sepam series 80 neutral voltage displacement

Upload: dinakaran2020

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Sepam Series 80 Neutral Voltage Displacement

    1/333

    2

    SEPED303001EN - 01/2013

    Metering functions  Residual voltageNeutral point voltage

     

    Residual voltage

    OperationThis function gives the following values:

    b main residual voltage

    b additional residual voltage

    The residual voltage value may be:

    b calculated by an open star/delta VT

    b or calculated by taking the internal sum of the 3 phase voltages.

    It is based on the measurement of the fundamental 50 Hz or 60 Hz component

    of the voltages.

    ReadoutThe measurements may be accessed via:

    b the Sepam display via the key

    b the display of a PC with the SFT2841 softwareb the communication link.

    CharacteristicsMeasurement range 0.015 to 3 Vnp (1)

    Units V or kV

    Resolution 1 V

    Accuracy ±1 % from 0.5 to 3 Vnp±2 % from 0.05 to 0.5 Vnp±5 % from 0.02 to 0.05 Vnp

    Display format 3 significant digits

    Refresh interval 1 second (typical)

    (1)  Vnp: primary rated phase-to-neutral voltage (Vnp = Unp/ 3   ).

    Neutral point voltageOperationThis function gives the value of the zero sequence voltage Vnt, measured at theneutral point of a generator or motor by a dedicated VT:

    ReadoutThe measurements may be accessed via:

    b the Sepam display via the keyb the display of a PC with the SFT2841 software

    b the communication link.

    CharacteristicsMeasurement range 0.015 Vnp to 3 Vntp (1)

    Units V or kV

    Resolution 1 V

    Accuracy ±1 % from 0.5 to 3 Vntp±2 % from 0.05 to 0.5 Vntp±5 % from 0.02 to 0.05 Vntp

    Display format 3 significant digits

    Refresh interval 1 second (typical)

    (1)  Vntp: neutral point voltage transformer primary voltage.

    V0 V1 V2 V3+ +=

    ′ 0 V′ 1 V ′ 2 V′+ +=

    nt V1 V2 V3+ +( ) 3 ⁄ =

  • 8/17/2019 Sepam Series 80 Neutral Voltage Displacement

    2/3178

    3

     SEPED303001EN - 01/2013

    Protection functions  Neutral voltage displacementANSI code 59N

     

    Protection against insulation faults  DescriptionProtection against insulation faults by measuring the residual voltage V0 or the

    neutral point voltage Vnt for generators and motors.

    The residual voltage is obtained by the vector sum of the phase voltages or bymeasurements using delta connected VTs.

    The neutral point voltage is measured by a VT inserted in the neutral point of the

    generator or the motor.

    The protection function includes a time delay T, either definite or IDMT (dependenton the residual voltage V0) (see tripping curve equation on page 226).

    It operates only when a residual or neutral point voltage is available, by connecting

    V1V2V3, V0 or Vnt.

    Block diagram

          D      E      5      0      7      8      5

    CharacteristicsSettings

    Measurement origin

    Setting range Main channels (V0)Additional channels (V’0)Neutral-point voltage (Vnt)

    Tripping curve

    Setting range Definite timeIDMT (dependent on the residual voltage V0)

    Vs0 set point

    Definite time setting range 2 % Unp to 80 % Unp (for residual voltage V0)2 % Vntp to 80 % Vntp (for neutral point voltage Vnt)

    IDMT setting range 2 % Unp to 10 % Unp (for residual voltage V0)2 % Vntp to 10 % Vntp (for neutral point voltage Vnt)

    Accuracy (1) ±2 % or 0.005 Unp

    Resolution 1 %

    Drop out/pick up ratio 97 % ±2 % or > (1 - 0.006 Unp/Vs0) x 100 %

    Time delay T (tripping time at 2 Vs0)

    Definite time setting range 50 ms to 300 s

    IDMT setting range 100 ms to 10 s

    Accuracy (1) ±5 % or ±25 ms

    Resolution 10 ms or 1 digit

    Characteristic times

    Operation time pick-up < 45 ms (typically 25 ms) at 2 Vs0

    Overshoot time < 40 ms at 2 Vs0

    Reset time < 40 ms at 2 Vs0

    Inputs

    Designation Syntax Equations Logipam

    Protection reset P59N_x_101   b b

    Protection inhibition P59N_x_113   b b

    Outputs

    Designation Syntax Equations Logipam Matrix

    Instantaneous output (pick-up) P59N_x_1   b b

    Delayed output P59N_x_3   b b b

    Protection inhibited P59N_x_16   b b

    x: unit number.(1)  Under reference conditions (IEC 60255-6).

  • 8/17/2019 Sepam Series 80 Neutral Voltage Displacement

    3/3226

    3

     SEPED303001EN - 01/2013

    Protection functions  GeneralTripping curves

     

    Current IDMT tripping curvesMultiple IDMT tripping curves are offered, to cover most applications:

    b IEC curves (SIT, VIT/LTI, EIT)

    b IEEE curves (MI, VI, EI)b commonly used curves (UIT, RI, IAC).

    IEC curves

    Equation Curve type Coefficient values

    k    α βStandard inverse / A 0.14 0.02 2.97

    Very inverse / B 13.5 1 1.50

    Long time inverse / B 120 1 13.33

    Extremely inverse / C 80 2 0.808

    Ultra inverse 315.2 2.5 1

    RI curve

    Equation:

    IEEE curves

    Equation Curve type Coefficient values

    A B p   βModerately inverse 0.010 0.023 0.02 0.241

    Very inverse 3.922 0.098 2 0.138

    Extremely inverse 5.64 0.0243 2 0.081

    IAC curves

    Equation Curve type Coefficient values

    A B C D E   βInverse 0.208 0.863 0.800 -0.418 0.195 0.297

    Very inverse 0.090 0.795 0.100 -1.288 7.958 0.165

    Extremely inverse 0.004 0.638 0.620 1.787 0.246 0.092

    Voltage IDMT tripping curvesEquation for ANSI 27 - Undervoltage Equation for ANSI 59N - Neutral voltage displacement

    Voltage/frequency ratio IDMT tripping curvesEquation for ANSI 24 - Overfluxing (V/Hz) Curve type p

    Where G = V/f or U/f A 0.5

    B 1

    C 2

    td I( )k 

    I

    Is----  

     α 1–

    --------------------T

    β---×=

    td I( )1

    0.339 0.236I

    Is----  

      1––

    -----------------------------------------------------T

    3.1706------------------×=

    d I( )A

    I

    Is----  

     p 1–---------------------- B+

             

    T

    β---×=

    td I( ) AB

    I

    Is---- C–  

     -------------------

    D

    I

    Is---- C–  

     2----------------------

    E

    I

    Is---- C–  

     3----------------------+ + +

             

    xT

    β-----=

    td V( ) T1

    V

    Vs------  

     –

    ---------------------=td V( )

    T

    V

    Vs-------  

      1–----------------------=

    td

    G( )1

    G

    Gs------- 1–  

     p------------------------- x T=