section 14 - web viewccg2 project scope_section 14_structures_ir draft.docx. ... and thermal...

30
document.docx 14 STRUCTURES The Developer shall design and construct all structures within the Project limits in accordance with the Contract Documents. Structures shall be designed and constructed for the Interim Condition and the Future Condition, as defined in Section 1.4. Structures shall also conform to Section 16 (Aesthetics and Enhancements). The Developer shall assign bridge numbers to all new bridges in accordance with BDM Section 102.5. 14.1 GOVERNING REGULATIONS Governing regulations and supplemental specifications are listed in Section 1. For cases where American Association of State Highway and Transportation Officials (AASHTO) Specifications conflict with ODOT standards, ODOT standards shall take precedence. For structural components not addressed by the standards listed in Section 1, other guidelines or specifications that reflect currently accepted industry practice can be used if Approved by the Department. The Developer may disregard all instructions to consult the Office of Structural Engineering in the ODOT Bridge Design Manual (BDM). 14.2 BRIDGE CRITERIA 14.2.1 Definition Of I-90 Viaduct Structures And Central Viaduct Structure The I-90 Viaduct Structures are continuous bridges spanning over the Cuyahoga River valley from West 14 th Street southbound to the GCRTA tracks, inclusively. The main span portions span over Abbey Avenue on the west and Canal Road on the east. The remaining spans are considered approach spans. The westbound I-90 Viaduct Structure is being constructed in CCG1. The eastbound I-90 Viaduct Structure shall be designed and constructed as part of CCG2. The I-90 Viaduct Structures will replace the Central Viaduct Structure, defined as existing Bridge No. CUY-90-1524 Page 14-1

Upload: ngotram

Post on 01-Feb-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

14 STRUCTURESThe Developer shall design and construct all structures within the Project limits in accordance with the Contract Documents. Structures shall be designed and constructed for the Interim Condition and the Future Condition, as defined in Section 1.4. Structures shall also conform to Section 16 (Aesthetics and Enhancements).

The Developer shall assign bridge numbers to all new bridges in accordance with BDM Section 102.5.

14.1 GOVERNING REGULATIONSGoverning regulations and supplemental specifications are listed in Section 1. For cases where American Association of State Highway and Transportation Officials (AASHTO) Specifications conflict with ODOT standards, ODOT standards shall take precedence. For structural components not addressed by the standards listed in Section 1, other guidelines or specifications that reflect currently accepted industry practice can be used if Approved by the Department.

The Developer may disregard all instructions to consult the Office of Structural Engineering in the ODOT Bridge Design Manual (BDM).

14.2 BRIDGE CRITERIA

14.2.1 Definition Of I-90 Viaduct Structures And Central Viaduct StructureThe I-90 Viaduct Structures are continuous bridges spanning over the Cuyahoga River valley from West 14th Street southbound to the GCRTA tracks, inclusively. The main span portions span over Abbey Avenue on the west and Canal Road on the east. The remaining spans are considered approach spans.

The westbound I-90 Viaduct Structure is being constructed in CCG1. The eastbound I-90 Viaduct Structure shall be designed and constructed as part of CCG2. The I-90 Viaduct Structures will replace the Central Viaduct Structure, defined as existing Bridge No. CUY-90-1524 (Structure File No. 1809393), which carried I-90 eastbound and westbound traffic prior to the completion of the westbound I-90 Viaduct Structure.

14.2.2 GeometricsThe Developer shall design and construct new bridges in accordance with Table 14-1.

Table 14-1: New Bridge Geometric Requirements

Bridge Location No. Location

Minimum Vertical

Clearance

Width and Location of Shoulders

24 I-90 eastbound over Fairfield Avenue 14.5 feet 12.0 feet left and right25 West 14th Street on-ramp to I-90 14.5 feet 4.0 feet left; 8.0 feet

Page 14-1

Page 2: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Bridge Location No. Location

