchromatography.J.PlanarChromatogr.21,49-54(2008).Reportofanewprocedureforseparationofcomplexmixturesbycombiningdiffe-rentmodesofmultidimensionalplanarchromatographyonsilicagelplates.Initiallythecomplexmixture was separated into five groups of compounds. Mobile phases for separation of thesedifferentgroupswerethenoptimizedbyregardingeachgroupasindividualseparationproblem.Byuseofthisnewprocedure22compoundsfromacomplexmixturewereseparatedon10x10cmTLCandHPTLCplates.TLCandHPTLCof22pesticidesonsilicagelwithethylacetate-n-heptane2:�forTLCand1:1forHPTLCinthefirstdirection.Afterremovalofsomeoftheadsorbent layerfive furtherdevelopment stepswithdifferent eluents followed resulting in thecompleteseparationofthe22compoundsofinterest.DetectionunderUV254and�66nm.

HPTLC,qualitativeidentification �g

101011 P.K.ZARZYCKI(SectionofToxicologyandBioanalytics,DepartmentofEnvironmentalBio-logy,KoszalinUniversityofTechnology,Sniadeckich2,75-45�Koszalin,Poland):Simpleho-rizontalchamberforthermostatedmicro-thin-layerchromatography.J.Chromatogr.A1187(1-2),250-259(2008).Descriptionofasimple,fastandrobusttemperature-controlledsystemfornon-forced-flowmicro-planarchromatography.Micro-TLCplatescanbedevelopedinhorizontalpositionundercontrolledtemperatureandwithtemperaturegradientsbetween-20and80ºC.Saturatedorunsaturatedchamberconditionsarepossibleandonlysmallamountsofmobilepha-searerequired(0.�to1mL).Platetemperatureequilibrationisobtainedwithin5to12minandatypicalnon-forcedflowruncanbefinishedwithinonly5to20min.Onthemicro-platemorethan10spotscanbeseparatedinonedirectionorupto180spotsperplatefortwo-dimensionalandmulti-developmentruns.Demonstrationoffastandefficientseparationofanumberofana-lytesincludingfullerenes,cyclodextrinsandsteroidsaswellascomplexsamplesobtainedfromnaturalproductsandpharmaceuticalformulations.Thermostatedmicro-planarchromatographycanbeappliedinretentionandquantificationstudies.

quantitativeanalysis,qualitativeidentification �d

101012 P.K. ZARZYCKI*, M B. ZARZYCKA (*Toxicology and Bioanalysis Section, Department ofEnvironmental Biology, Koszalin University of Technology, Sniadeckich 2, 75-45� Koszalin,Poland; [email protected]): Low cost, efficientTLC sprayer. J. Planar Chromatogr. 21, 221-22�(2008).Constructionofasimpleandinexpensivecompressedair-drivensprayingdevicewhichcanhandle small and largevolumesofTLCderivatization reagents.Thedevice ismade fromwidelyavailableHPLCaccessories,includingstainless-steelfittingsandtubing,andcanbeusedwithcorrosiveliquidswithawiderangeofviscosity.TLCoffluorescein,methylred,bromocre-solgreen,phenolphthalein,andcrystalvioletonRP-18withmethanol-water7:�.Evaluationunderwhitelight.

qualitativeidentification,quantitativeanalysis �e

4. Special techniques

10101� D.J.JANECKI,A.L.NOVOTNY,S.D.WOODWARD,J.M.WISEMAN*,D.NUROK(*Prosolia

CAMAGBIBLIOGRAPHYSERVICE No.1016

Inc.,�51West10thStreet,Indianapolis,IN46202,USA;[email protected]):Aprelimi-narystudyofthecouplingofdesorptionelectrosprayionization-massspectrometrywithpressu-rizedplanarelectrochromatography.J.PlanarChromatogr.21,11-14(2008).Pressurizedplanarelectrochromatography(PPEC)of4-cholesten-�-one,4-androsten-17beta-ol-�-one,17alpha-ace-toxyprogesterone,androstenedione,2‘-acetonaphthone,benzanilide,2-nitroaniline,hydrocorti-sone,andbenzamideonsphericalRP-18phase,cutinto�.�x12cmsections.Themobilephasewas55%aqueousacetonitrilecontaining5mMacetatebufferpH4.7.TheapparatusforPPEChasbeendescribedbyNuroket.al.,Anal.Chem.78,282�-28�2(2006).Nineanalyteswerese-paratedin2min.DetectionbydirectanalysisoftheTLCplateusingDESIcoupledtoatandemmassspectrometer.

4e

101014 A.ORINÁK,I.TALIAN,E.V.EFREMOV,F.ARIESE,RenataORIÁAKOVÁ(*InstituteofChe-mistrySciences,DepartmentofPhysicalChemistry,UniversityofP.J.Safárik,Moyzesova11,04154Kosice,SlovakRepublic):DiterpenoicacidsanalysisusingacoupledTLC-surface-en-hancedRaman spectroscopy system.Chromatographia67 (�-4), �15-�19 (2008).PresentationofahyphenationtechniqueofTLCwithsurface-basedspectralmethodswhichrequireahomo-geneoussurfacefordirectandquantitativeanalysisonthechromatographicplateafterseparati-on.Investigationofthesuitabilityoftwodifferentchromatographicsubstratesandoneinterfacefor coupling surface-enhanced Raman spectroscopy (SERS) withTLC, since most chromato-graphicmaterialsdonotproducestrongbackgroundsignalsinRamanspectroscopy.Evaluationof a chromatographic thin layer, speciallyproduced forRaman spectroscopymeasurements, amonolithicsilicathinlayerandatypicalTLCplatewithamodifiedaluminiumbackplatefoilononesideusedasaninterface.Testanalyteswerethreebiologicallyactivediterpenes(gibberellicacid,abieticacid,andkaurenoicacid)whichwereapplieddirectlyonto thesurfaces, followedbytheadditionofsilvercolloidandmeasurementsbySERS.Thestrongestsignal(excitationat514.5nm)forgibberellicacidwasobtainedusingaRamantreatedthinlayerwheretheenhance-mentfactorvaluewasdeterminedtobe102,andseveralfundamentalRamanbandsforGAwerefoundat1622,159�,1570,1542,1�66and12�6cm?1.However,nousefulSERSsignalswereobservedwhenthemonolithicsilicalayerwasused.SimilarSERSspectraonmodifiedalumi-niumbackplatewereobtainedforabieticacidandgibberellicacid,butnoSERSspectrumwasobtainedforkaurenoicacid.

qualitycontrol,quantitativeanalysis,qualitativeidentification,comparisonofmethods 4e

101015 E.TYIHÁK*,E.MINCSOVICS,G.KÁTAY,Z.KIRÁLY-VÉGHELY,Á.M.MÓRICZ,P.G.OTT(*PlantProtectionInstitute,HungarianAcademyofSciences,HermanOttóStr.15,P.O.B.102,1525Budapest,Hungary;[email protected]):BioArena:Anunlimitedpossibilityofbiochemicalin-teractionsintheadsorbentlayerafterchromatographicseparation.J.PlanarChromatogr.21,15-20(2008).TLCandOPLCofpolyacetylenesofchamomile,trans-resveratrol,salicylicacid,andochratoxinAonsilicagel(preconditionedat120°Cfor�h)withchloroform-methanol20:1.DetectionbybioautographywithPseudomonassavastanoipv.phaseolicolarace6andbyimmer-singthehumidplateintoMTTsolutionfor5s.

herbal,densitometry,quantitativeanalysis,qualitativeidentification,biochemistry 4e

7. Phenols

101016 AlinaPYKA(DepartmentofAnalyticalChemistry,FacultyofPharmacy,MedicalUniversityofSilesia,Jagiellonska4,41-200Sosnowiec,Poland;[email protected]@slam.katowice.pl):Applicationof electrotopological states inQSSRandQSARanalysisof isomericmethyl-phenolsseparatedbyRP-TLC.J.PlanarChromatogr.21,205-208(2008).TLCofphenolanditsmethylderivativesonRP-2,RP-8,RP-18,cyanophase,andDIOLphasewithmethanol-water,ethanol-water,n-propanol-water,acetonitrile-water,andacetone-waterindifferentvolumeproportions(100:0,95:5,90:10,85:15,80:20,75:25,70:�0,and65:�5),0.1Maceticacidand0.1Msodiumacetatein�0%methanol(pH5.0),0.1Mpotassiumdihydrogenphosphatein�0%methanol(pH7.0),and1Mammoniain�0%methanol(pH11.�)inasaturatedchamber.Best

CAMAGBIBLIOGRAPHYSERVICE No.1017

resultswereachievedonRP-2with0.1Maceticacidand0.1Msodiumacetatein�0%metha-nol,0.1Mpotassiumdihydrogenphosphatein�0%methanol,and1Mammoniain�0%metha-nol.Detectionbysprayingwith2%methanoliciron(III)chloridesolutionorwithasolutionoftitaniumtetrachlorideinconcentratedhydrochloricacid(20%)followedbyheatingat120°Cfor�0sor2min.

qualitativeidentification 7

101017 A.SCHUBERT,D.F.PEREIRA,F.F.ZANIN,S.H.ALVES,R.C.R.BECK,MargarethLINDEATHAYDE* (*Departamento de Farmácia Industrial, Prédio 26, sala 1115, Campus Camobi,UniversidadeFederaldeSantaMaria,RS,Brasil.CEP97105-900;[email protected]):Com-parisonofantioxidantactivitiesandtotalpolyphenolicandmethylxanthinecontentsbetweentheunripefruitandleavesofIlexparaguariensisA.St.Hil.Pharmazie62,876-880(2007).TLCofmatessaponin1andmatessaponin2onsilicagelwithchloroform-ethanol-water12:8:1and8:8:1.Detectionbysprayingwithanisaldehydesulfuricacidreagentfollowedbyheatingat100°C.

foodanalysis,qualitativeidentification 7

8. Substances containing heterocyclic oxygen

101018 T. HOFMANN*, L.ALBERT,T. RÉTFALVI, E.VISI-RAJCZI, G. BROLLY (*University ofWestHungary,DepartmentofChemistry,AdyEndreu.5,9400Sopron,Hungary;[email protected]):TLCanalysisofthein-vitroreactionofbeech(FagussylvaticaL.)woodenzymeextract with catechins. J. Planar Chromatogr. 21, 8�-88 (2008).TLC of (+)-catechin and (-)-epicatechinonsilicagelwithdiisopropylether-formicacid9:1inanunsaturatedtwin-troughchamber.Detectionbysprayingwithvanillin-sulfuricacidreagentfollowedbyheatingat120°Cfor5min.Quantitativedeterminationbyabsorbancemeasurementat490nm.

herbal,densitometry,qualitativeidentification,quantitativeanalysis 8b

101019 LiselotteKRENN*,M.STEITZ,C.SCHLICHT,H.KURTH,F.GAEDCKE(*DepartmentofPharmacognosy,UniversityofVienna,Althanstrasse14,1090Vienna,Austria;[email protected]):Anthocyanin-andproanthocyanidin-richextractsofberriesinfoodsupplements-analysiswithproblems.Pharmazie62,80�-812(2007).TLCofanthocyaninsinaronia,blueber-ryandlingonberryextractsandtherespectivepreparations(e.g.capsules, lozenges,granulate)onsilicagelwithethylacetate-water-anhydrousformicacid10:�:2and10:4:1.Detectioninwhite lightpriorandafter sprayingwith iron(III)chloride solutionorwithvanillinphosphoricacidreagent.

foodanalysis,cosmetics,review,qualitativeidentification 8a

11. Organic acids and lipids

101020 A.R.ADEGBOLA*,E.O.DARE,A.A.LASISI(*DepartmentofChemistry,UniversityofAgri-culture,P.O.Box28,UNAABpostoffice,Abeokuta,Nigeria):Sprayreagentsforthevisualiza-tionanddetectionofsesameoilunsaponifiablesonthin-layerchromatograms.Chromatographia68 (1-2),151-15� (2008).Anisaldehydeandcrotonaldehyde reagent are suitable as spray rea-gentsforthedetectionofmajorcomponentsofsesameoilunsaponifiables.DerivatizationwithanisaldehydereagentleadtochromatogramswithcolouredzonescharacteristicforlignansandsterolsinSesamumindicum.Byderivatizationwithcrotonaldehydefouroftheelevenunsaponi-fiablematterscouldbedetectedasmorestableandbrightlcolouredzones.Theresultsobtainedcouldserveasaguideinthemonitoringofoil‘sstability,adulterationandcontaminations.

pharmaceuticalresearch,qualitycontrol,postchromatographicderivatization,quantitativeana-lysis 11

101021 K.LING,C.CHEUNG,S.CHENG,L.CHENG,S.LI(LiSongLing),P.NICHOLS,R.WARD,A.GRAHAM,P.BUT* (*FoodandDrugAuthenticationLaboratory,DepartmentofBiology,TheChineseUniversityofHongKong,Shatin,N.T.,HongKong,China,[email protected]):

CAMAGBIBLIOGRAPHYSERVICE No.1018

Rapiddetectionofoilfishandescolarinfishsteaks:atooltopreventkeriorrheaepisodes.FoodChem.110,5�8-546(2008).TLCofwaxestersofoilfish(Ruvettuspretiosus)andescolar(Le-pidocybiumflavobrunneum)onsilicagelwithxylene.Detectionbysprayingwith40%sulfuricacidinethanol-anisaldehyde9:1,followedbyheatingat100°Cfor2minoruntilcolorisobser-ved.ThehRfvalueofwaxesterswas60.ThemethodwascomparedwithDNAsequencingandGC-MS.TheTLCmethodisinexpensive,providesareliableresultwithin�0min,andissuitableforscreeningofnumeroussamples.

foodanalysis,qualitativeidentification 11a

101022 J.D. VASTA, B. FRIED*, J. SHERMA (*Department of Biology, Lafayette College, Easton,PA,USA;[email protected]):HPTLCanalysisofneutrallipidsintheurineofhumansandBALB/cmice.J.PlanarChromatogr.21,�9-42(2008).HPTLCofneutrallipidsandubiquinoneonsilicagelwithpetroleumether-diethylether-aceticacid80:20:1.Detectionwithphospho-molybdicacidreagent.Quantitativedeterminationbydensitometryat610nm.Specificdetectionreagentswereusedtoconfirmtheidentityofparticularlipidclasses.Thestudiesconfirmedthepresenceoffreesterols,freefattyacids,methylesters,hydrocarbonsandubiquinone,andtriacyl-glycerols.

clinicalchemistryresearch,HPTLC,densitometry,quantitativeanalysis 11c

13. Steroids

10102� K. SHANKER*, S.C. SINGH, S. PANT, P. SRIVASTAVA,A.K.YADAV, R. PANDEY, R.K.VERMA, M.M. GUPTA (*Analytical Chemistry Division, Central Institute of Medicinal andAromaticPlants,Lucknow,226015, India):QuantitativeTLCanalysis of sterol (24beta-ethyl-cholesta-5,22E,25-triene-�beta-ol)inAgnimantha(ClerodendrumphlomidisLinn).Chromato-graphia67(�-4),269-274(2008).PresentationofaquantitativemethodusingsilicagelHPTLCplates,automatedbandwisesampleapplication,andautomatedvisiblemodedensitometyforthedeterminationof24beta-ethylcholesta-5,22E,25-triene-�beta-ol(ECTO)intheaerialpartofCle-rodendrumphlomidis,whichwasusedasachemicalmarkerforthestandardizationofC.phlo-midisplantextracts.HPTLConsilicagelwithchloroform-methanol197:�.Detectionbyderi-vatizationwithanisaldehydereagent.Quantitativedeterminationbyabsorbancemeasurementat650nm.Linearitywasbetween150and400ng/bandwithgoodcorrelation(r2=0.996).

pharmaceuticalresearch,qualitycontrol, traditionalmedicine,HPTLC,densitometry,quantita-tiveanalysis,qualitativeidentification 1�

14. Steroid glycosides, saponins and other terpenoid glycosides

101024 S.A. SASMAKOV, ZH.M. PUTIEVA, Ulrike LINDEQUIST* (*Institute of Pharmacy, ErnstMoritzArndtUniversityGreifswald,17487Greifswald,Germany,[email protected]):NewpomolicacidtriterpeneglycosidesfromZygophyllumeichwaldii.Pharmazie62,957-959(2007).TLCofsugars(afteracidhydrolysis)onsilicagelorRP-18afterimpregnationwith0.�Msodiumdihydrogenphosphate,withn-butanol-methanol-water5:�:1.Detectionbysprayingwitho-toluidinesalicylate.

herbal,qualitativeidentification 14

17. Amines, amides and related nitrogen compounds

101025 M.BLEICHERT,H.-S.ECKHARDT,K.-F.KLEIN,B.SPANGENBERG*(*UniversityofAp-pliedSciencesOffenburg,Badstrasse24,77652Offenburg,Germany;[email protected]):Asimpleandreliablemethodforquantificationofglucosamineinnutritionalsupple-ments.J.PlanarChromatogr.21,55-59(2008).HPTLCofglucosamineonaminophasewithme-thanol-ethanol-25%ammonia1:1:1inasaturatedchamber.Detectionbyheatingat160°Cfor10min.ATidasTLC2010systemwasusedfordirectspectrophotometryoftheHPTLCplates.Averagedglucosaminedensitogramsinthewavelengthrange�05to��0nmwereobtainedfromthespectra.