Minimum Vertical

Clearance

Width and Location of Shoulders

eastbound over Tremont neighborhood parking lot

right

I-90 Viaduct Structure

Eastbound I-90 Viaduct Structure See Table 14-2 12.0 feet left; 12.0 feet right for mainline I-90; 8 feet right for W. 14th Street on-ramp and off-ramp to Ontario Street

26 I-90 eastbound over Ontario Street 15.5 feet 12.0 feet left and right27 I-90 eastbound off-ramp to Ontario

Street15.5 feet 4.0 feet left; 8.0 feet

right30 I-90 eastbound over E. 9th Street 15.5 feet 12.0 feet left; 10.0 feet

right

The eastbound I-90 Viaduct Structure shall comply with the minimum vertical clearance requirements shown in Table 14-2.

Table 14-2: Eastbound I-90 Viaduct Structure Vertical Clearance Requirements

Location Minimum Vertical Clearance

West 14th Street southbound 14.5 feetAbbey Avenue 14.5 feetTowpath Trail 14.5 feetCuyahoga River 100 feet above elevation 569.4

(NAVD88) for the 200-foot wide navigation channel

Norfolk Southern Railroad 23.0 feetWest 3rd Street 14.5 feetCSX Willow Industrial Track 23.0 feetCanal Road 14.5 feetCommercial Road 15.5 feetGCRTA 23.0 feet

14.2.3 Bridge RenovationsBridge renovations shall comply with the geometric requirements specified in Table 14-3.

Page 14-2

Page 3: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Table 14-3: Bridge Renovation Geometric Requirements

Bridge Location No. Location

Minimum Vertical

Clearance

Width and Location of Shoulders

21 I-71 northbound and southbound over I-490 and ramps

15.5 feet 5.25 feet left; 10.0 feet right

22 I-90 eastbound over Starkweather Avenue 14.5 feet 12.0 feet left and right

23 I-90 eastbound over Kenilworth Avenue 14.5 feet 12.0 feet left and right

31 I-90 eastbound and westbound over I-77 southbound ramps

Not less than existing.

Minimum of 4.0 feet left and right

The Developer shall replace the deck and raise the superstructure at Bridge Location No. 21. The deck shall be made composite with the steel girders.

The Developer shall replace the superstructure and widen the bridge at Bridge Location Nos. 22 and 23. Bridge Location No. 22 shall accommodate the I-90 eastbound on-ramp and mainline I-90 eastbound (only on I-90 eastbound/I-71 northbound portion of bridge). Work on Bridge Location No. 23 shall be for the I-90 eastbound portion only.

At Bridge Location No. 31, the Developer shall widen the bridge to accommodate the Interim Condition. The median parapet shall be modified to transition into portable concrete barrier. This bridge will be removed in CCG3, as the on-ramp to southbound I-77 will be constructed over I-90 as part of the Future Condition.

At Bridge Location Nos. 22 and 23, the design live load shall be HS25 for new superstructure members. The design live load for other members of renovated bridges shall be in accordance with BDM Section 400.

The Developer shall perform the following at Bridge Location Nos. 21, 22, and 23:

Replace approach slabs. Replace porous backfill with new porous backfill, filter fabric, and drainage pipe behind abutments. Patch substructure concrete in accordance with C&MS 519 at all locations where unsound concrete is present as determined by the IQF.

Replace all curb, sidewalk, and slope protection that is cracked or damaged, as determined by the IQF, under the bridges along the roadways being spanned within the I-90 Right-of-Way.

The following work shall be performed at Bridge Location No. 21:

Page 14-3

Page 4: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Refurbish all bearings or replace them with new bearings of the same material and type. Remove and replace abutment backwalls to the top of the bearing seat. Trim beam ends as needed to achieve a gap no smaller than 3 inches between beam ends and

backwalls. Remove the bump plates at the rear abutment along girder lines E, F, and G. Install steps to access abutment bearings.