CAMAGBIBLIOGRAPHYSERVICE No.1019

foodanalysis,qualitycontrol,HPTLC,densitometry,quantitativeanalysis 17a

18. Amino acids and peptides, chemical structure of proteins

101005 JolantaFLIEGERetal.,seesection�d

101026 H.MÖHRLE*,J.BERLITZ(*InstitutfürPharmazeutischeundMedizinischeChemie,Univer-sitätsstrasse 1, 40225 Düsseldorf; [email protected]): Oxidation von Nicotin undChelatbildner durch Quecksilber(II)-Verbindungen (Oxidation of nicotine and chelating agentbymercury(II)-compounds).Pharmazie62,7-1�(2008).TLCofnicotineonsilicagelwithchlo-roform-ethanol-ammonia80:20:1.DetectionbysprayingwithDragendorffreagent.TLCofiminodiaceticacidonsilicagelwithn-propanol-water7:2orwithn-butanol-aceticacid-water4:1:1.Detectionbysprayingwithninhydrinreagent.

toxicology,qualitativeidentification 18a

22. Alkaloids

101027 V.MIRAKOR,V.VAIDYA*,S.MENON,P.CHAMPANERKER,A.LAUD(*TherapeuticDrugMonitoringLaboratory,194,SchemeNo.6,RoadNo.15,SionKoliwada,Sion(East),Mumbai400-022, India; [email protected], [email protected]): HPTLC method for determina-tionofcolchicine inapharmaceutical formulation.J.PlanarChromatogr.21,187-189(2008).HPTLCofcolchicineonsilicagelwithethylacetate-acetonitrile-water-formicacid16:2:1:1inatwin-troughchambersaturatedfor10min.Quantificationbydensitometryat�58nm.

pharmaceuticalresearch,qualitycontrol,HPTLC,densitometry,quantitativeanalysis 22

101028 N.MUKARRAMOV,KH.SHAKIDOYATOV*(*InstituteoftheChemistryofPlantSubstances,AcademyofSciences,Kh.AbdullaevStr.77,Tashkent,Uzbekistan,[email protected]):Productcontrol:brominationandoxidationofthealkaloiddeoxypeganine.CBS100,6-7(2008).HPTLCofthealkaloiddeoxypeganine(fromPeganumharmala)andbrominationreactionpro-ducts on silica gel over 60 mm with chloroform - methanol - acetone - cyclohexane 5:1:5:5forMerckphases and4:1:4:4 forWhatmanphases.Quantitativedeterminationbyabsorbancemeasurementat254nm.

herbal,densitometry,HPTLC,quantitativeanalysis 22

101029 Anna PETRUCZYNIK*, Monika WAKSMUNDZKA-HAJNOS, T. PLECH, T. TUZIMSKI,M.L.HAJNOS,G.JÓZWIAK,MariaGADZIKOWSKA,AnnaROMPALA(*DepartmentofIn-organicandAnalyticalChemistry,MedicalUniversity,Staszica6,20-081Lublin,Poland):TLCofalkaloidsoncyanopropylbondedstationaryphases.PartII.ConnectionwithRP18andsilicaplates.J.Chromatogr.Sci.46(4),291-297(2008).Optimizationoftheone-dimensionalTLCofalkaloidstandardsoncyanophase,RP-18W,andsilicagelwithvariouseluentscontainingsilanolblockers(besidesdiluentandmodifier),suchasdiethylamineorammonia.Separationofalka-loidmixtureswiththemostselectivesystem(e.g.methanol-water4:1inthefirstdirectionandmethanol-acetone-diisopropylether-diethylamine15:15:69:1intheseconddirection)withanadsorbentgradientmethod.AlkaloidsorplantextractsofChelidoniummajus,Fumariaofficina-lis,orGlauciumflavumwerechromatographedinthefirstsystem,theplateswereconnectedwiththeplatepre-coatedwithvariousadsorbents,andpartlyseparatedfractionsweretransferredtothesecondlayeranddevelopedinasecondsystem.Cyano-silica-RP-18Wandcyano-silica-silicawereusedastheconnectedlayers.ThealkaloidswereidentifiedbasedontheRfvaluesofstandards,andbycomparisonofUVspectraobtainedbydensitometrywithadiodearraydetector.

pharmaceuticalresearch,quantitativeanalysis,qualitativeidentification,densitometry,compari-sonofmethods 22

1010�0 Jarmila SKARKOVA*,V. OSTRY, J. RUPRICH (*National Institute of Public Health, Centre

CAMAGBIBLIOGRAPHYSERVICE No.10110

forHygieneofFoodChains,Palackeho�a,61242,Brno,CzechRepublic;[email protected]):InstrumentalHPTLCdeterminationofalpha-solanineandalpha-chaconineinpeeledpotatotubers.J.PlanarChromatogr.21,11�-117(2008).HPTLCofalpha-solanineandalpha-chaconineonsilicagelwithchloroform-methanol-water-aqueousammonia140:60:10:1.Detectionbydippingincerium(IV)sulfatederivatizationreagent.Quantitativedeterminationbyabsorbancemeasurementat505nm.

herbal,foodanalysis,HPTLC,densitometry,quantitativeanalysis 22

1010�1 MonikaWAKSMUNDZKA-HAJNOS*,G.W.JÓZWIAK(*DepartmentofInorganicChemistry,MedicalUniversityofLublin,Staszica6,20-081Lublin,Poland;[email protected]):Specialmodesofdevelopmentinpreparative-layerchromatographyofextractsofalkaloidsfromFumariaofficinalis. J.PlanarChromatogr.21,61-66 (2008). Investigationofoverloading,me-thodsofsampling,effectoflayerthicknessonbandresolution,andtheeffectofderivatizationon the locationof the separatedband.Anotherobjectiveof theworkwas the investigationoftheuseofunidimensionalmultipledevelopment(UMD)andincrementalmultipledevelopment(IMD)forresolutionofthealkaloidsfromFumariaofficinalisextracts.TLCofmediumpolarityalkaloidsandstronglypolaralkaloidsonsilicagelwithaceticacid-propanol-water1:4:5andwithaceticacid-water-methanol-dihloromethane2:1:8:29(UMDtechnique),andwithaceticacid-propanol-dichloromethane1:4:5(IMDtechnique).DetectionbyderivatizationwithDra-gendorffreagent.Quantificationbydensitometryat520nm.

herbal,qualitycontrol,preparativeTLC,densitometry 22

23. Other substances containing heterocyclic nitrogen

1010�2 Marta STEFANIAK (Department of Chemistry, Silesian University, 9 Szkolna Street, 40-006Katowice,Poland;[email protected]) :Effect of temperatureon theRFof porphine and itsmetalcomplexesinnormalandreversed-phaseTLC.J.PlanarChromatogr.21,201-204(2008).TLCofporphineanditscomplexeswithCu(II),Ni(II),andZn(II)onsilicagelwithchloroform-n-hexane5:5,�:2,and7:�;andonRP-18withmethanol,methanol-water9:1,ethanol,andetha-nol-water9:1at5+/-2,15+/-2,25+/-2,�5+/-2,45+/2,and55+/-2°C.Detectionunderwhitelight.AnincreasedtemperatureresultsinincreasedRfvalues.

comparisonofmethods 2�a

25. Organic phosphorus compounds

1010�� S.FUJIWARA*,A.YAMANAKA,Y.YAMADA,K.HIROOKA,H.HIGASHIBATA,W.FU-KUDA,J.NAKAYAMA,T.IMANAKA,E.FUKUSAKI(*DepartmentofBioscience,Nanobi-otechnologyResearchCenter,SchoolofScienceandTechnology,KwanseiGakuinUniversity,2-1Gakuen,Sanda699-1��7,Japan,[email protected]):Efficientsynthesisoftrans-po-lyisoprenecompoundsusingtwothermostableenzymesinanorganic-aqueousdual-liquidphasesystem.Biochem.Biophys.Res.Commun.�65,118-12�(2008).TLCofprenylalcohols (far-nesolandgeranylgeraniol)afterenzymatichydrolysisoftrans-isoprenyldiphosphatesonRP-18withacetone-water9:1.Detectionwithiodinevapour.Quantitativedeterminationbymeasuringtheabsoluteradioactivityofthespots.

pharmaceuticalresearch,quantitativeanalysis,qualitativeidentification,radioscanning 25

27. Vitamins and various growth regulators

1010�4 T.HODISAN,DorinaCASONI*,M.S.BELDEAN-GALEA,C.CIMPOIU(*FacultyofChe-mistryandChemicalEngineering,BabesBolyaiUniversity,11AranyJanos,400686Cluj-Na-poca,Romania;[email protected]):Identificationandquantificationoftocopherolsinvegetableoilbythin-layerchromatography.J.PlanarChromatogr.21,21�-215(2008).TLCofalpha-,gamma-,anddelta-tocopherolinsunflower,olive,corn,soy,andalmondoilonsilicagelwithchloroform.Dryingatroomtemperature.Detectionbysprayingwitha1:1mixtureof0.5%bipyridylinmethanoland0.2%iron(III)chlorideinmethanol.Densitometricevaluationwitha

CAMAGBIBLIOGRAPHYSERVICE No.10111

flatbedscanner.

foodanalysis,qualitativeidentification 27

28. Antibiotics, Mycotoxins

1010�5 A. KWIECIEN, J. KRZEK*, L. BINIEK (*Jagiellonian University, Collegium Medicum, De-partmentofInorganicandAnalyticalChemistry,Medyczna9str.,�0-688Kraków,Poland;[email protected]):TLC-densitometric determination of azithromycin in pharmaceuticalpreparations.J.PlanarChromatogr.21,177-181(2008).TLCofazithromycinonsilicagelwithchloroform-ethanol-ammonia�0:70:1.Detectionbysprayingwithsulfuricacid-ethanol1:4followedbyheatingat120°Cfor5min.Quantificationbydensitometryat48�nm.

pharmaceuticalresearch,qualitycontrol,densitometry,quantitativeanalysis 28

1010�6 S.R.NAIK*,S.K.DESAI,R.K.NANDA,M.S.NARAYANAN(*SinhgadInstituteofPharma-ceutical Sciences, S. No. �09/�10, Kusgaon (BK), Off Mumbai Pune Expressway, Lonavala,Pune410401,India;[email protected]):Fermentation,isolation,purification,andbiolo-gicalactivityofSJA-95,aheptaenepolyenemacrolideantibioticproducedbytheStreptomycessp.strainS24.Arzneim.-Forsch./DrugRes.56,171-179(2007).TLCofSJA-95andmycosamineonsilicagelwithbutanol-aceticacid-water-tetrahydrofuran6:2:2:1andbutanol-aceticacid-water-dioxane6:2:2:1.DetectionunderUV254nmandunderwhitelightaftersprayingwithninhydrinreagent.

pharmaceuticalresearch,preparativeTLC,qualitativeidentification 28a

1010�8 Z.Z.RAYKOV,K.VASSILEV,G.GRIGOROVA,A.LYAPOVA,A.ALEXIEV*,G.PETROV(*FacultyofChemistry,UniversityofSofia,1J.BourchierBoul.,1164Sofia,Bulgaria;[email protected]): Spin-labeled rifamycin: biological activity. Pharmazie 6�, 61-66 (2008).TLC of �-[(2,2,6,6-tetramethylpiperidine-4-ylimino)methyl]rifamycin and �-[(2,2,6,6-tetrame-thyl-1-oxyl-piperidine-4-ylimino)methyl]rifamycinonsilicagelwithchloroform-methanol4:1.Detectionunderwhitelight.

pharmaceuticalresearch,qualitativeidentification 28a

1010�9 R.VOLK(DepartmentofPharmaceuticalBiology,PharmaceuticalInstitute,UniversityofKiel,Kiel,Gutenbergstrabe76,24118Kiel,Germany,[email protected]):Anewlydevelo-pedassayforthequantitativedeterminationofantimicrobial(anticyanobacterial)activityofbothhydrophilicandlipophilictestcompoundswithoutanyrestriction.Microbiol.Res.16�,161-167(2008).Testsolutionscontaining0.25to64µgofnorharmane,quinine,andtetracycline(asbasesandhydrochloridesalts)wereappliedas10mmbandsonsilicagelplates.Aftercoatingtheplatewithaconcentratedsuspensionofthelivingcyanobacterialtestorganism(sprayingordipping),itwaskeptmoistinaTLCchamberat27ºCfor1to2daysundercontinuousillumination(25-�0µmolphoton/m2s).Cytotoxicconcentrationsofatestcompoundresultedinaneasilyrecogni-zableregionaldecolourisationofthetestorganism.

pharmaceuticalresearch,environmental,qualitativeidentification,densitometry28a

29. Pesticides and other agrochemicals

101040 V.R.CHANDEGAONKAR,D.B.SHINDE,D.V.MANE*(*DepartmentofChemistry,Chhatra-patiShivajiCollege,Omerga,(MS)-41�606,India;[email protected]):Anewchro-mogenicsprayreagentfordetectionandidentificationofmonocrotophos.J.PlanarChromatogr.21,199-200 (2008).TLCofmonocrotophos (after alkalinehydrolysis) andotherorganophos-phorus insecticides (malathion, parathion, fenthion, dimethoate, and phorate), organochlorineinsecticides(endosulfanandHCH),carbamateinsecticides(Baygonandcarbaryl),syntheticpy-rethroidinsecticides(cypermethrinanddeltamethrin)onsilicagelwithchloroform-acetone7:�inasaturatedchamber.Detectionbysprayingfirstwith5%sodiumhydroxidethenwith1%vanillinreagent(1%vanillininacetone)followedbyheatingat100°Cfor10min.Thedetection

CAMAGBIBLIOGRAPHYSERVICE No.10112

limitformonocrotophoswas500ng.

toxicology,agricultural,qualitativeidentification 29b

101041 R.MAVLE,H.KATKAR,B.DAUNDKAR,M.MALVE,R.KRISHNAMURTHY*(*Directo-rateofForensicScienceLaboratories,HomeDept,StateofMaharashtra,Mumbai400098,India,[email protected]):Thinlayerchromatographictechniquefordetectionandidentificationofendosulfaninsecticidewithm-dinitrobenzenereagent.J.PlanarChromatogr.21,197-198(2008).TLCofendosulfanonsilicagelwithn-hexane-acetone4:1inasaturatedtwin-troughchamber.Detectionbysprayingwith5%aqueoussodiumhydroxidesolutionfollowedbyheatingfor5min.Theair-cooledplatewasthensprayedwitha2%solutionofm-dinitrobenzeneindimethylsulfoxide.Thelimitofdetectionwas5µg.

toxicology,agricultural,qualitativeidentification 29a

30. Synthetic and natural dyes

101042 F. SOPONAR*,A.C. MOT, C. SÂRBU (*Babes-Bolyai University, Faculty of Chemistry andChemicalEngineering,AranyJanosStreet11,400028ClujNapoca,Romania):Quantitativede-terminationofsomefooddyesusingdigitalprocessingof imagesobtainedbythin-layerchro-matography.J.Chromatogr.A1188(2),295-�00(2008).Determinationoffooddyes(tartrazine,azorubineandsunsetyellow)indifferentproductsbyHPTLCcombinedwithimageprocessingofscannedchromatograms,on�-aminopropylmodifiedsilicagelwithisopropanol-diethylether-ammonia2:2:1.Quantificationbyusingdigitalprocessingofimageswithspecial-purposesoft-ware.The limit of detectionwasbetween5 and9ng/spot and the limit of quantificationwasbetween10and18ng/spot.Recoverywasbetween96.4and102.7%.

qualitycontrol,foodanalysis,HPTLC,quantitativeanalysis,qualitativeidentification �0

10104� T.TUZIMSKI*,A.WOZNIAK(*MedicalUniversityofLublin,FacultyofPharmacy,ChairofChemistry,DepartmentofPhysicalChemistry,Staszica6,20-081Lublin,Poland;[email protected]):Applicationofsolid-phaseextractionandplanarchromatographywithdiode-arraydetectiontothequalitativeandquantitativeanalysisofdyesinbeverages.J.PlanarChro-matogr.21,89-96(2008).TLCofdyesinnormal-phasesystemsonsilicagel,diolphase,cyanophase,andaminophase,andinreversed-phasesystemsoncyanophase,diolphase,aminophase,andRP-18.RPchromatographywithdifferentmobilephasemodifiers(THF,dioxan,methanol,acetonitrile,andacetone)atdifferentconcentrations,containingdifferentamines,cationicandanionicion-pairreagents,buffers,andammonia,againatdifferentconcentrations.Basedontheresults thebest systemwas selected:HPTLCof tartrazine, sunset yellowFCF, allura redAC,ponceau4R,brilliantblueFCF, indigotine,brilliantblackPN,quinolineyellow,patentblueV,brilliantgreenBS,azorubin,andbrownHTonRP-18withacetatebufferpH�.5containing15-25%modifierand0.025Mpropylamineordiethylamine.DetectioninwhitelightandunderUV254and�66nm.Quantificationbydiodearraydensitometryintherangeof191to10��nm.

foodanalysis,qualitycontrol,HPTLC,quantitativeanalysis,qualitativeidentification �0a

32. Pharmaceutical and biomedical applications

101044 O.B. ABDEL-HALIM, A.M. MARZOUK*, R. MOTHANA, N. AWADH (*Department ofPharmacognosy,FacultyofPharmacy,UniversityofMansoura,Mansoura�5516,Egypt;amar-zouk200�@yahoo.co.uk):AnewtyrosineinhibitorfromCrinumyemenseaspotentialtreatmentfor hyperpigmentation. Pharmazie 6�, 405-407 (2008). TLC of (+)-haemanthamine on silicageloronRP-18.DetectionbysprayingwithDragendorffreagentorwith1%ceriumsulfate-sulfuricacid,followedbyheating.

herbal,pharmaceuticalresearch,qualitativeidentification �2e

101045 A.ABOU-DONIA*, S.TOAIMA, H. HAMMODA, E. SHAWKY (*Department of Pharma-

CAMAGBIBLIOGRAPHYSERVICE No.1011�

cognosy, Faculty of Pharmacy, University ofAlexandria,Alexandria 21521, Egypt, [email protected]):NewrapidvalidatedHPTLCmethodforthedeterminationofgalanthamineinAmaryllidaceaeplantextracts.Phytochem.Anal.19,�5�-�58(2008).HPTLCofgalanthamineinthebulbsofNarcissuscv.onsilicagelwithchloroform-methanol9:1withchambersaturati-onfor�0min.Quantitativedeterminationbyabsorbancemeasurementat288nm.ThehRfvaluewas72andselectivityregardingmatrixwasgiven.Linearitywasintherangeof0.25and7.5µg/spot.Thelimitsofdetectionandquantificationwere47and142ng/spot,respectively.Recoverywas97.8%.Nosignificantintra-andinterdayvariationwasobserved.Themethodprovedtobeprecise,accurate,andrapidincomparisonwithareferenceHPLCmethod.