Steps shall be capable of resisting a 400-pound proof load in direct pull. Steps shall be fabricated in accordance with one of the following:

C&MS 711.13 with a depressed thread or 0.5-inch minimum cleat C&MS 711.30 with a depressed thread or 0.5-inch minimum cleat Friction-fit steps that comply with C&MS 711.31

The Developer shall perform the following at Bridge Location Nos. 22 and 23:

Replace bearings with elastomeric bearings. Remove and replace pier caps with new pier caps supported by and continuous over both new

and existing columns.

Replace underpass lighting in accordance with Section 17.

At Bridge Location Nos. 22 and 23, the Developer shall either design and construct a conventional abutment with a deck joint or convert the abutment to semi-integral. For conventional abutments, the backwall shall be removed and replaced to the top of the bearing seat and the beam ends shall be trimmed as needed to achieve a gap no smaller than 3 inches between beams ends and backwalls.

The Developer shall perform the following at Bridge Location No. 31:

Widen rear approach slab. Remove and replace existing rear abutment backwall to top of bearing seat under new approach

slab. Replace porous backfill with new porous backfill and filter fabric behind portion of rear

abutment where backwall is removed. Place new porous backfill, filter fabric, and drainage pipe behind new portion of rear abutment. Tie new drainage pipe into existing drainage pipe.

Cracked and damaged curb, sidewalk, and slope protection shall be replaced in segments delineated by existing construction joints.

Where median barrier is modified at Bridge Location No. 31 to accommodate the Interim Condition, the Developer shall provide a linear transition over a 20-foot minimum length to match the height of the

Page 14-4

Page 5: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

portable concrete barrier. A hinged connection shall be provided at all gaps between median parapet sections and the portable concrete barrier.

After removal of median barrier placed on the westbound I-90 Viaduct Structure to achieve the Bi-Directional Condition, the Developer shall fill all anchor holes with grout and seal these areas with high molecular weight methacrylate.

When raising structures, the adjustment in beam seat elevations shall be accomplished by steel shims if the amount raised is 4 inches or less. If the structure is raised more than 4 inches, the bridge seat shall be raised for its entire length by adding a reinforced concrete cap dowelled into the existing concrete. Steel shims shall be painted after installation.

The Developer shall immediately cease all jacking operations and install supports if, during bridge jacking operations, cracking of the concrete superstructure or other damage to the structure occurs.

All ends of cover plates and beam continuity welds with splice plates shall be retrofitted. Retrofits shall not result in the bridge no longer satisfying minimum vertical clearance criteria.

Existing and new steel damaged due to rehabilitation work shall be repaired and painted with the OZEU paint system per C&MS 514.

14.2.4 Bridge RemovalsBridge removal requirements shall apply to both total bridge removals and partial removals needed to renovate bridges to remain.

The Developer shall remove bridges as specified in Table 14-4.

Table 14-4: CCG2 Bridge Removals

Bridge Location No. Location

Central Viaduct Structure I-90 eastbound and westbound28 I-90 westbound over East 9th Street29 I-90 eastbound over East 9th Street32 US 422 eastbound on-ramp to I-77 southbound over Ontario

Street33 US 422 eastbound and East 9th Street on-ramp to I-77

southbound over East 9th Street34 I-77 northbound and southbound over East 14th Street (US

422 eastbound on-ramp portion only)35 Norfolk Southern Railroad siding over GCRTA

Page 14-5

Page 6: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

The Developer shall be responsible for bridge removal in a sequence and manner that maintains the stability of the remaining members until all members have been removed. The Developer shall maintain the stability of the structure under all conditions. The Developer shall remain solely responsible for all aspects of safety, structural capacity, structural stability, applicable regulations, and permits associated with bridge removal work.

Demolition affecting GCRTA operations shall be performed in the winter months of 2014 or 2015.

The exit ramp constructed for eastbound I-90 traffic at the east end of the Central Viaduct Structure was originally constructed with a shoring tower, which made the span over GCRTA railroad composite for dead load. The Developer shall consider the original construction method for this exit ramp in determining how this portion of the bridge will be removed.