herbal,HPTLC,quantitativeanalysis,densitometry,comparisonofmethods �2e

101046 S.P.AGARWAL*,A.ALI,S.AHUJA(*DepartmentofPharmaceutics,FacultyofPharmacy,Ja-miaHamdardUniversity,NewDelhi110062,India):HPTLCdeterminationofartesunateasbulkdrugandinpharmaceuticalformulations.Ind.J.Pharm.Sci.69(6),841-844(2007).HPTLCofartesunateinbulkandpharmaceuticalformulationsonsilicagelaluminiumfoilwithtoluene-ethylacetate-aceticacid10:40:1.Detectionbysprayingwithvanillinreagent(1%vanillinand5%sulphuricacidinethanol).Thepinkzoneforartesunatewasstableformorethanaday.Quantita-tivedeterminationbydensitometyinabsorbancemodeat520nm.ThehRfvalueforartesunatewas44.Linearitywasbetween100and600ng/spot.Recovery(bystandardaddition)was98.9to-99.9%bothfromtabletsandinjections.

pharmaceuticalresearch,qualitycontrol,HPTLC,densitometry �2a

101047 S.AHMAD*,M.RIZWAN,RabeaPARVEEN,M.MUJEEB,M.AQUIL(*DepartmentofPhar-macognosyandPhytochemistry,FacultyofPharmacy,HamdardUniversity,NewDelhi,110062,India,[email protected]):Avalidatedstability-indicatingTLCmethodfordeterminationofforskolinincrudedrugandpharmaceuticaldosageform.Chromatographia67(5-6),441-447(2008).HPTLCofforskolinononsilicagelaluminiumfoilwithbenzene-methanol9:1.Quan-titative determination by densitometry in the absorbance mode at 545 nm after spraying withanisaldehydesulphuricacidreagent.Themethodwasvalidated:linearitywasbetween100and1000ng/spot(r=0.994)andthelimitsofdetectionandquantificationwere8and27ng/spotre-spectively.ApplicationoftheproposedmethodfordeterminationofforskolininColeusforskoh-liirootandincapsuledosageforms,whichshowed0.18and0.57%w/wofforskolin,whichwassubjected toacidandalkalihydrolysis,oxidation,photodegradationandheatdegradation.Themethod shows good repeatability, selectivity and accuracy, and effectively separates forskolinfromcomponentsofC.forskohliiroot,fromexcipientsofcapsuleaswellasthedegradationpro-ductsofforskolin.Itcanbeusedforroutineanalysisandasastability-indicatingmethod.

qualitycontrol,doping,pharmaceuticalresearch,quantitativeanalysis,qualitativeidentification,postchromatographicderivatization,densitometry,HPTLC �2c

101048 BoglárkaBAGÓCSI*,Z.VÉGH,K.FERENCZI-FODOR(*GedeonRichter,H-1475Budapest,10,Box27,Hungary;[email protected]):Optimizationofthevisualizationofsteroidssepa-ratedbyOPLC.J.PlanarChromatogr.21,107-112(2008).Optimizationandcomparisonoftheacidicvisualizationmethodsmostoftenusedforsteroids.OPLCofethinylestradiol,‚dienole-ther‘(�-methoxyestra-2,5(10)-dien-17b-ol),norethisterone,norethisteroneacetate,norethistero-neenanthate,nandrolone,andnandrolonedecanoateonHPTLCsilicagelwithcyclohexanone-ethylacetate-chloroform1:1:1.Detectionwithsulfuricacidat threedifferentconcentrations,phosphomolybdic acid, and phosphoric acid with different heating temperatures for differenttimes.EvaluationunderUV�66nm(sulfuricacid,phosphoricacid)andinwhitelight(phospho-molybdicacid).Itwasfoundthatderivatizationathighertemperaturesforshorterperiodsusuallyresultsingreatersensitivity,althoughheatingforlongerperiodsatlowertemperaturesleadstoamorestableandrobustresult.Evaluationbyvideodensitometry.

pharmaceuticalresearch,qualitycontrol,densitometry,quantitativeanalysis,qualitativeidentifi-cation,HPTLC �2a

CAMAGBIBLIOGRAPHYSERVICE No.10114

101049 B.BENEDEK,B.WENIGER, I.PAREJO, J.BASTIDA,G. J.ARANGO,A.LOBSTEIN,C.CODINA*(*GrupdeProductesNaturals,FacultatdeFarmàcia,UniversitatdeBarcelona,Av.JoanXXIIIs/n,08028Barcelona,Catalonia,Spain;[email protected]):Antioxidantactivityof isoflavonesandbiflavones isolatedfromGodoyaantioquiensis.Arzneim.-Forsch./DrugRes.56,661-664(2006).TLCof twobiflavones,ochnaflavoneand2‘‘,�‘‘-dihydroochnaflavoneandtwo isoflavones, 5,7,4‘-trihydroxy-�‘,5‘-dimethoxyisoflavone (piscigenin) and 5,4‘-dihydroxy-7,�‘,5‘-trimethoxyisoflavone on silica gel with dichloromethane - methanol 9:1. Detection bysprayingwithmethanolicDPPH(1,1-diphenyl-2-picrylhydrazyl)solution(20g/L).

herbal,pharmaceuticalresearch,qualitativeidentification �2e

101050 A.BIJEV*,D.YANEVA,A.BOCHEVA,G.STOEV(*DepartmentOrganicsynthesisandfuels,UniversityofChemicalTechnologyandMetallurgy,8Kl.OhridskiBlvd.,1756Sofia,Bulgaria;[email protected]):Ligand-baseddesign,synthesisandprimaryinvivoscreeningofpyrrolede-rivativesaspotentialtricyclicanti-inflammatoryagents.Arzneim.-Forsch./DrugRes.56,75�-759(2006).TLCoftwelvenew5-aryl-1H-pyrroleanalogsofcelecoxibonsilicagelwithchloroform-ethanol20:�andethanol-chloroform-toluene-0.5Mammoniumacetate6:6:6:1.DetectionunderUV254nm.

pharmaceuticalresearch,qualitativeidentification �2a

101051 I.A.DARWISH*,H.F.ASKAL,A.S.KHEDR,R.M.MAHMOUD(*DepartmentofPharmaceu-ticalAnalyticalChemistry,FacultyofPharmacy,AssiutUniversity,Assiut71526,Egypt):Sta-bility-indicatingthin-layerchromatographicmethodforquantitativedeterminationofribavirin.J.Chromatogr.Sci.46(1),4-9(2008).Presentationofasimpleandaccuratestability-indicatingmethodforthequantitativedeterminationofribavirininitsbulkandcapsuleformsbyTLConsilicagelaluminiumlayerwithchloroform-methanol-aceticacid4:1:1.Detectionbysprayingwithanisaldehydereagent.Ribavirinisfoundtoundergodegradationunderallstressconditions,and thedegradationproductsarewell resolved from thepuredrugwithsignificantlydifferentRfvalues.Linearitywasbetween5and40µg/spot(r=0.9980).Thelimitofdetectionandofquantificationwas1and5µg/spot,respectively.ApplicationoftheproposedTLCmethodforthedeterminationofribavirininpureformandincapsules,withgoodaccuracyandprecision.TheresultsobtainedbytheproposedTLCmethodarecomparablewiththoseobtainedbytheofficialmethod.

pharmaceuticalresearch,qualitycontrol,quantitativeanalysis,qualitativeidentification �2c

101052 Á.Z.DÁVID*,E.MINCSOVICS,K.PÁPAI,K.LUDÁNYI,I.ANTAL,I.KLEBOVICH(*Sem-melweisUniversity,DepartmentofPharmaceutics,HögyesEndreStreet7,1092Budapest,Hun-gary; [email protected]):OPLCcomparisonofmethods for aqueous extractionofSennaefoliumandTiliaflosplantsamples.J.PlanarChromatogr.21,119-12�(2008).TLCofaqueousSennaandTiliaextractswithsennosideAandBasstandardsonsilicagelafter immersion inacetonitrile-water17:�,with2-propanol-ethylacetate-water9:9:7(forSennaextracts)and2-butanone-ethylacetate-formicacid-water�:5:1:1.DetectionunderUV254nm.Althoughquantitativeanalysiswasnotperformed,peakareasservedforcomparativeevaluation.

herbal,traditionalmedicine,qualitativeidentification,densitometry �2e

10105� K.DHALWAL,V.SHINDE*,Y.BIRADAR,K.MAHADIK(*DepartmentofPharmacognosy,PoonaCollegeofPharmacy,BharatiVidyapeethUniversity,Erandwane-Kothrud,Pune4110�8,Maharashtra,India,[email protected]):Simultaneousquantificationofbergenin,catechin,andgallicacidfromBergeniaciliataandBergenialigulatabyusingthin-layerchroma-tography.J.FoodComp.Anal.21,496-500(2008).HPTLCofbergenin(1),catechin(2),andgal-licacid(�)fromBergeniaciliataandBergenialigulataonsilicagelwithtoluene-ethylacetate-formicacid4:6:1.Quantitativedeterminationbyabsorbancemeasurementat280nm.ThehRfvaluesof(1),(2),and(�)were29,54,and60,respectively.Selectivityregardingmatrixwasgi-ven.Linearitywasbetween160and800ng/spotfor(1),160and480ng/spotfor(2),and160and560ng/spotfor(�).Thelimitsofdetectionandquantificationwere120and160ngfor(1),80

CAMAGBIBLIOGRAPHYSERVICE No.10115

and120ngfor(2),and40and80ngfor(�),respectively.Recoverywas99.�%for(1),98.6%for(2),and99.2%for(�).Theintermediate/interday/intra-dayprecision(n=6)was0.04%and0.07%for(1),0.07%and0.06%for(2),and0.02%and0.11%for(�).

herbal,qualitycontrol,quantitativeanalysis,densitometry,HPTLC �2e

101054 M.DHANANJAY*,B.SHASHIKANT,T.MADHUKAR(*DepartmentofPharmaceuticalSci-ence,R.T.M.NagpurUniversity,Nagpur4400�� (MS.) India):Highperformance thin layerchromatographicestimationofitraconazoleincapsules.Ind.J.Pharm.Res.6(4),205-207(2007).HPTLCofitraconazoleonsilicagelwithtoluene-acetone-triethylamine�0:�0:1.Detectionat270nm.ThehRfvalueofitraconazolewas62.Linearitywasbetween0.2and0.6µg.Themarketformulationcontaineditraconazoleamountsof99.6%viapeakheightand100.2viapeakarea,respectively.Recovery(bystandardaddition)was99.4%and100.�%respectively.

pharmaceuticalresearch,qualitycontrol,HPTLC,densitometry �2a

101055 P.C.DHANDHUKIA*,V.R.THAKKAR(*BRDSchoolofBiosciences,SardarPatelMaidan,VadtalRoad,SatelliteCampus,P.O.Box�9,SardarPatelUniversity,VallabhVidyanagar�88120Gujarat,India):SeparationandquantitationofjasmonicacidusingHPTLC.J.Chromatogr.Sci.46(4),�20-�24(2008).HPTLCofjasmonicacid(extractedfromLasiodiplodiatheobromaewithethylacetate)onsilicagelwithisopropanol-ammonia-water10:1:1.Quantificationbydensi-tometryat295nminabsorbancemode.Thelimitofdetectionandquantificationwas1µgand80µg,respectively.Themethodisusefulforhighsamplethroughput,e.g.forroutineanalysisofjasmonicacidinperfumeryindustries.

pharmaceuticalresearch,qualitycontrol,HPTLC,quantitativeanalysis,qualitativeidentification,densitometry �2c

101056 N.DHAVALE*,S.GANDHI,S.SABNIS,K.BOTHARA(*DepartmentofPharmaceuticalAna-lysis,A.I.S.S.M.S.CollegeofPharmacy,KennedyRoad,NearR.T.O,Pune,411001,India):Si-multaneousHPTLCdeterminationofescitalopramoxalateandclonazepamincombinedtablets.Chromatographia67(5-6),487-490(2008).SimultaneousdeterminationofescitalopramoxalateandclonazepaminacombinedtabletdosageformbyHPTLConsilicagelaluminumplateswithtoluene-ethylacetate-triethylamine14:7:6.Quantificationbydensitometryat258nm.

qualitycontrol,pharmaceuticalresearch,HPTLC,quantitativeanalysis,densitometry,qualitativeidentification �2c

101057 L.DHOOGHE*,C.VANMIERT,H.JANSEN,A.VLIETINCK,L.PIETERS(*DepartmentofPharmaceuticalSciences,UniversityofAntwerp,Universiteitsplein1,2610Antwerp,Belgium;[email protected]):Anewdecompositionproductofdihydroartemisinin.Pharmazie62,900-901(2007).TLCofdihydroartemisininandthedegradationproducts2-(�-oxobutyl)-�-me-thyl-6-(2-propanol)-cyclohexanon and 2-(�-oxobutyl)-�-methyl-6-ethyl-cyclohexanon on silicagelwithchloroform-methanol19:1.Detectionbysprayingwithvanillinreagent(0.5gvanillinin80mLsulfuricacidand20mLethanol).

herbal,qualitativeidentification �2e

101058 S.V.DHUMAL*,S.R.KULKARNI(*DepartmentofPharmacognosyandPhytochemistry,TheBombayCollegeofPharmacy,SunderNagar,Kalina,Santacruz (E),Mumbai400098, India):AntibacterialandwoundhealingactivityofrootsofSesamumindicum.IndianDrugs44(12),9�7-944(2007).HPTLCofmethanolicandethylacetateextractsofSesamumindicumrootonsilicagelwithethylacetate-n-hexane1:9.Densitometricevaluationat549nm.TheredzoneswereisolatedbypreparativeTLCandidentifiedbyIRas1,4naphthoquinonederivatives.

herbal,HPTLC,densitometry,comparisonofmethods �2a

101059 V.DIGHE,O.DHOTRE*,G.PAREKH,A.GURSALE(*DepartmentofChemistry,Ramnarain

CAMAGBIBLIOGRAPHYSERVICE No.10116

RuiaCollege,Matunga(East),Mumbai400019,India;[email protected]):QuantificationofdopamineinPortulacaoleraceaLinn.byHPTLC.J.PlanarChromatogr.21,18�-186(2008).HPTLCofdopamineonsilicagelwithn-butanol-aceticacid-water7:2:1.Detectionandquan-tificationbydensitometryat280nm.

herbal,HPTLC,densitometry,quantitativeanalysis �2e

101060 Izabela FECKA*, S.TUREK (*Department of Pharmacognosy,Wroclaw Medical University,50-�67 Wroclaw, Poland, [email protected]): Determination of polyphenolic com-poundsincommercialherbaldrugsandspicesfromLamiaceae: thyme,wild thymeandsweetmarjoranbychromatographic techniques.FoodChem.108,10�9-105� (2008).HPTLCof lu-teolin-7-O-beta-glucuronide (1), lithospermic acid (2), and rosmarinic acid (�) inLamiaceousspecies(Thymiherba,Serpylliherba,andMajoranaeherba)onaminophasefor(1)andsilicagelfor(1),(2),and(�)withacetone-formicacid17:�anddiisopropylether-acetone-formicacid-water5:�:1:1,respectively.Evaluationat�65nmbeforeandaftersprayingwith2%methanolicaluminiumchloride,naturalproduct/polyethyleneglycolreagentorinvisiblelightaftertreatmentwithbis-diazotizedsulfanilamide(yellow,orange,red,andbrownbands).

herbal,HPTLC,qualitativeidentification �2e

101061 AgnesGASPAR,SophieLECLERE*,VeroniqueMARIGNIER(*Bioeurope,RoutedeOullins,F-28260Anet,France,[email protected]):Quantificationofbeta-ecdysoneinabrasilianginsengjuice(Pfaffiaglomerata).CBS100,10-12(2008).HPTLCofbetaecdysoneinPfaffiaglomerataextractonsilicagelover50mmwiththelowerphaseofchloroform-methanol-water7:5:2afterchambersaturationfor15min.Detectionbydippinginanisaldehydereagent(0.5mLanisaldehyde,10mLaceticacid,5mLsulfuricaicd,and85mLmethanol)followedbyheatingat120°Cfor20min.Quantitativedeterminationbyabsorbancemeasurementat4�2nm.Polyno-mialcalibrationintherangeof0.04to0.2µg/band(sdv1.6%).Theevaluatedextractscontained0.8to1.2%ofbetaecdysone.

herbal,qualitycontrol,quantitativeanalysis,HPTLC,densitometry �2e

101062 C.GOPU,S.AHER,H.MEHTA,A.PARADKAR,K.MAHADIK*(*PoonaCollegeofPharma-cy,BharatiVidyapeethUniversity,4110�0Pune,India,[email protected]):Simultane-ousdeterminationofcinnamaldehyde,eugenolandpiperinebyHPTLCdensitometricmethod.Phytochem.Anal.19,116-121(2008).HPTLCofcinnamaldehyde(1)intheshootsofCinnamo-mumzeylanicum,eugenol(2)intheflowerbudsofEugeniacaryophyllusandpiperine(�)inthefruitsofPipernigrumonsilicagelwithpetroleumether-dichloromethane-formicacid20:40:1.Quantitativedeterminationbyabsorbancemeasurementat290nm.ThehRfvalueswere47,61,and12for(1),(2),and(�),respectively.Linearitywasbetween54and7�5ng/spotfor(1),5��and85�1ng/spotfor(2),and50and�00ng/spotfor(�).Thelimitsofdetectionandquantifica-tionwere12and21ng/spotfor(1),240and426ng/spotfor(2),and18and40ng/spotfor(�).Recoveriywas99%foreachsubstance.Nosignificantintra-andinterdayvariationwasobser-ved.ThemethodprovedtoberapidandusefulincomparisonwithGCandHPLCmethods.

herbal,HPTLC,quantitativeanalysis,comparisonofmethods �2e

10106� Erzsébet HÁSNAGY-RADNAI*, K. PINTYE-HÓDI, S. CZIGLE, T. MARTINEK, G. JA-NICSÁK,I.MÁTHÉ,I.ERÖS(*InstituteofPharmakognosy,UniversityofSzeged,Eötvös6,6720 Szeged, Hungary; [email protected]): Chromatographic determinationofiridoidsinStachysrecta,andinvestigationofinorganicelementsbyX-rayfluorescencespec-troscopy.J.PlanarChromatogr.21,27-�2(2008).TLCofextractsofStachysrectaandharpagide,acetylharpagide,harpagoside,ajugoside,andaucubinonsilicagelwithchloroform-methanol-water25:10:1.VisualizationbysprayingwithEhrlich‘sreagent(1%solutionofdimethylamino-benzaldehydeinconcentratedhydrochloricacid)followedbyheatingat105°Cfor5min.Densi-tometricevaluationat540nm.

herbal,densitometry,quantitativeanalysis,qualitativeidentification �2e

CAMAGBIBLIOGRAPHYSERVICE No.10117

101064 U.HAURI,VeraBAUMGARTNER.CH.HOHL*(*KantonalesLaboratoriumBasel-Stadt,NonFood,P.O.Box,4012Basel,Switzerland,[email protected]):Bio-activitybasedanalysisofirradiatedsunscreensusingHPTLCandinsitudetectionwithVibriofischeri.CBS100,2-5(2008).HPTLCofphotodegradedUVfiltersandsunscreenonsilicagelLiChrospherprewashedwithmethanol.AMD2developmentofUVfilterstandardsphotodegradationproductswithdi-isopropylether-n-hexanein6stepsover50mmwithoutpreconditioning,andofsunscreensam-plesphotodegradationproductswitht-butylmethylether-n-hexanein7stepsover50mmwithpreconditioning,followedbydryingat120°Cfor�0min.Detectionat254and�66nm,followedbybiodetectionviadippingtheplateinaVibriofischerisolutionfor1sandevaluationwiththeBioluminizer(exposuretime55s).Densitometricevaluationbymulti-wavelengthscanat200-400nm.

foodanalysis,quality,control,toxicology,cosmetics,HPTLC,densitometry,quantitativeanalysis,qualitativeidentification,AMD �2f

101065 J.HUMLJAN*,S.STARCEVIC,V.CAR,P.STEFANICANDERLUH,D.KOCJAN,B.JENKO,U.URLEB(*DrugDiscoveryDepartment,LekPharmaceuticals,Verovskova57,1526Ljublja-na,Slovenia;[email protected]):OptimizationofUDP-N-acetylmuramicacidsynthesis.Pharmazie 6�, 102-106 (2008). TLC of benzyl 2-acetamido-6-O-acetyl-�-O-[(R)-1-carboxye-thyl]-2-deoxy-alpha-D-glucopyranoside1‘,4-lactone,2-acetamido-6-O-acetyl-�-O-[(R)-1-carbo-xyethyl]-2-deoxy-alpha-D-glucopyranoside1‘,4-lactone,and2-acetamido-6-O-acetyl-�-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D-glucopyranoside-1-alpha-(diphenyl phosphate) 1‘,4-lactoneonsilicagelwithethylacetate-acetone2:1.TLCoftriethylammoniummuramylphosphateonsilicagelwithisopropanol-water-25%ammonia6:1:�.EvaluationunderUVlightandbyhea-tingtheplateat250°C.

pharmaceuticalresearch,qualitativeidentification �2a

101066 V.KUMAR,K.MUKHERJEE,S.KUMAR,M.MAL,P.MUKHERJEE*(*SchoolofNaturalProductsStudies,DepartmentofPharmaceuticalTechnology,JadavpurUniversity,700075Kol-kata, India,[email protected]):ValidationofHPTLCmethod for theanalysisof taraxe-rol inClitoria ternatea.Phytochem.Anal.19,244-250(2007).HPTLCof taraxerol inClitoriaternateaonsilicagelwithhexane-ethylacetate4:1.Detectionbysprayingwithanisaldehydereagent.Quantitativedeterminationby absorbancemeasurement at 420nm.ThehRfvalueoftaraxerolwas5�andselectivityregardingthematrixwasgiven.Linearitywasbetween100and1200ngoftaraxerol.Recoveryvalueswerebetween99.6and99.7%.Thelimitofdetectionandquantificationfortaraxerolwas�1and105ng/spot,respectively.

traditionalmedicine,herbal,HPTLC,qualitativeidentification �2e

101067 S.G.LATE,A.K.BANGA*(*DepartmentofPharmaceuticalSciences,CollegeofPharmacyandHealthSciences,MercerUniversity,�001MercerUniversityDrive,Atlanta,GA�04�1,USA;[email protected]):Thermalandnon-thermalmethodstoevaluatecompatibilityofgrani-setronhydrochloridewithtabletexcipients.Pharmazie6�,45�-458(2008).ComparisonoftheRfvalueofgranisetronhydrochloridealonewiththeRfvalueofgranisetronhydrochlorideofdiffe-rentdrugexcipientsystems,e.g.beta-cyclodextrin,2-hydroxypropyl-beta-cyclodextrin,manni-tol,andmagnesiumstearate.NosignificantchangeintheRfvaluewiththedifferentexcipientswasobserved.AfterTLCseparationofcompounds,plateswereplacedintoaniodinechambertoidentifythespots.

pharmaceuticalresearch,qualitativeidentification �2b

101068 Y.LIU*(LiuYonghong),N.MURAKAMI,S.ZHANG,T.XU(*KeyLaboratoryofMarineBio-resourcesSustainableUtilization,SouthChinaSea InstituteofOceanology,ChineseAcademyofSciences,Guangzhou510-�01,China;[email protected]):Structure-activityrelation-shipsof1‘-acetoxychavicolacetatehomologuesasnewnuclearexportsignalinhibitors.Pharma-zie6�,659-662(2008).HPTLCandTLCof1‘-acetoxychavicolacetateonsilicagelandRP-18.

CAMAGBIBLIOGRAPHYSERVICE No.10118

DetectionunderUV254and�65nm,andaftersprayingwith1%ceriumsulfate/10%sulfuricacid,andanisaldehydereagent(5mLaceticacid,25mLconcentratedsulfuricacid,425mLetha-nol,and25mLwater).

herbal,pharmaceuticalresearch,HPTLC,qualitativeidentification �2e

101069 SherylM.VERBITSKI*,G.T.GOURDIN,L.M.IKENOUYE,J.D.McCHESNEY(*ChromaDexAnalytics,Inc.,28�0WildernessPl,Boulder,CO80�01,USA):DetectionofActaearacemosaadulterationbythin-layerchromatographyandcombinedthin-layerchromatography-biolumine-scence.J.AOACInt.91,268-275(2008).HPTLCofactein,2�-epi-26-deoxyactein,cimiracemo-side,cimifugoside,caffeine,andtyrosineasstandardsonsilicagel(prewashedwithmethanol)withtoluene-ethylformate-formicacid5:�:2inasaturatedchamber.DetectionunderUV254and�65nm,underwhitelightaftersprayingwithanisaldehydereagent,andviatheBioluminexassay.FortheBioluminexassaythedevelopedanddriedHPTLCplatewascoatedwithabuf-feredsolutionofluminescentVibriofischeri.DocumentationofluminescentandinhibitedzoneswithaCCDcamera.

pharmaceuticalresearch,traditionalmedicine,herbal,qualitativeidentification,HPTLC,quanti-tativeanalysis �2e

101070 B.H.MEHTA,S.B.MORGE*(*DepartmentofChemistry,UniversityofMumbai,Vidaynaga-ri,Santacruz[E]Mumbai400098,India;[email protected]):HPTLC-densitometricanalysisof candesartan cilexetil andhydrochlorothiazide in tablets. J.PlanarChromatogr. 21, 17�-176(2008). HPTLC of candesartan cilexetil and hydrochlorothiazide on silica gel with acetone -chloroform-ethylacetate-methanol6:6:6:1at25+/-5°Candarelativehumidityof50-60%inasaturatedtwintroughseparationchamber.Quantificationbydensitometryat280nm.

pharmaceuticalresearch,qualitycontrol,HPTLC,quantitativeanalysis,densitometry �2a

101071 D.B.MESHRAM*,S.B.BAGADE,M.R.TAJNE(*UniversityDepartmentofPharmaceuticalSciences, RTM Nagpur University, Nagpur 4400��, Maharashtra, India; [email protected]):AsimpleTLCmethodforanalysisoffluconazoleinpharmaceuticaldosageforms.J.Pla-narChromatogr.21,191-195(2008).HPTLCoffluconazoleandclotrimazole(asinternalstan-dard)onsilicagelwithtoluene-chloroform-methanol6:15:2.Quantificationbydensitometryat210nm.

pharmaceuticalresearch,qualitycontrol,HPTLC,densitometry,quantitativeanalysis �2a

101072 H.P. MHASKE*, V.V. VAIDYA, S.N. MENON, S. SHAILAJAN, N.A. GOMES (*Therapeu-ticDrugMonitoringLaboratory,194SchemeNo.6,RoadNo.15,SionKoliwada,Sion(East),Mumbai400022,India;[email protected], [email protected]):Quantificationofpuer-arininPuerariatuberosaDCbyHPTLC.J.PlanarChromatogr.21,217-219(2008).HPTLCofpuerarinonsilicagel,prewashedwithmethanol,withethylacetate-methanol-distilledwater8:1:1inatwin-troughchambersaturatedfor5min.Quantitficationbydensitometryat�66nm.

traditionalmedicine,herbal,radioscanning,HPTLC �2e

10107� R.K. PATEL,A.M. PRAJAPATI* (*Ganpat University, S. K. Patel College of PharmaceuticalEducationandResearch,Kherava�82711,Mehsana,Gujarat,India;[email protected]):Developmentandvalidationofavisibleabsorptiondensitometrymethodforquantitationofco-nessine in Holarrhena antidysenterica (Kurchi). J.AOAC Int. 91, ��9-�4� (2008). HPTLC ofconessineonsilicagel(prewashedwithmethanol)withtoluene-ethylacetate-dimethylamine1�:5:2inasaturatedtwin-troughchamber.DetectionbysprayingwithDragendorffreagent,followedbysprayingwitha10%solutionofaqueoussodiumnitrite.Quantitativedeterminationbydensito-metryat520nm.Linearitywasbetween10and60ng/spot.Thelimitofdetectionwas�ng/spot.

herbal, traditional medicine, pharmaceutical research, HPTLC, quantitative analysis, densito-metry �2e

CAMAGBIBLIOGRAPHYSERVICE No.10119

101074 R.K.PATEL*,A.M.PRAJAPATI,M.M.PATEL(*S.K.PatelCollegeofPharmaceuticalEdu-cationandResearch,GanapatUniversity,Kherava�82711,Mehsana,Gujarat,India):High-per-formancethin-layerchromatographicmethodforquantificationofatisinefromAconitumhetero-phyllumRoth.IndianDrugs45(�),2��-225(2008).HPTLCofatisineinAconitumheterophyl-lumonsilicagelwithtoluene-ethylacetate-diethylamine7:2:1.Densitometricevaluationat274nm.DetectionbysprayingwithDragendorffreagentfollowedbysprayingwith10%sodiumnitrate. Densitometric evaluation of reddish brown zones at 520 nm. Linearity of atisine wasbetween10and60ng/spot.

pharmaceuticalresearch,herbal,HPTLC,densitometry,quantitativeanalysis �2a

101075 B.H. PATEL*, B.N. SUHAGIA, M.M. PATEL, J.R. PATEL (*Department of PharmaceuticalChemistry,S.K.PatelCollegeofPharmaceuticalEducationandResearch,GanpatVidyanagar,Kherva,Mehsana�82711,Gujarat,India):HPTLCdeterminationofrabeprazoleanddomperi-done incapsulesand itsvalidation.J.Chromatogr.Sci.46(4),�04-�07(2008).HPTLCrabe-prazoleanddomperidoneinpurepowderandincapsuleformulationsonsilicagelaluminiumlayerswithethylacetate-methanol-benzene-acetonitrile�:2:�:2.Quantificationbyabsorbancemeasurementat287nm.Linearitywasbetween400and1200ng/spotforrabeprazoleand600and1800ng/spotfordomperidone.Recoverywas99.8%forrabeprazoleand99.4%fordom-peridone.Thismethod issimple,precise,andsensitive,and it is suitable for thesimultaneousdeterminationofrabeprazoleanddomperidone.

qualitycontrol,pharmaceuticalresearch,HPTLC,quantitativeanalysis,densitometry, qualitativeidentification �2c

101076 B.H.PATEL*,B.N.SUHAGIA,M.M.PATEL,J.R.PATEL(*S.K.PatelCollegeofPharmaceu-ticalEducationandResearch,GanpatVidyanagar,Kherva,Mehsana,Gujarat,India):High-per-formanceliquidchromatographyandthin-layerchromatographyforthesimultaneousquantitati-onofrabeprazoleandmosaprideinpharmaceuticalproducts.J.Chromatogr.Sci.46(1),10-14(2008).Quantitativedeterminationofrabeprazoleandmosaprideintheircombinedpharmaceuti-caldosageformsbyTLConsilicagelwithethylacetate-methanol-benzene4:1:5.Quantifica-tionbydensitometryat276nm.Linearitywasbetween400and1200ng/spotforrabeprazoleandbetween�00and900ng/spotformosaprid,respectively.Thelimitofdetectionwas1�2ng/spotforrabeprazoleand98ng/spotformosapride.

pharmaceuticalresearch,qualitycontrol,densitometry,quantitativeanalysis,qualitativeidentifi-cation,comparisonofmethods �2c

101077 O. POZHARITSKAYA, S. IVANOVA, A. SHIKOV*, V. MAKAROV (*Interregional Center„Adaptogen“,47/5Piskarevskiypr.,St.Petersburg,195067,Russia,[email protected]):Separa-tionandfreeradical-scavengingactivityofmajorcurcuminoidsofCurcumalongausingHPT-LC-DPPHmethod.Phytochem.Anal.19,2�6-24�(2008).HPTLCofcurcumin(1),demethoxy-curcumin(2),andbisdemethoxycurcumin(�)intherhizomeofCurcumalongaL.onsilicagelwith toluene-aceticacid4:1forcurcuminoidseparationandn-hexane-ethylacetate-aceticacid16:5:1forquantificationoftotalcurcuminoidcontent.Quantitativedeterminationbyabsor-bancemeasurementat254nm.Todeterminethefreeradical-scavengingactivityof individualcompunds,theplatewasdippedintoa0.5mMsolutionof1,1-diphenyl-2-picrylhydrazylinme-thanolfor5s,driedindarknessatroomtemperatureandheatedat60°Cfor�0s.Quantitativedeterminationbyabsorbancemeasurementat517nmasnegativepeaks.ThehRfvalueswere50,and25for(1)and(�),respectively.Linearitywasbetween80and250ng/spotfor(1),40and280ng/spotfor(2),and85and270ng/spotfor(�).Thelimitsofdetectionandquantificationwere20and60ng/spotfor(1),10and�0ng/spotfor(2),and25and75ng/spotfor(�).Recoverieswere99.0%,96.9%,and95.8%,(referencevalue80%),respectively.Theintermediate/interday/in-tra-dayprecisionfor(1),(2),and(�)was�.15%,�.00%,and2.85%,(n=6),respectively.Forthefreeradical-scavengingactivity,linearitywasbetween70and400ngfor(1),50and550ngfor(2),and60and250ngfor(�).Thelimitsofdetectionandquantificationwere40and70ngfor(1),25and50ngfor(2),and45and60ngfor(�).Theintermediate/interday/intra-dayprecision

CAMAGBIBLIOGRAPHYSERVICE No.10120

for(1),(2),and(�)was6.50%,2.�0%,and1.50%(n=6),respectively.

herbal,HPTLC,quantitativeanalysis,postchromatographicderivatization �2e

101078 Alina PYKA*,W. KLIMCZOK (*Department ofAnalytical Chemistry, Faculty of Pharmacy,MedicalUniversityofSilesia,Jagielonska4,41-200Sosnowiec,Poland;[email protected]):InfluenceofimpregnationofsilicagelandKieselguhrwithcopper(II)sulphate(VI)onpro-filechangeofthespectrodensitogramsandtheRfvaluesofnicotinicacidanditsderivatives.J.Liq.Chromatogr.Relat.Technol.�1,526-542(2008).TLCofnicotinicacid,nicotinamide,ethyl,isopropyl, butyl, hexyl, benzyl nicotinate, N-methylnicotinamide, N,N-diethylnicotinamide, �-pyridinecarbaldehyde,�-pyridinecarbonitrile,�-pyridylmethanol,andmethyl�-pyridylketoneonsilicagelandkieselguhrimpregnatedwith2.5%and5%aqueoussolutionsofcopper(II)sulfate,withacetone-n-hexaneindifferentvolumecompositions.DetectionbysprayingwithRhoda-mineBsolution.Quantificationbydensitometry.Thenumberofabsorptionbandsofthecom-poundsinvestigateddependsonimpregnationofthesorbentandthevisualizationagent.

pharmaceuticalresearch,qualitycontrol,quantitativeanalysis,densitometry �2a

101079 I.QIAN (Qian Iguang-Sheng)*,Q.WANG(WangQing),K.S.LEUNG(LeungSze-YinKel-vin),Y.QIN(QinYong),Z.ZHAO(ZhaoZhongzhen),Z.Jiang(JiangZhi-Hong)(*SchoolofChineseMedicine,HongKongBaptistUniversity,KowloonTong,HongKong,China):Qualityassessment of rhizoma et radix notopterygii by HPTLC and HPLC fingerprinting and HPLCquantitativeanalysis.J.ofPharm.Biomed.Anal.44(�),812-817(2007).HPTLCofextractsofNotopterygiumincisumTingexH.T.Chang(orNotopterygiumforbesiiBoiss)rootandrhizome,andmarkercompoundsisoimperatorin,notopterolandbergapten.TheauthenticationofrhizomaetradixNotopterygiiwasachievedbycomparingthecolorsandRfvaluesofthebandsinTLCfingerprintswiththoseofthemarkercompounds.TheHPLCfingerprintsof16batchesofherbalsamples fromdifferent regionsofChinashowedsimilarchromatographicpatterns.Fivepeakswere selected as characteristic peaks, and threeof thesewere identifiedbyusingLC-MS-MStechniques.

qualitycontrol,pharmaceuticalresearch,traditionalmedicine,herbal,HPTLC,quantitativeana-lysis,qualitativeidentification �2e

101080 G. RAHUL*, B. LEENA,V.ASFAK, D. MRINALINI (*Department of PharmaceuticalAna-lysis,A.I.S.S.M.S.CollegeofPharmacy,KennedyRoad,NearR.T.O,Pune,411001, India):Avalidatedhighperformance thin layerchromatographicmethodforsimultaneousestimationofofloxacinandsatranidazoleinpharmaceuticaldosageform.J.Pharm.Res.6(4),2��-2�5(2007).HPTLCofofloxacinandsatranidazoleonsilicagelwithn-butanol-ethanol5:5containing4%ammonia.Densitometricanalysisat�20nm.ThehRfvalueofofloxacinandsatranidazolewas54and8�respectively.Linearitywasbetween200and1000ng/spotforofloxacinandbetween�00and1500ng/spotforsatranidazole.Recoverywas99.1-99.8%forbothcompounds.

pharmaceuticalresearch,qualitycontrol,HPTLC,densitometry,quantitativeanalysis �2a

101081 M. RAJBHANDARI, TH. SCHOEPKE, R. MENTEL, Ulrike LINDEQUIST* (*Institute ofPharmacy,Ernst-Moritz-Arndt-UniversityGreifswald,Friedrich-Ludwig-Jahn-Strasse17,17487Greifswald, Germany; [email protected]) :Antibacterial and antiviral naphthazarinsfromMaharangabicolor.Pharmazie6�, 6��-6�5 (2008).TLCofdeoxyalkannin, alkannin-1‘-beta-hydroxy-isovalerate, and alkannin-1‘-beta-acetoxy-isovalerate on silica gel with hexane -ethylacetate-ethanol20:1:1.DetectionunderUV254nm.

herbal,pharmaceuticalresearch,qualitativeidentification �2e

101082 M.RAM*,S.KHAN,P.JHA,M.A.KHAN,U.KIRAN,S.JAVED,M.Z.ABDIN(*CentreforTransgenic Plant Development, Department of Biotechnology, Jamia Hamdard, New Delhi,110062,India):RapidTLCmethodforestimationofmevalonicacidintheleavesofmedicinalplants.Chromatographi68 (1-2),129-1�� (2008).Descriptionof a simple, rapid, specificand

CAMAGBIBLIOGRAPHYSERVICE No.10121

sensitivemethodforthequantitativeestimationofmevalonicacidinleavesofArtemisiaannua,Psoreliacorylifolia,Vincarosea,WithaniasomniferaandBarleriaproinites.TLCofleafextractsonsilicagelwithbenzene-acetone�:2whichinvolvedconversionofmevalonicacidtoitslac-tone,mevalonolactone.Detectionbytreatmentwithanisaldeydereagent.Quantitativedetermina-tionofmevalonolactonebyabsorbancemeasurementat600nm.Linearitywasbetween100and500ngperspot.Recovery(bystandardaddition)washigherthan98%formevalonolactone.Thelimitofdetectionwas50ngperspot.

qualitycontrol,pharmaceuticalresearch, traditionalmedicine,quantitativeanalysis,qualitativeidentification,densitometry �2e

10108� A.RATHI*,N.SRIVASTAVA,S.KHATOON,A.K.S.RAWAT(*DepartmentofPharmacognosyandEthnopharmacology,NationalBotanicalResearchInstitute,Lucknow,226001,India):TLCdeterminationofstrychnineandbrucineofStrychnosnuxvomicainAyurvedaandhomeopathydrugs.Chromatographia67(7-8),607-61�(2008).Quantitativeestimationofthetwomajoral-kaloidsstrychnineandbrucineinStrychnosnuxvomicabyTLConsilicagelwithchloroform-ethylacetate-diethylamine1:17:2.ThehRfvaluesforstrychnineandbrucinewere55and42andselectivityregardingmatrixwasgiven.Recoverywasbetween9�.1and99.8%forstrychnineandbetween96.9and99.5%forbrucine.Thelimitofdetectionandquantificationforstrychninewas2and8ng,respectively,andforbrucine2and9ng,respectively.

qualitycontrol,pharmaceuticalresearch, traditionalmedicine,quantitativeanalysis,qualitativeidentification �2c

101084 E. REICH*,Anne SCHIBLI,Alison DEBATT (*CAMAG Laboratory, Sonnenmattstrasse 11,41�2 Muttenz, Switzerland; [email protected]): Validation of HPTLC methods for theidentificationofbotanicals in a cGMPenvironment. J.AOACInt. 91,1�-20 (2008).Compre-hensiveproposalfor thevalidationofqualitativeHPTLCmethods.Thestepsof thevalidationprocess(methodselectionandoptimization,stability,specificity,precision,androbustness)areillustratedwithexamplesofidentificationmethods:greentealeaf,ginsengroot,eleutheroroot,echinacearoot,blackcohoshrhizome,licoriceroot,kavaroot,milkthistleaerialparts,feverfewaerialparts,andgingerroot.Thevalidationprotocolisakeyelementforstructuring,managinganddocumenting thevalidationprocess.HPTLC is suitable for reliable identificationofbota-nicalsbecauseitcanprovidechromatographicfingerprintsthatcanbevisualizedandstoredaselectronicimages.Reproducibilityisimprovedifsuitableinstrumentationisused,astandardizedHPTLCmethodologyisimplemented,andmethodshavebeenvalidated.

qualitycontrol,herbal,HPTLC,densitometry,quantitativeanalysis �2e

101085 J. RICHTER*, J. JIRMAN, J. HAVLÍCEK, R. HRDINA (*University of Pardubice, Facultyof ChemicalTechnology, Department ofTechnology of Organic Compounds,TP Doubravice,Studentská 95, 5�2 10 Pardubice, Czech Republic; [email protected]): Pioglitazo-ne impurities.Pharmazie6�,580-584 (2008).TLCof5-{4-[2-(5-ethyl-6-{4-[5-ethylpyridin-2-yl)ethoxy]fenyl}pyrid-2-yl)-ethoxy]benzyl}-1,�-thiazolidine-2,4-dione (pioglitazone), 5-{4-[2-(5-ethyl-4-{4-[2-[5-ethylpyridin-2-yl)ethoxy]fenyl}pyrid-2-yl)-ethoxy]benzyl}-1,�-thiazolidine-2,4-dione, and 5-{6,4‘-bis-[2-(5-ethylpyridin-2-yl)ethoxy]fenyl}pyrid-2-yl)-ethoxy]biphenyl-�-ylmethyl}-1,�-thiazolidine-2,4-dione on silica gel with chloroform - methanol - ammonia60:�0:1.DetectionunderUV254nm.

pharmaceuticalresearch,qualitativeidentification �2a

101086 N.J.SHAH*,B.N.SUHAGIA,R.R.SHAH,N.M.PATEL(*ShriB.M.ShahCollegeofPhar-maceuticalEducationandResearch,Modaso�8��15,India):DevelopmentandvalidationofasimultaneousHPTLCmethodfortheestimationofolmesartanmedoxomilandhydrochlorothi-azideintabletdosageform.Ind.J.Pharm.Sci.69(6),8�4-8�6(2007).HPTLCofolmesartanmedoxomilandhydrochlorothiazidesimultaneouslyincombineddosageformsonsilicagelwithacetonitrile-chloroform-aceticacid14:4:1.Detectionat254nm.Linearitywasbetween500and750ng/spot forolmesartanmedoxomil and100and600ng/spot forhydrochlorothiazide.

CAMAGBIBLIOGRAPHYSERVICE No.10122

Thelimitofdetectionandthelimitofquantificationforolmesartanmedoxomilwas170and500ng/spotrespectively,andforhydrochlorothiazide�0and100ng/spot,respectively.Theproposedmethodcanbeusedtodeterminethedrugcontentofmarketedtabletformulation.

pharmaceuticalresearch,qualitycontrol,HPTLCdensitometry,quantitativeanalysis �2a

101087 B. SPARZAK, Miroslawa KRAUZE-BARANOWSKA*, L. POBLOCKA-OLECH (*MedicalUniversityofGdansk,DepartmentofPharmacognosywiththeMedicinalPlantsGarden,Hallera107,80-416Gdansk,Poland;[email protected]):HPTLCdeterminationofcatechinsinin-vit-roculturesoftwospeciesofthegenusPhyllanthus.J.PlanarChromatogr.21,10�-106(2008).HPTLCof(-)-epicatechin,(+)-catechin,(-)-epigallocatechin,(-)-gallocatechin,(-)-catechingal-late, and (-)-epicatechingallateonRP-18at room temperature and75% relativehumidity inanautomateddevelopmentchamberwithmethanol-water-formicacid�0:70:6.Detectionbysprayingwithdiazotizedsulfanilicacid.Quantificationbydensitometryat440nm.

herbal, traditional medicine, qualitative identification, HPTLC, quantitative analysis, densito-metry �2e

101088 V.SRIVASTAVA,M.SINGH,R.MALASONI,K.SHANKER,R.VERMA,M.GUPTA*,A.GUPTA, S. KHANUJA (*Analytical Chemistry Division, Central Institute of Medicinal andAromaticPlants,226015Lucknow,India,[email protected]):Separationandquantifi-cationoflignansinPhyllanthusspeciesbyasimplechiraldensitometricmethod.J.Sep.Sci.�1,47-55(2008).HPTLCofphyllanthin(1),hypophyllanthin(2),niranthin(�),andnirtetralin(4)intheleavesoffourPhyllanthusspecies,P.amarus,P.maderaspatensis,P.urinaria,andP.virga-tus,onachiralTLCplatewithn-hexane-acetone-1,4-dioxane18:2:1.Detectionbydippinginvanillinreagent(1gvanillin,5mLsulphuricacid,95mLethanol)followedbyheatingat110°Cfor15min.Quantitativedeterminationbyabsorbancemeasurementat620nm.ThehRfvalueswere�0,�6,41,and48for(1)to(4),respectively.Linearitywasbetween100and500ng/bandandtherecoveriesfor(1)to(4)were99.9,100.5,99.2,98.7%,respectively.Thelimitofdetec-tionandquantificationwas26and88,45and1�6,5�and176,and57and187ng/bandfor(1)to(4),respectively.Nosignificantintra-andinterdayvariationwasobserved.

herbal,quantitativeanalysis,HPTLC �2e

101089 J.V.SUSHEEL*,M.LEKHA,T.K.RAVI(*DepartmentofPharmaceuticalAnalysis,CollegeofPharmacy,SriRamkrishnaInstituteofParamedicalSciences,Coimbatore641044,India):Highperformancethinlayerchromatographicestimationoflansoprazoleanddomperidoneintablets.Ind.J.Pharm.Sci.69(5),684-686(2007).HPTLCoflansoprazoleanddomperidoneintabletformulationsonsilicagelwithn-butanol-aceticacid-water186:5:10.Densitometricanalysisinabsorbancemodeat288nm.Thecalibrationcoveredtherangeof100to500ng/spotforbothsubstances.ThehRfvalueof lansoprazoleanddomperidonewas78and21, respectively.Thelimitofdetectionandquantificationforlansoprazolewas10and40ng/spotandfordomperidone�0and65ng/spot,respectively.Themethodissuitableforroutinequalitycontrol.

pharmaceuticalresearch,qualitycontrol,HPTLC,densitometry �2a

101090 N.G.TAYADE*,M.S.NAGARSENKER(*DepartmentofPharmaceutics,BombayCollegeofPharmacy,Kalina,Santacruz(E),Mumbai400098,India):ValidatedHPTLCmethodofanalysisforartemetheranditsformulations.J.Pharm.Biomed.Anal.4�(�),8�9-844(2007).HPTLCofartemetherbothasabulkdrugandinpharmaceuticalformulationsonsilicagelaluminumplateswithtoluene-ethylacetate-formicacid80:20:�.Quantificationofartemetherbydensitometryat565nm.Linearitywasbetween200and1000ng/spot.Thelimitofdetectionandquantificationwas65and197ng/spot,respectively.Themethodwassuccessfullyappliedintheanalysisofli-pidbasedparenteralformulationsandmarketedoralsoliddosageformulation.

qualitycontrol,HPTLC,densitometry,quantitativeanalysis,qualitativeidentification �2c

101091 M.TOMCZYK*,D.DROZDOWSKA,A.BIELAWSKA,K.BIELAWSKI,J.GUDEJ(*Depart-

CAMAGBIBLIOGRAPHYSERVICE No.1012�

mentofPharmacognosy,FacultyofPharmacy,MedicalUniversityofBialystok,ul.Mickiewi-cza2a,15-2�0Bialystok,Poland;[email protected]):HumanDNAtopoisomeraseinhibitorsfromPotentillaargenteaandtheircytotoxiceffectagainstMCF-7.Pharmazie6�,�89-�9�(2008).TLCofmethylbrevifolincarboxylateandkaempferol�-O-beta-D-(6‘‘-E-p-coumaroyl)-glucopyr-anosidetilirosideonsilicagelwithethylacetate-methanol-water18:1:1.DetectionunderUVlight.

pharmaceuticalresearch,qualitativeidentification �2e

101092 NadaU.PERISIC-JANJIC*,S.O.PODUNAVAC-KUZMANOVIC(*DepartmentofChemistry,FacultyofSciences,UniversityofNoviSad,TrgD.Obradovica�,21000NoviSad,Serbia;[email protected]):RPTLCstudyofQSRRandQSARforsomebenzimidazolederivatives.J.PlanarChromatogr.21,1�5-141(2008).Quantitativestructure-retentionrelationshipsandquan-titativestructure-activityrelationshipshavebeenusedtostudythechromatographicbehaviorandthe antibacterial activity of different substituted benzimidazole derivatives. HPTLC of elevenbenzimidazolederivativesonRP-18withmethanol-phosphatebuffer(pH7resp.pH8).Evalua-tionunderUV254nm.

pharmaceuticalresearch,qualitativeidentification,HPTLC �2a

10109� Irina URAKOVA, Olga POZHARITSKAYA, A. SHIKOV*, Vera KOSMAN, Valery MAKA-ROV(*InterregionalCenter„Adaptogen“,47/5Piskarevskiypr.,St.Petersburg,195067,Russia,[email protected]):ComparisonofhighperformanceTLCandHPLCforseparationandquanti-ficationofchlorogenicacidingreencoffeebeanextracts.J.Sep.Sci.�1,2�7-241(2008).HPT-LCofchlorogenicacidingreencoffeebeansonsilicagelwithethylacetate-dichloromethane- formicacid -aceticacid -water100:25:10:10:11.Quantitativedeterminationbyabsorbancemeasurementat��0nm.ThehRfvaluewas27andselectivityregardingmatrixwasgiven.Line-aritywasbetween550and1750ng/spot.Thelimitsofdetectionandquantificationwere80and250ng, respectively.Recoverywas97.1%.The intermediate/interday/intra-dayprecisionwasbetween1.06%and1.�5%(n=6).ThedatashowednostatisticallysignificantdifferencesforHPTLCandHPLCmethods.

herbal,quantitativeanalysis,densitometry,comparisonofmethods,HPTLC �2e

101094 N.VADERA*,G.SUBRAMANIAN,P.MUSMADE(*DepartmentofPharmaceuticalQualityAssurance, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India):Stability-indicatingHPTLCdeterminationofimatinibmesylateinbulkdrugandpharmaceuticaldosageform.J.Pharm.Biomed.Anal.4�(2),722-726(2007).HPTLCofimatinibmesylatebothasabulkdrugandinformulationsonsilicagelaluminiumplateswithchloroform-methanol�:2.Quantitativedeterminationbyabsorbancemeasurementat276nm.Linearitywasbetween100and1000ngperspot.Thelimitofdetectionandquantificationwas10and�0ng,respective-ly.Themethodisrepeatable,selectiveandaccurateandcanbeusedforstabilitycontrol.

qualitycontrol,pharmaceuticalresearch,doping,HPTLC,quantitativeanalysis,qualitativeiden-tification,densitometry �2c

101095 G.VÖLGYI,K.DEÁK,J.VÁMOS,K.VALKÓ,KrisztinaTAKÁCS-NOVÁK*(*SemmelweisUniversity,DepartmentofPharmaceuticalChemistry,1092Budapest,HögyesE.u.9,Hunga-ry;[email protected]):RPTLCdeterminationoflogPofstructurallydiverseneutralcom-pounds. J. Planar Chromatogr. 21, 14�-149 (2008). RPTLC method for parallel estimation ofthelipophilicityofchemicallydiverseneutralcompoundsorweakacidsandbases.TLCof28drugsonRP-18prewashedwithmethanolandheatedat160°Cfor1h,withmixturesofwaterwithmethanol,ethanol,1-propanol,acetone,acetonitrile,and1,4-dioxaneinasaturatedcham-ber.Acetone-water9:11and�:2werebestsuited.Densitometricevaluationat200and254nm.

pharmaceuticalresearch,qualitativeidentification �2a

CAMAGBIBLIOGRAPHYSERVICE No.10124

101096 ValeriaWIDMER,E.REICH*,AlisonDEBATT(*CAMAGLaboratory,Sonnenmattstrasse11,41�2Muttenz,Switzerland;[email protected]):ValidatedHPTLCmethodforidentifica-tionofHoodiagordonii. J.PlanarChromatogr.21,21-26 (2008).HPTLCofextractsofHoo-diagordoniiwithfructoseandbeta-sitosterolasstandardsonsilicagelwithchloroform-me-thanol-water70:�0:�inanautomaticdevelopingchamberfittedwitha twin-troughchamber.Thechamberwassaturatedfor20minwithmobilephaseandrelativehumiditywascontrolled(��%).Detectionbydippinginanisaldehydereagent,followedbyheatingat100°Cfor�min.DocumentationandevaluationbeforederivatizationunderUV�66nmandafterderivatizationunderwhitelight.Themethodwasvalidated.ItisspecificandallowsdiscriminationofHoodiagordoniifromHoodiacurrorii,Hoodiaparviflora,andthecommonadulterantpricklypearcactus(Opuntiaficus-indica).Thesampleisstableinsolutionandontheplateforatleast�h,aswellasduringchromatography(2Dtest).Afterderivatizationthechromatogramisstableforatleast1 hour. Precision (repeatability, intermediate precision, and reproducibility was good and themethodisrobust.Themethodissensitivetochangesinrelativehumidity.Ifrelativehumidityexceeds47%theplatemustbeconditionedto��%RHtoensureproperseparation.

herbal,traditionalmedicine,qualitycontrol,HPTLC,densitometry,qualitativeidentification �2e

33. Inorganic substances

101097 VukosavaZIVKOVIC-RADOVANOVIC*,GordanaVUCKOVIC (*FacultyofChemistry,Uni-versityofBelgrade,P.O.Box158,11001Belgrade,Serbia) :Useofdifferentsaltsolutionsinsalting-outTLCofCo(III)complexesonsilicagel.Chromatographia67(�-4),259-267(2008).Investigationofsaturatedaqueoussolutionsof28differentsaltsusedaspotentialmobilephasesforsalting-outTLC,onsilicagel,ofaseriesoffourmixedbis-aminocarboxylatocobalt(III)com-plexes.Confirmationofthreealkalimetalchlorides,andfouralkalineearthmetalchlorides,forlineardependencespreviouslyestablishedondifferentadsorbentswith(NH4)2SO4solutionsbylinearregressionanalysisofchromatographicdataobtainedforfifteenmixedaminocarboxylatoCo(III)complexes(fourseries)withsolutionsofammoniumchloride.Comparisonofseparationachievedwithdifferentsalts.Li+,Mg2+,andCa2+chloridesaremostsuitable.

comparisonofmethods ��a

35. Other technical products and complex mixtures

101098 A.MOHAMMAD*,S.A.BHAWANI(*AnalyticalResearchLaboratory,DepartmentofAppliedChemistry,FacultyofEngineering&Technology,AligarhMuslimUniversity,Aligarh202002,India):Silicathin-layerchromatographicstudiesofsurfactantswithmixedaqueous-organicelu-entscontaining thiourea:simultaneousseparationofco-existingcetyltrimethylammoniumbro-mide,dodecyltrimethylammoniumbromide,andpolyoxyethylene(20)sorbitanmonolaurate.J.Chromatogr.Sci.46 (4),298-�0� (2008).HPTLCof three surfactants, cetyltrimethylammoni-umbromide(CTAB),dodecyltrimethylammoniumbromide(DTAB),andpolyoxyethylene(20)sorbitanmonolaurate(Tween20),onsilicagelwith5%aqueousthiourea-acetone-methanol�:1:1.Evaluationoftheeffectofthecarbonchainlengthofalcohols(methanol,ethanol,n-pro-panol,andn-butanol)onthemobilityofthesesurfactants.Thecomparativestudywasperformedwithsulfur-(thiourea)andoxygen-(urea)containingcompoundsintheeluent.InvestigationoftheinterferenceontheresolutionofthemixtureofCTAB,DTAB,andTween20,duetopresenceofmetalcationsasimpurities.

qualitycontrol,HPTLC,quantitativeanalysis,qualitativeidentification �5a

37. Environmental analysis

101099 A.ALPMANN,GertrudMORLOCK*(*InstituteforFoodChemistry,UniversityofHohenheim,7059�Stuttgart,Germany,[email protected]):Rapidandsensitivedeterminationofacrylamideindrinkingwaterbyplanarchromatographyandfluorescencedetectionafterderiva-tizationwithdansulfinicacid.J.Sep.Sci.�1,71-77(2008).HPTLCofacrylamideindrinkingwater on silica gel, derivatization in situ with 5-dimethylaminonaphtalene-1-sulfinic acid (1.6

CAMAGBIBLIOGRAPHYSERVICE No.10125

µg/µLinmethanol),followedbyheatingat120°Cfor1houranddevelopedwithethylacetate.Forfluorescenceenhancement,theplatewasdippedintoasolutionof25%polypropyleneglycolinn-hexaneanddriedimmediately.Quantitativedeterminationbyfluorescenceat�66/>400nm.VerificationwasbasedonHPTLC-ESI/MS,HPTLC-directanalysis inreal time(DART)-TOF/MSandNMR.ThehRfvalueofacrylamide (as�-dansylpropanamide)was69.Linearitywasbetween0.1and0.4µg/L.Within-runprecisionandthemeanbetween-runprecision(n=�)were4.6and11.0%.The limitofdetectionandquantificationforacrylamidewas0.025and0.08�µg/L,respectively.Recovery(bystandardaddition)was96.4%.ThemethodshowedcomparableresultwithHPLC-MS/MS.

environmental, quality control, agricultural,HPTLC,quantitative analysis, comparisonofme-thods �7c

101100 A.ALPMANN, Gertrud Morlock* (*Institute of Food Chemistry, University of Hohenheim,7059�Stuttgart,Germany,[email protected]):Determinationofacrylamideindrin-kingwater.CBS99,14-15(2007);see101099.

101101 S.GHOSAL(Natreon-Inc.,CL-18A,SectorII,SaltLakeCity,Kolkata700091,India):Thesi-gnaturesofenergy-transducingorganicmoleculesinmeteorites.Sci.Cult.74(1-2),22-�0(2008).Bio-organicmoleculessuchasoxygenateddibenzo-a-pyrones,theiraminoacylconjugates,andpolyprenylbenzo-quinones have earlier been reported as transducers of energy in animals andhumancellsandwerenowfoundinfoursamplesofmeteorites.HPTLConsilicagel60with1)n-butanol-acetone-aceticacid-water7:7:2:4foraminoacids,followedbydetectionwithnin-hydrinereagentanddensitometricevaluationat610nm;2)n-butanol-aceticacid-water�:1:2forsugars, followedbydetectionwithp-anisidinereagentanddensitometricevaluationat�80nm;and�)chloroform-methanol9:1fordibenzopyrones,followedbydensitometricevaluationat240nmand�60nm.

environmental,HPTLC,densitometry,postchromatographicderivatization,qualitativeidentifi-cation �7a

101102 R.VOLK(DepartmentofPharmaceuticalBiology,PharmaceuticalInstitute,UniversityofKiel,Kiel, Gutenbergstrabe 76, 24118 Kiel, Germany, [email protected]) : Screening ofmicroalgae for species excreting norharmane, a manifold biologically active indole alkaloid.Microbiol.Res.16�,�07-�1�(2008).HPTLCofnorharmanefromcyanobacterialculturemedi-umextractsonsilicagelwithethylacetate-methanol-water200:��:27orethylacetate-formicacid-water20:2:1.ThehRfvaluesofnorharmanewere65and20,respectively.Evaluationun-derUV254nmwithoutfurtherderivatization.ThescreeningofmicroalgalculturemediumwasperformedbyHPTLCandHPLC.

pharmaceuticalresearch,environmental,HPTLC,qualitativeidentification �7c

38. Chiral separation

10110� R. BHUSHAN*, C.AGARWAL (*Department of Chemistry, Indian Institute of Technology,Roorkee247667,India;[email protected]):DirectresolutionofsixbetablockersintotheirenantiomersonsilicaplatesimpregnatedwithL-AspandL-Glu.J.PlanarChromatogr.21,129-1�4(2008).TLCofracemicmetoprolol,propranolol,carvedilol,bisoprolol,salbutamol,andla-betalolonsilicagelimpregnatedwithopticallypureL-Gluwithacetonitrile-methanol-water-dichloromethane10:�:1:2or10:�:�:2(forpropanolol),andonsilicagelimpregnatedwithL-Asp,withacetonitrile-methanol-water-dichloromethane5:�:1:�,oracetonitrile-methanol-water-glacialaceticacid50:10:5:7.Detectionwith iodinevapor; thedetection limitswere0.2�,0.1,0.27,0.25,0.2,and0.2µgforeachenantiomer,respectively.

pharmaceuticalresearch,qualitycontrol,qualitativeidentification �8

CAMAGBIBLIOGRAPHYSERVICE No.10126

101104 KatalinNEMÁK*,E.FOGASSY,A.BÉNYEI,I.HERMECZ(*Chinoin,Tóu.1-5,1045Bu-dapest,Hungary;[email protected]):TheroleofTLCininvestigationofdia-stereomericsaltformationbyagroupofpipecoloxylidides.J.PlanarChromatogr.21,125-128(2008).TLCofaracemicmixtureofdiastereomericsaltsformedbypipecoloxylidides(pipecolo-xylidide,mepivacaine,N-ethylpipecoloxylidide,ropivacaine,bupivacaine)withO,O‘-dibenzoyl-2R,�R-tartaricacidonsilicagelwith1-butanol-glacialaceticacid-water12:�:5afterchambersaturationfor2hat25°C.TLCwasalsoperformedusing2-propanol,ethanol,andmethanolinsteadof1-butanol.Detectionbysprayingwith1NpotassiumpermanganatesolutionandDra-gendorffreagent.EvaluationunderUVlight.

pharmaceuticalresearch,qualitativeidentification �8

101105 BeataPOLAK*,A.HALKA,T.H.DZIDO(*DepartmentofPhysicalChemistry,MedicalUni-versity of Lublin, Staszica 6, 20-081 Lublin, Poland; [email protected]): Pressurizedplanarelectrochromatographicseparationoftheenantiomersoftryptophanandvaline.J.PlanarChromatogr.21,��-�7 (2008).Pressurizedplanarelectrochromatography (PPEC)andTLCoftryptophanandvalineonchiralplates(withD-4-hydroxyprolineasthechiralselector)prewashedwithmethanol,withacetonitrile-methanol-water-1.25mMcitricacidanddisodiumphos-phatebuffer7:1:1:1.Detectionbysprayingwithasolutionofninhydrininacetone,followedbyheatingat110°Cfor5min.

qualitativeidentification �8

101106 M. SAJEWICZ, D. KRONENBACH, M. GONTARSKA,Teresa KOWALSKA* (*Institute ofChemistry,SilesianUniversity,9SzkolnaStreet,40-006Katowice,Poland;[email protected]):TLCandpolarimetricinvestigationoftheoscillatoryin-vitrochiralinversionofL-alanine.J.PlanarChromatogr.21,4�-47(2008).TLCandpolarimetrywasusedtoinvestigatethetendencyofL-alaninetoundergooscillatoryin-vitrochiralinversionwhendissolvedinneutral,acidic,andbasicsolvents.Theinfluencesoftemperatureandsamplemixingwereinvestigatedaswell.ItwasconfirmedthatL-alanineundergoeschiralinversion.TLCofL-alanineonsilicagel,prewashedwithmethanol-water9:1,andimpregnatedtwicewithaqueouscoppersulfatesolu-tionandL-prolineinwater-methanol9:1.Developmentwith2-propanol-acetonitrile-water6:2:�at22°C.Detectionbydippinginfreshlyprepared0.2%methanolicninhydrinsolution,followedbyheatingat100-110°Cfor10min.Quantificationbydensitometryat540nm.

quantitativeanalysis,densitometry �8

CAMAGBIBLIOGRAPHYSERVICE No.10127

Thin Layer Chromatography in Phytochemistry ChromatographicScienceSeries,Volume99

EditedbyMonikaWaksmundzka-Hajnos,JosephShermaandTeresaKowalska.

CRCPress/Taylor&FrancisGroup:BocaRaton,London,NewYork 2008

ISBN978-1-42004-677-9

896pages $199.95

ThinLayerChromatographyinPhytochemistryfillsalackinthescientificliterature reporting planar chromatography; indeed the whole chain ofplantanalysisandofbotanyinthecharacterizationbywayoftheextrac-tionisapproached.Renownedscientistsworkingwithlaboratoriesaroundtheworlddemonstratetheapplicabilityofplanarchromatographytoare-markablediversityoffields,includingplantgenetics,drugdiscovery,phy-totherapyproducts,nutraceuticals,andtoxicology.

Thebookisorganisedintwopartscomprisingatotalof29chapters.PartIstartswithachapter introducingthebookfollowedbychaptersonplantmaterial;herbalmedicinesandnutritionalsupplements;chemosystematics;biological activity of primary and secondary metabolites; plant chemo-systematics;generalitiesaboutsorbentsandprecoatedlayerforanalysis;chambers,sampleapplication,andchromatogramdevelopment,HPTLC,AMD,OPLC;an interestingchapteraboutderivatization,detection, andquantification;andoneabouttherecentbiodetectionmethods.

Part II contains 19 chapters reporting methods for theTLC separation,identification,andquantificationofparticularclassesofmetabolitesinagreat variety of plant samples fromprimarymetabolites, carbohydrates,lipids, aminoacids,peptides andproteins, followedby secondarymeta-bolites,phenols,coumarins,flavonoides,lignans,terpenesandterpenoids,steroids, quinones, and alkaloids, and an original and complete chapteraboutpolyacetylenecompounds.

Oneofthebiggerinterestsofthisbookresidesinthesumofthebibliographyreferences.Whatisontheotherhandapityisthefactthattheillustrationsare inblack-and-white; today’sbooksonTLCwith illustrations incolorbringagreatdealofinformationtothereader.Nevertheless,thisbookisofbiginterestforthescientistsworkinginthefieldofvegetablepharma-cognosy, laboratoriesofcontrol,andindustriesofcosmeticsandflavors.This book will serve as a supplement to the following works: Pharma-cognosybyBruneton,AnalysisofmedicinalplantsbyReichandSchibli,andPlantdruganalysisbyWagnerandBlast.

ProfessorDr.JacquesPothier

DepartmentofPharmacognosyFacultyofPharmacyTours,France

CAMAGBIBLIOGRAPHYSERVICE No.10128

First Class Service for our customers – CAMAG training programs worldwide

CAMAG CoursesRegularly CAMAG offers in Muttenz primary and continuing training courses for custo-mers and product specialists of our distributors. These courses inform about theoretical and practical aspects of modern Thin-Layer Chromatography, method development and handling of instruments and software. In the laboratory participants have the opportunity to perform experiments, which are of practical importance.

CAMAG offers courses of similar content also at customer’s site and in collaboration with the distributors in Europe, USA, Far East and South America.

Courses on planar chromatography for industry are also available on demand. Since the year 2000 about 80 of such trainings have been conducted alone in Germany.

Joint courses with USP Last year the US FDA released cGMPs for the dietary supplement industry. While large

companies already have to be in compliance with these regulations, medium and small companies still have one or two years for implementation. HPTLC in its modern form is one of the most suitable analytical tools for reliable identification of botanical materials, detection of adulteration and assessment of overall quality. The USP includes about 40 monographs on medicinal plants and plant extracts. They feature TLC methods for iden-tification. Currently these monographs are under revision and will be complemented by images of TLC and HPTLC results. With this project the USP is taking a leading role in setting standards of quality also for botanical dietary supplements.

CAMAG has many years of experience in developing and validating HPTLC methods for identification of medicinal plants and actively promoted a standardized HPTLC methodo-logy. Now USP and CAMAG jointly took the initiative to help small and medium size com-panies with the implementation of GMPs by offering dedicated courses. These courses provide comprehensive information about a standardized TLC/HPTLC methodology and the scientific basis for a successful application of existing methods as well as the develop-ment and validation of new HPTLC methods.

At the end of April 2008 two USP courses - TLC for Dietary Supplements: Botanicals – were held in Wilmington, NC. Participants were able to take advantage of the fully equipped CAMAG Laboratory for gaining practical experience. Further USP course are scheduled for October 30. (Salt Lake City, UT) and November 5. and 6. (Irvine, CA).

5 Dekaden CAMAG

Als im Dezember 1958 Dr. Dieter Jänchen eine Firma

unter dem Namen »CAMAG Chemie-Erzeugnisse und

Adsorptionstechnik (Muttenz) AG« in das Handels-

register eintragen liess, ahnte wohl niemand, dass sich

daraus einmal die Nummer 1 auf dem Gebiet der Planar-

Chromatographie (weltweit) entwickeln würde. Voraus-

gegangen war der Erwerb einer Liegenschaft in Muttenz

bei Basel, was sich indirekt im Firmennamen wider-

spiegelt.

Die Entwicklung eines Unternehmens zum Marktführer Planar-Chromatographie

anhand der Sortimentsentwicklung

CAMAG T-Scanner 1964

TLC-Scanner 3

Die erste Dekade 1958 – 1968

Der ursprüngliche Firmenzweck war die Herstellung von Aluminium- oxid für die Chromatographie, das in verschiedenen Varianten (ba-sisch, neutral, sauer und in ver-schiedenen Aktivitätsstufen nach Brockmann) angeboten wurde. Die Anwendungen reichten von prä-parativer Säulenchromatographie im Labormassstab bis zum indus-triellen Einsatz, überwiegend zur Entfernung unerwünschter Neben-produkte aus Mutterlaugen. Noch heute partizipiert Aluminiumoxid mit annähernd 10 % am CAMAG Umsatz.

Die Gründung der CAMAG fiel zeitlich zusammen mit der raschen Verbreitung der Dünnschicht-Chro-matographie (DC), was das Ver-dienst von Egon Stahl war, der sie in Europa bekannt machte und ihre Standardisierung einführte. CAMAG nahm sich der neuen Me-thode an und hatte bereits 1962 ein umfangreiches Sortiment für alle damals benutzten Arbeitsschritte: Platten-Selbstbereitung, Probenauf-tragen, Chromatogrammentwick-

Chromatocharger zum strichförmigen Probenauftragen, in erster Linie für die präparative Dünnschicht-Chromatographie

Bemerkenswert war die Vario-KS-Kammer nach Geiss und Schlitt (Euratom), die eine systematische Optimierung verschiedener Pa-rameter der Chromatogramm- entwicklung erlaubte. Die Vario-KS-Kammern mussten wir übrigens meist zweimal »verkaufen«, einmal dem Entscheidungsträger, damit er das Geld freigab, und dann noch einmal dem Laborpersonal, damit sie auch eingesetzt wurde.

Bereits 1964 brachte CAMAG ih-ren ersten Scanner für die foto- metrische Direktauswertung von DC-Platten heraus, zeitgleich mit dem von Hellmut Jork ent- wickelten Auswertegerät von Zeiss, das auf dem Spektralfotometer PMQ-II basierte. Der CAMAG T-Scanner war ein Turner Fluoro-meter, das mittels eines vertikal angeordneten Kreuz-Messtischs – heute würde man Interface sagen – für die DC-Auswertung angepasst wurde. Übrigens brachte CAMAG auch bald darauf ein entsprechendes Interface für das Zeiss PMQ-II her-aus, den Z-Scanner.

lung, Derivatisierung durch Sprü-hen und UV-Inspektion.

Eine sehr weitsichtige Entscheidung war der Entschluss, DC-Kunden bzw. Interessenten kostenlos die ein-schlägige Literatur nahe zu bringen. Hierzu wurde 1965 der »CAMAG Bibliography Service« (CBS) ins Leben gerufen, der die aktuellen DC-Publikationen in Form von Kurzreferaten zugänglich machte. In diesem Jahr erschien bereits CBS-Heft 100, in dem Werdegang dieser Firmenzeitschrift und Inter-netzugriff auf mehr als 8000 Publi-kationen beschrieben sind (http://www.camag.com).

In die erste Dekade der CAMAG Geschichte fällt auch die Einfüh-rung des CAMAG Hochspannungs-Elektrophorese-Systems (HVE). Des-sen Kernstück war die Elektropho-rese-Zelle, die auf einem einfachen, aber überraschend wirksamen Prin-zip der Wärmeübertragung beruhte. Annähernd 30 Jahre lang war das CAMAG HVE-System ein wichtiges Standbein des Unternehmens. Wir nahmen es erst Anfang der 80er Jahre aus dem Programm. Zum ei-nen hatte die HPLC die meisten der zuvor mit HVE gelösten Aufgaben übernommen, und zum anderen hätten die inzwischen enorm ver-schärften Sicherheitsbestimmungen eine völlige Neukonstruktion erfor-dert. Es sei aber bemerkt, dass mit einem CAMAG HVE-System kein einziger Unfall vorgekommen ist.

2

Das zweite Jahrzehnt 1969 – 1978

In diesen Zeitraum fällt die syste-matische Instrumentalisierung aller Arbeitsschritte der DC. Das wurde unumgänglich, als Merck 1975 die HPTLC-Trennschichten auf den Markt brachte. CAMAG wurde zum Vorreiter der Geräteentwick-lung und damit zum anerkannten Marktführer der Dünnschicht-Chro-matographie.

Anfang dieser Dekade war sich die Fachwelt noch nicht einig, ob eine Quantifizierung durch foto-metrische Direktauswertung oder durch Elution der Trennzonen mit nachfolgender Fotometrie in Lö-sung die genaueren Resultate er-gibt. Mit dem CAMAG Eluchrom konnten 6 Substanzzonen simultan mit 1.5 mL Lösungsmittel ohne Ab-kratzen der Schicht von der Platte eluiert werden.

Eluchrom

Mit dem Linomat (I) wurde der Grundstein gelegt für eine Familie von Auftragegeräten, die die Sprüh-technik zum Aufbringen strich-förmiger Substanzzonen benutzt. Durch strichförmiges Auftragen wird die Trennleistung deutlich verbessert. Wurden die ersten zwei Generationen Linomat noch vor-wiegend für präparative Aufgaben eingesetzt, so war der Linomat III, den CAMAG 1976 auf den Markt brachte, ein Gerät mit entscheidend verbesserter Reproduzierbarkeit der Volumendosierung, wie es für die quantitative DC/HPTLC benötigt wurde.

Linomat III CAMAG U-Kammer-Chromatograph, die zweite Generation U-Kammer

Seit 1973 beschickten wir die DC-Kurse, die Rudolf E. Kaiser an sei-nem Institut für Chromatographie in Bad Dürkheim hielt, mit Gerä-ten, gelegentlich auch mit Gast-vorträgen. An einem dieser Kurse 1975 stellte Merck das neue Plat-tenmaterial vor, und Kaiser hatte auch dafür gleich eine revolutio-näre Entwicklungstechnik erdacht, die zirkulare. Aus einem von ihm gebauten Funktionsprototypen ent-wickelten wir innerhalb von zwei Monaten ein verkaufsfähiges Gerät, die U-Kammer. Die dafür benötigte hochpräzise Fliessmittel-Dosiervor-richtung konnten wir so zu sagen aus der Schublade ziehen; es war der Dosierturm für unseren Lino-mat III, dessen Entwicklung kurz vor dem Abschluss stand.

3

Die neuen Schichten erforderten be-sondere Sorgfalt bei der Probenauf-tragung, unabhängig davon, ob zir-kular oder normal (linear) chroma-tographiert werden sollte. Dafür ent-wickelte CAMAG den Nanomat (I), mit dem die Probendosierung aus 100 bzw. 200 nL PtIr-Kapillaren erfolgte, die magnetisch auf die Schicht abgesenkt wurden. Als alter-native Dosiervorrichtung hatten wir den Nano-Applikator (Kombinati-on einer Spritze mit einer Mikro-meterschraube), der das Auftragen variabler Volumina von 50–230 nL ermöglichte. Er konnte mit dem Nanomat positioniert werden.

1976 wurde – eigens für HPTLC-Schichten - eine neue Kammer mit horizontaler Plattenanordnung herausgebracht. Aus dieser »Linear- Entwicklungskammer« entstand später die Horizontal-Entwicklungs-kammer, die noch heute im Sorti-ment ist. Diese Kammer erlaubt die Chromatogrammentwicklung von beiden Seiten zur Mitte, wodurch die Probenanzahl verdoppelt wird. Sie benötigt nur wenige mL Lö-sungsmittel, macht die Trennung schnell und kostengünstig und übertrifft in dieser Hinsicht HPLC und GC.

Die Krönung dieses Jahrzehnts war der Abschluss der Entwicklung des ersten CAMAG TLC-Scanners, den wir 1978 auf den Markt brachten. Der Spektralbereich betrug 200–800 nm, er war eingerichtet für Absorptions- und Fluoreszenz-Messungen, und zwar in Remission und Transmissi-on, letzteres weil wir ihn universell nutzbar machen wollten, sowohl für die Auswertung von Dünnschicht-Chromatogrammen als auch von Elektropherogrammen. Der Scanner war auch eingerichtet für die Aus-

CAMAG TLC-Scanner I

wertung von zirkular entwickelten Chromatogrammen. Es gab ihn in zwei Versionen, einer mit Filterrad ausgerüsteten und einer (teureren) mit Monochromator. Letztere bau-ten wir, einerseits um dem konkur-rierenden Zeiss KM 3 nicht nach-zustehen. Andererseits glaubten wir, der Markt würde sich für die preis-wertere Filter-Version entscheiden; eine eklatante Fehleinschätzung! Der CAMAG TLC-Scanner I trug wesentlich dazu bei, der quanti-tativen DC zum Durchbruch zu verhelfen.

4

TLC-Scanner II, der 1983 auf den Markt kam

Die Jahre 1979 –1988

Als wir 1980 unseren Neubau in der Sonnenmattstrasse in Muttenz bezogen, war der TLC-Scanner (I) zu unserem erfolgreichsten Gerät im Sortiment geworden. Wir hatten zunächst eine 10er-Serie gebaut und sahen vor, einige weitere Kleinse-rien aufzulegen, bevor es von einem Nachfolgemodell abgelöst werden sollte. Tatsächlich verkauften wir dann aber mehr als 500 Stück, bevor wir 1983 unseren TLC-Scanner II herausbrachten.

Der Scanner wurde überwiegend in Verbindung mit einem Integrator, teils auch nur mit einem Analog-schreiber betrieben. Schon 1976 hat-te Siegfried Ebel mit seiner Gruppe in Marburg, später Würzburg, den Zeiss Scanner KM3 für den Betrieb mit einem Computer ausgerüstet. Kaum war der CAMAG Scanner auf dem Markt, entwickelte Ebel auch für diesen eine Computersteu-erung. Ab 1980 verkaufte CAMAG die Ebel’sche Software, später ent-wickelten wir unsere eigene.

Probenauftragen war nun der Ar-beitsschritt, den es zu automatisie-ren galt. Die europäischen Wettbe-werber auf dem DC-Markt hatten dafür verschiedene Lösungen. Alle beruhten darauf, dass parallele Do-siervorrichtungen simultan mehrere Proben auftrugen. Desaga benutzte eine Peristaltik-Pumpe, Shandon und CAMAG parallel betriebene Spritzen. Das CAMAG Gerät (s. Abbildung auf der Titelseite dieses CBS) hatte die Besonderheit, dass die Ausdehnung der Auftragezone kontrollierbar war.

Es zeigte sich, dass das Prinzip der Parallelauftragung für die mi-niaturisierten Dimensionen der HPTLC nicht geeignet war, und so entwickelten wir den CAMAG DC-Probenautomat I. Er benutzte ein einziges Dosiermodul, mit dem die aus einem Rack zugeführten Proben sequentiell auf eine Platte aufgetragen wurden. Das Gerät war softwaregesteuert und eignete sich sowohl für konventionelle als auch für HPTLC-Platten.

Für den TLC-Scanner II entwickelten wir zunächst unsere Software 86 und später CATS (CAMAG TLC Software). Mit dieser Software und diversen Auswerte-Optionen wurde ein Konzept zur Verfügung gestellt, mit dem über viele Jahre auf dem Markt ein hohes Mass an Akzeptanz erreicht werden konnte.

Klaus Burger, Bayer Dormagen, hatte das vom Perry, Glunz et al. in den 70er Jahren vorgestellte Ver-fahren Programmed Multiple De-velopment zu einer mehrstufigen Gradienten-Entwicklung vervoll-kommnet. Wir konstruierten ein marktfähiges System daraus, das wir auf dem International Symposium on HPTLC in Würzburg (1983) un-ter der Bezeichnung AMD (Auto-mated Multiple Development) der Öffentlichkeit vorstellten. Das Prin-zip eröffnete der DC völlig neue bisher nicht bekannte Trennleistun-gen und Anwendungsbereiche.

Die Aufzählung dieser Geräteent-wicklungen soll nicht vergessen ma-chen, dass wir auch eine ganze Reihe weniger spektakulärer Neuheiten herausbrachten, u. a. Linomat IV, das Fotodokumentationssystem Repro-star II und diverse Weiterentwick-lungen unseres Sortiments.

5

Der Zeitabschnitt 1989 – 1998

Unsere Software CATS wurde durch eine beträchtliche Anzahl benutzer-freundlicher Ergänzungen und Op-tionen erweitert, u. a. diverse Kalib-rierfunktionen, Bahnoptimierung, Untergrundsubtraktion, Spektrenauf-nahme, Spektrenbibliothek, um nur einige zu nennen. CATS unterstützte auch die für viele Pharma-Kunden wichtige Berechnungsmöglichkeit der Ergebnisse in mg/Tablette, Con-tent Uniformity Test (CUT), und die Korrelationsberechnung der entspre-chenden Spektren für Identitäts- und Reinheitsprüfungen.

Mit der Geräte- und Software-Ent-wicklung trug CAMAG den Anfor-derungen von cGMP (current Good-Manufacturing Practice) Rechnung.

Ab 1991 wurde bei CAMAG ein Qualitätssicherungssystem aufge-baut, auf dessen Grundlage das Un-ternehmen 1995 im ersten Anlauf die ISO 9001-Zertifizierung schaffte und sie seitdem regelmässig wieder erlangte.

Mit dem Probenautomat III (ATS III) wurde 1990 ein softwaregesteuertes Gerät auf den Markt gebracht, das punkt- und strichförmiges Auf- tragen im nL- und μL-Bereich er-möglichte. Anfänglich wurde es stand-alone betrieben. Später wurde die ATS 3 Software in CATS einge-bunden, so dass die entsprechenden Parameter nicht nochmals für den Scanner eingegeben werden muss-ten. Der ATS III half vielen Kunden weltweit, die Planar-Chromatogra-phie für ihre Massenanalytik einzu-setzen. Das Gerät hielt sich 10 Jahre im CAMAG Sortiment, bis es 2000 vom ATS 4 abgelöst wurde.

Auch das etwas weniger anspruchs-volle Probenauftragegerät, Linomat IV, wurde anfangs dieser Dekade ein-

geführt und blieb bis 2001 im Programm. Das Gerät war Mikro-prozessor gesteuert, die Auftrage- parameter wurden über ein Key-board eingegeben.

1992 wurde mit der Automatischen Entwicklungskammer ADC (Auto-matic Developing Chamber) auch dieser Arbeitsschritt automatisiert und damit für den Benutzer kom-fortabel gestaltet.

Übrigens, seit dem Erscheinen von JPC (Journal of Planar Chroma-tography) und in Anbetracht der durchgängigen Instrumentalisierung benutzen wir vorzugsweise den Be-griff Planar-Chromatographie.

1994 brachten wir den TLC-Scanner 3 auf den Markt. Das Gerät zeichnet sich aus u. a. durch seinen Spek-tralbereich von 190 bis 800 nm, Messgeschwindigkeit bis 100 mm/s, Schrittauflösung wählbar zwischen 25 und 200 μm, schnelle Spektren-aufnahme bis 100 nm/s bei einer Oversampling–Rate von 40/nm. Es

ist noch heute das leistungsfähigste Densitometer für die Planar-Chro-matographie.

Trotz aller Fortschritte der klas-sischen Densitometrie und der Vor-teile der spektralen Auflösung zeich-nete sich ab, dass viele Anwender der Planar-Chromatographie sich der elektronischen Bilderfassung entweder alternativ oder komple-mentär bedienen wollten. Deshalb erweiterte CAMAG ihr Dokumen-tationssystem mit Video-Store zur Dokumentation und Archivie- rung und mit VideoScan zur Quan-tifizierung.

Zu erwähnen ist noch AMD 2, die wir 1997 herausbrachten. Bei diesem System werden die Entwicklungs-strecken nicht mehr über Zeitinkre-mente gesteuert, sondern ebenso wie bei der ADC direkt über einen CCD-Sensor. AMD ist nach wie vor für viele Anwender die einzige Möglichkeit, matrixbelastete Viel-komponenten-Gemische mittels Planar-Chromatographie hoch auf-lösend zu trennen.

DC-Probenautomat III

6

1999 bis heute

Bereits Mitte der 90er Jahre wurde die Entwicklung unseres völlig neu-en Software-Konzepts winCATS – Planar Chromatography Manager gestartet. Wie der Name sagt, wer-den mit dieser Software alle grös-seren CAMAG Geräte gesteuert und alle anfallenden Daten und Ergeb-nisse gemäss cGMP gesichert. win-CATS ist 21 CFR 21 Part 11 com- pliant und hinsichtlich Konzept, Umfang und Qualität weltweit ein-malig. Text- und Graphikangebote können in einem vom Kunden selbst zu bestimmenden Umfang dokumentiert werden. Für sämt-liche Einzelgeräte wurden SOP´s (Standard Operation Procedures) erarbeitet, auf deren Grundlage heu-te speziell geschulte CAMAG Spezi-alisten auf Kundenwunsch IQ/OQ (Installation Qualification / Opera-tion Qualification)-Zertifizierungen durchführen.

Die erste Version winCATS kam im Jahr 2000 heraus, anlässlich der Markteinführung des DC-Proben-automat 4 (ATS 4) (Abbildung siehe Titelseite dieses CBS). Präzision und Robustheit des Probenauftragens im nL- und μL-Bereich wurden wei-ter gesteigert. Ausser der Punkt- und Strichauftragung ist die Auftragung matrix- und wasserhaltiger Proben in Form eines Rechtecks möglich.

2001 folgte ein weiterentwickeltes Ge-rät der Linomat-Familie, Linomat 5, der sowohl über winCATS als auch stand-alone betrieben werden kann.

Mit dem weltweiten Siegeszug der Digitalkamera stellte auch CAMAG seit 2000 ihr Dokumentationssystem um. Seit 2005 kombiniert Digi-Store 2 die Beleuchtungseinheit Reprostar 3 mit einer hochauf lösenden und hochlinearen 12 bit CCD-(Industrie) Kamera mit schneller Datenüber-tragung via FireWire. Das System vereint Funktionen zur Belich-tungsoptimierung und zur Hinter-grundkorrektur mit hervorragender Farbtreue.

2002 wurde das bei Bayer entwickelte Prinzip der Biolumineszenz-De-tektion zum Aktivitäts- und Toxi-zitäts-Screening mit den marinen Bakterien Vibrio fischeri (Kit Bio-luminex™ von ChromaDex) in das Lieferprogramm aufgenommen und 2006 mit dem CAMAG BioLumini-zer optimiert. Eine gekühlte 16 bit CCD-Kamera mit hoher Auflösung und Quanteneffizienz gestattet den kostengünstigen und schnellen Nachweis von Probebestandteilen mit biologischer Aktivität.

Seit 2005 steht die ADC 2 für Plat-ten 20 x 10 und 10 x 10 zur Verfügung. Der vollautomatische Ablauf ge-währleistet die Vorkonditionie-rung und Aktivitätseinstellung der Schicht, die Überwachung der Entwicklungsstrecke mittels CCD-Sensor sowie die Kontrolle der Trocknungsbedingungen. Damit wird eine in der Planar-Chromato-graphie bisher nicht erreichte Kons-tanz der hR

F-Werte innerhalb einer

Platte sowie von Platte zu Platte erzielt. Die ADC 2 kann sowohl über winCATS als auch stand-alone betrieben werden.

Mit dem Einsatz hochwertiger Digi-talkameras zur Bilddokumentation und Quantifizierung wuchsen auch die Ansprüche an die Beleuchtungs-einheit. Dem trägt der seit 2008 an-gebotene CAMAG TLC Visualizer Rechnung.

7

Fazit

Mit der Entwicklung und Herstel-lung von Hard- und Software für die Planar-Chromatographie hat sich CAMAG in den 50 Jahren ihres Bestehens auf dem Weltmarkt eine Position erobert, die zu Recht den Slogan erlaubt: Weltweit führend in der Planar-Chromatographie.

Die Stärken der Planar-Chromato- graphie – Flexibilität, Schnelligkeit, Kosteneffizienz – machen sie nach wie vor zu einer attraktiven Analy-senmethode. Ihre vielfältigen Einsatz-möglichkeiten werden beispielhaft in CAMAG Applikationsschriften, in JPC (Journal of Planar Chromato-graphy) sowie in den häufig von CAMAG initiierten Publikationen in CBS und auf den HPTLC Sympo-sien dargestellt. Manches analytische Problem wurde im CAMAG Appli-kationslabor gelöst. Dies erleichterte

vielen Kunden die Kaufentscheidung und damit ihre Zuwendung zur Planar-Chromatographie. Auf der Basis der er-reichten soliden Marktposition haben wir der Forschung und Entwicklung, einer qualitätsgerechten Produktion sowie einem kundenfreundlichen Service stets grosse Aufmerksamkeit gewidmet.

Unsere zahlreichen Innovationen bis in die jüngste Gegenwart belegen die Kreativität unseres Unternehmens und zeigen, dass CAMAG auch im 21. Jahrhundert gut aufgestellt ist. Für ihre Treue möchten wir allen unseren Kunden sehr herzlich danken.

996.

1455

5 D

ekad

en 0

8-D

Weltweit führend in der Planar-Chromatographie

CBS 101 9

14

Planar Chromatography in Practice

Presented at the

International Symposium for HPTLC,

Helsinki, June 11–13, 2008

Fast identification of unknown impurities by HPTLC/MS

The Analytical Research and Development Department (SRDA) of Sanofi-Aventis lo-cated in Sisteron (Southern France) belongs to Industrial Affairs. The analytical chemists Muriel Nimod, Gilbert Goncalves and Alain Carminati* are in charge of the develop-ment and validation of analytical methods to characterize new active ingredients for new drug applications. Among other methods they use HPTLC coupled to mass spectrometry (MS) for fast identification of impurities formed during chemical reac-tions.

IntroductionDuring an in-process control, an impurity was detected by HPTLC and the whole production process was stopped for identi-fication of the unknown substance.

The usual way of identifying impurities is performed by HPLC/MS coupling. But in this case, the impurity was detected by HPTLC and it would have been time-consuming to correlate the HPTLC peaks with the HPLC peaks or to scrape off the unknown, fol-lowed by elution and HPLC/MS analysis.

Sample preparationThe sample was dissolved in methanol (5 mg/mL).

LayerHPTLC aluminum foils silica gel 60 F254 (Merck), 20 x 10 cm, prewashed by development with the mobile phase

ApplicationBandwise with Automatic TLC Sampler 4 (ATS 4), band length 6 mm, track distance 8 mm, distance from the lower edge 10 mm

ChromatographyIn the twin-trough chamber 20 x 10 cm with n-butanol – water – acetic acid 3:1:1

Post-chromatographic derivatizationUsing the TLC/HPTLC-Sprayer the plate was sprayed with the sulfuric acid reagent (10 % in methanol) and heated on the TLC Plate Heater at 120 °C for 15 min.

In-process control by HPTLC revealed an unknown impurity

Unknown

Known products

From left to right: G. Goncalves, A. Carminati and M. Nimod

Hence the only way to solve this problem in time was to identify the impurity directly on the HPTLC plate. Therefore an extraction-based interface, called ChromeXtractor, was used. The interface was plug-and-play integrated into a given HPLC/MS system and within a minute the unknown substance was extracted into the MS.

15

10 CBS 101

17

18

Coupling with MSUnder UV 366 nm several zones of the fluorescent unknown were marked. For extraction of the un-known from the silica gel a mixture of methanol – formic acid (0.1% in water) 9:1 was used at a flow rate of 0.3 mL/min delivered by the HPLC pump. The zone of the unknown was positioned beneath the extraction head of the ChromeXtractor (Chrom-An, Holzhausen, Germany) and tightened.Note: The upgraded interface will be available from CAMAG in 2009.

By switching the interface valve, the zone was directly extracted into the MS. The Finnigan LTQ LC-MS (Thermo Scientific) equipped with an elec-trospray ionization (ESI) interface was used in the positive and negative ion mode and MS/MS and MS/MS/MS studies were performed on the linear ion trap. The MS parameters were as follows: ioniza-tion voltage 4.0 kV, capillary voltage 27 V, capillary temperature 300 °C, drying gas 5 AU, nebulizing gas 10 AU.

Results and discussionThe following cluster ions were recorded in the positive ESI mode:[M + Na]+ ‡ 385.3 [M + 2Na - H]+ ‡ 407.4[M1 + Na]+ ‡ 433.3/435.3

Further on the cluster ions were recorded in the nega-tive ESI mode with a higher signal intensity:

[M - H]- ‡ 361.3

[M + HCOOH - H]- ‡ 407.0

[M1 + HCOOH - H]- ‡ 455.1/457.1

So far the positive and negative ESI spectra revealed that two unknowns at m/z 385 and 433 were co-eluted.

For identification of the unknowns, MSn was per-formed. The MS2 spectra of the first substance ion at m/z 385 led to [M + Na - HF]+ ‡365 and the MS3 spectra to [M + Na - HF - CH3]+ ‡350.

16

CBS 101 11

19

20

The MS2 spectra of the second substance ion at m/z 433 led to [M + Na - HF]+ ‡ 413 and the MS3 spectra to:

[M + Na – HF - CH3]+ ‡ 398

[M + Na – HF - HCl]+ ‡ 377

[M + Na – HF - HCl - H2O]+ ‡ 359

Further information is available from the authors on request.

*Alain Carminati, Analytical Research and Development Depart- ment, Sanofi-Aventis, Chemin de Meteline, 04200 Sisteron, France, Tel. ++33-492333955 [email protected]

The unknown zone which was detected by HPTLC could finally be identified to be two impurities, i.e. an aldehyde derivative (R-CHO, M = 362 g/mol) and a chlorinated ketone derivative (R-CO-CH2Cl, M = 410 g/mol).

The methodology of coupling HPTLC and MS was very helpful because the identification of the new process impurities was performed in very short time. Within a minute the mass spectrum of the impu-rities was obtained by direct extraction into the MS. The tedious development of an HPLC/MS method, which was the usual way of identification and structure elucidation of impurities in HPTLC, was not necessary anymore.

This procedure can be used for routine in-process control.

CAMAG Automatic TLC Sampler 4 (ATS 4)

For the HPTLC/MS method as well as in all other contributions of this CBS issue, the ATS 4 is used for fully automatic application of sub-stances onto the HPTLC plate. Samples can be applied as bands using the spray-on tech-nique or as spots by contact transfer. Sample application in form of rectangles allows the application of large volumes.

The ATS 4 is easy to operate and controlled by winCATS. It applies substances under a cover to protect the object from environmen-tal factors. It features a self-adjusting object support to accommodate objects of various thickness. The spray nozzle does not require adjustments. Aside of the standard rack also a special rack holding 96-well-plates can be installed. Automatic sample application increases precision and robustness during routine analysis in a GLP/GMP environment.

ATS 4 is available as option with a heated spray nozzle, especially useful for the application of aqueous solutions (see p. 3).

12 CBS 101

21

Planar Chromatography in Practice

Use of HPTLC as a problem solving technique in pharmaceutical analysis

Clare McKinlay* is an analytical scientist in the Che-mical Development department of GlaxoSmithKline (GSK) in Stevenage near London. In her work on the development of new chemical entities, she has been using planar chromatography to investigate various findings encountered at different project stages, varying from candidates selection stage to new drug application and launch. As a result of some successes, Ms. McKinlay has been involved in increasing the awareness of the benefits of the technique in the department.

IntroductionHPLC and GC are the commonly used chromato-graphic techniques in the analysis of starting materi-als, process intermediates and active pharmaceutical ingredients (API) in R&D at GSK. HPTLC capabilities are in place, but are not used routinely. However this technique has proven to be an ideal solution for various problems and can complement other chromatographic techniques.

Problems from several projects have arisen where these more favored chromatographic techniques, HPLC and GC, have been unable to provide the project team with the appropriate level of understanding. HPTLC has been used to investigate these problems and has shown to be a very useful tool. This paper will focus on two examples of this problem solving abil-ity of planar chromatography and will summa-rize the reasons why it was successful.

Clare McKinlay

Example 1: Investigation of a mass imbalance discovery in light degraded samples of APIDuring a drug substance stability study a mass im-balance was discovered in light degraded samples. It was observed as the low assay result by HPLC could not be accounted for by the sum of all the impurity determinations. HPTLC was investigated to see if any new impurities could be detected to explain the observation.

LayerHPTLC plates silica gel 60 F254 (Merck), 20 x 10 cm, prewashed by development with methanol then dried on TLC plate heater at 80 °C for 15 min.

Sample preparationSamples were prepared at a concentration of 15 mg/ mL in ethyl acetate.

ApplicationSamples were applied bandwise at a loading of 2 µL using the Automatic TLC Sampler.

ChromatographyPlates were developed in the Horizontal Developing Chamber with a mobile phase of ethyl acetate – heptane, 9:1 to a migration distance of 50 mm from the lower plate edge. The plates were dried on the TLC plate heater and then eluted with a secondary solvent of tetrahydrofuran to elute synthetic oligo-mers from the origin. After the second develop-ment only the new light degradants remained at the origin.

Results and discussionPlates were scanned at 240 nm with the TLC Scan-ner 3 and images taken under illumination at 254 nm to show the difference between stability and control samples.

Since HPTLC made it possible to see everything on the plate, it was clear that there were additional, new impurities present in the degraded sample which were not in the control sample. This method was shown to be sensitive enough to detect the

Presented at the

International Symposium for HPTLC,

Helsinki, June 11–13, 2008

CBS 101 13

22

HPTLC plate (section) after initial chromatography (left) and after second development (right); 1) control track, 2) sample after 72 hours, 3) after 21 days exposure

Light degradation product at the origin

Example 2: Investigation of color differences in samples of an APIDuring the development of another project, differ-ences in color between batches of an API were ob-served. No differences in HPLC impurity profile were seen and all other analyses gave consistent results. HPTLC was used to try to identify any new impuri-ties in the yellow colored samples. The advantage of HPTLC having the ability to see everything on the plate was utilized here.

LayerHPTLC plates NH2 F254 (Merck), 10 × 10 cm, pre- washed by development with methanol then dried on TLC plate heater at 80 °C for 15 min.

Sample preparationSamples were prepared at a concentration of 2 mg/ mL in methanol.

ApplicationSamples were applied bandwise at a loading of 4 µL using the Automatic TLC Sampler.

This impurity was extracted from the plate for fur-ther investigation by mass spectrometry to identify this unknown impurity. The method developed for HPTLC was also transferred to solid phase extraction cartridges for further preparation work.

ConclusionThe examples presented above all show how HPTLC can be used as a problem solving tool and can complement HPLC or GC for the analysis of certain compounds. The information gained from using the technique has been key to progress on several of the projects. Clearly, it has been proven that HPTLC deserves its place in modern pharmaceutical laboratories.

*Clare McKinlay, Analytical Sciences, GlaxoSmithKline, Medicines Research Park, Gunnells Wood Road, Stevenage, Hertfordshire, UK, SG1 1WZ, [email protected]

Further information is available on request from the author.

HPTLC plate (section) of blank (track 1), white API (track 2), yellow API (track 3), and colored extract (track 4) under 366 nm (left) and white light (right)

impurity in samples which had a 2 % mass imbalance and provided very useful information to the project team. Further impurity identification work was per-formed on these samples by preparative TLC and mass spectrometry.Note: The upgraded extraction interface, available at CAMAG in 2009, coupled to a high resolution mass spectrometer allows the identification of an unknown in a fraction of the time (by extraction of the unknown directly from the analytical plate).

ChromatographyPlates were developed in the Horizontal Developing Chamber with a mobile phase of methanol to a migra-tion distance of 60 mm from the lower plate edge.

Results and discussionSamples of varying colors were analyzed along with a highly colored reaction liquor sample. HPTLC clearly showed that a yellow colored band was present in the colored API which was not seen in the less colored API. This explained the differences in color and a new impurity of interest was found. The impurity also showed a native blue fluorescence at 366/>400 nm.

23

White light

1. Development 2. Development

14 CBS 101

24

CAMAG Laboratory: Method Development in Practice

Dr. E. Reich*, Head of the CAMAG laboratory in Muttenz

Validation of HPTLC methods for the identification of botanicals

IntroductionThere is a great need for appropriate testing methods since the current Good Manufacturing Practices (cGMPs) for Dietary Supplements have become ef-fective in the United States. The analysis of botani-cals is challenging because plant based materials are complex mixtures of compounds which exhibit natu-ral variability. Identification methods must be specific to distinguish the presence of wrong species.

HPTLC is a valuable tool for reliable identifica-tion because it can provide chromatographic fingerprints that can be visualized and stored as electronic images. To fully take advantage of this unique feature inherent to HPTLC, repro-ducible results and images must be ensured.

Reproducibility is improved if suitable instrumenta-tion is used, a standardized HPTLC methodology is implemented, and methods have been developed and validated according to the following concept [1].

The validation process and its elementsBased on a clearly defined analytical goal the valida-tion process starts with the selection/optimization or with the development of a method [2]. Following a series of stability evaluating experiments a validation protocol is elaborated. Data obtained in the valida-tion experiments are evaluated and compared with the acceptance criteria of the validation protocol.

If all criteria are met the method can be regarded as valid.

Validation process

Method selectionCriteria for selecting a suitable method are deter-mined by the analytical goal but also include safety factors, time requirements, and simplicity.

Optimization of methodDuring optimization all TLC methods are converted into HPTLC methods and a standardized metho- dology is applied. At this point botanical reference materials (BRM) of known adulterants are included to ensure sufficient specificity of the method.

StabilityThe stability of the analyte on the plate, in solution, and during chromatography as well as the stability of the visualized chromatogram are to be investigat-ed. Stability of the sample during chromatography is investigated by two-dimensional (2D) development. Therefore one portion of the BRM is prepared and applied as spot at the lower right corner of a plate. The plate is developed, dried, turned 90° to the right, and developed a second time. If the sample is stable during chromatography, all components can be detected on the line connecting the ap-plication position and the intersection of the two solvent fronts. Spots located off this line indicate the formation of artifacts. Methods that produce artifacts have to be improved. If visualization of the fingerprint requires a derivatization step, the stability of result must be evaluated over time (e.g. up to one hour).

25

CBS 101 15

Investigation of stability during chromatography for Eleuthero (stab-le, left) and Angelica (not stable, right)

Validation protocolThe validation protocol is a key instrument for structur-ing, managing and documenting the validation process. The following elements must be included:

1. Goal of the method to be validated 2. General acceptance criteria 3. Personnel4. Detailed description of the method 5. Validation 5.1 Material 5.2 Stability 5.3 Specificity 5.4 Precision 5.4.1 Repeatability 5.4.2 Intermediate precision 5.4.3 Reproducibility (optional) 5.5 Robustness 6. Results, releases, signatures

SpecificityAuthenticated samples of the target species, if possible from different origin, and samples of known adulter-ants are chromatographed on the same plate. Based on electronic images the sequence (number, color, intensity, and position) of the zones in each fingerprint is evaluated by visual comparison. A method is specific, if an authentic sample gives a fingerprint similar to that of the BRM and any adulterated sample fails the similarity test.

Precision The precision of a qualitative analysis (generation of HPTLC fingerprint) can be expressed as precision of the positions of separated zones (hRF-values). We propose to look at three levels: repeatability, intermediate preci-sion, and reproducibility. Precision is acceptable if the variability of the hRF-values of three markers does not

exceed hRF 1 across each plate, hRF 2 for repeatability, and hRF 5 for intermediate preci-sion and reproducibility [1].

Note: It is recommended to use the Automatic Developing Chamber 2 that controls the plate activity.

RobustnessEffects of many experimental parameters can be evaluated already during method development. As the HPTLC result is generally affected by the relative humidity in the laboratory it is important to evaluate the range over which the method performs as expected.

Comparison of the fingerprints of Hoodia gordonii obtained at different relative humidity (1: 3% RH, 2: 33% RH, 3: 47% RH, 4: 54% RH, 5: 75% RH)

[1] E. Reich, A. Schibli, A. DeBatt, J AOAC INT 91 (2008) 13

[2] E. Reich, A. Schibli, High-performance thin-layer chro- matography for the analysis of medicinal plants, Thieme Medical Publishers Inc., New York, 2007.

* Dr. Eike Reich, CAMAG Laboratory, Sonnenmattstr. 11, 4132 Muttenz, Switzerland. [email protected]

Further information is available on request from the author.

26

27 1 2 3 4 5

28

29

World leader in Planar Chromatography CB

S 10

1 E

996.

2270

-3

Reproducible chromatography made possible

ADC 2: Reproducibility, comfort and security for the isocratic development of TLC/HPTLC plates

Chromatogram development is the most critical step of Planar Chromatography. In the Automatic Developing Chamber ADC 2 this step is fully auto-matic and reproducible, independent of environ-mental effects.

Key features of the Automatic Developing Cham-ber ADC 2:

• Fully automatic development of 20 x 10 cm and 10 x 10 cm TLC/HPTLC plates

• Use of a conventional CAMAG 20 x 10 cm Twin Trough Chamber for development

• Operation in stand-alone mode or under winCATS

• Freedom from all process monitoring responsi- bilities, operation is fully traceable

• Reproducible chromatography at defined activity of the layer with option “Humidity Control”

www.camag.com/adc2