During removal of the Central Viaduct Structure, the Developer shall maintain a vertical clearance of 96 feet above the Cuyahoga River level at all times for the entire width between the bulkhead walls. All navigation devices required by the United States Coast Guard for the Central Viaduct Structure shall be provided and maintained by the Developer until the truss span over the river has been completely removed.

A barge-mounted crane in the river may be used to remove portions of the bridge. Barges shall be clear of the navigation channel when not in use.

At a minimum, the Central Viaduct Structure shall be removed to 2 feet below the existing or final grade, whichever is at a lower elevation. The Developer shall also completely remove the sheet piling, tiebacks, and dead-man sheeting placed longitudinally to the Central Viaduct Structure approximately centered next to the second existing pier north of Abbey Avenue.

The Developer shall prepare demolition plans for the removal of bridges in accordance with C&MS 501.05. Demolition plans shall demonstrate the feasibility of all operations proposed to safely remove bridges and shall include the following:

Details for all temporary supports and falsework Detailed procedures and plans for the protection of traffic adjacent to and under the bridge,

including vehicular, pedestrian, railroad, and boat traffic Details for all devices and structures necessary to ensure such protection

For the Central Viaduct Structure, the demolition plan shall include the following:

Description of and design computations for temporary structures (if used) Methods of demolition Location and type of equipment Sequence of removal

Page 14-6

Page 7: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Pick points on members Sizes of pieces removed Hauling method Location of hauling equipment Structural analysis of the bridge demonstrating that the bridge will remain structurally sound

and stable during all phases of removal operations

For bridges being removed over or immediately adjacent to railways, the demolition plans shall indicate the method of protection for the track structure.

The use of explosives is not allowed. Headache balls and hoe-rams are not allowed for demolition of bridge substructures west of Abbey Avenue. Deck concrete shall be removed only by lift methods west of Abbey Avenue.

Headache balls and hoe-rams shall not be used for partial removals needed to renovate bridges. Chipping hammers shall not be heavier than the nominal 90-pound class, except where used to remove concrete within 18 inches of substructure portions to be preserved, where the weight of the hammer shall not be more than 35 pounds. Pneumatic hammers shall not be placed in direct contact with reinforcing steel to be retained in a renovated structure.

The Developer shall sawcut the boundaries of concrete removals a minimum depth of 1 inch, except for the following specific locations noted for Bridge Location No. 31. At Bridge Location No. 31, the Developer shall sawcut full-depth all boundaries of concrete removals at the wingwall and longitudinal boundaries at the approach slab that will not be located in the shoulder.

No debris shall be allowed to fall onto railway property or the Cuyahoga River. No staging of equipment or material is allowed on Railroad property without the express written permission of the Railroad.

Sandstone blocks and brick pavers being stored under the Central Viaduct Structure shall be protected from damage during bridge removal operations.

No materials or equipment shall be stored on the Central Viaduct Structure prior to or during removal of the structure.

Before construction equipment is mobilized over or operated on Bridge Location No. 35, the Developer shall analyze the capacity of the bridge to ensure it is structurally adequate for all loads induced by the equipment.

At Bridge Location No. 34, the east abutment shall remain. The Developer shall place a barrier between the guardrail and the barrier for southbound I-77.

14.2.5 Structure Type Requirements And LimitationsThe following superstructure types are allowed:

Page 14-7

Page 8: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Steel beam or girder Prestressed concrete bulb-tee or I-girder Concrete slab without voids

Structure types shall be in accordance with Table 14-5 for the listed bridges.

Table 14-5: Bridge Superstructure Types

Bridge Location No. Location Superstructure Type

I-90 Viaduct Structure Eastbound I-90 Viaduct Structure Steel girder25 West 14th Street on-ramp to I-90 Steel girder26 I-90 eastbound over Ontario Street Steel girder27 I-90 eastbound off-ramp to Ontario Street Steel girder

The main span portion of the eastbound I-90 Viaduct Structure shall be designed and constructed with five steel girders that satisfy the aesthetic requirements specified in Appendix AE-01 (Aesthetic Detail Requirements).

Prestressed concrete box beams and truss type bridges are not allowed.

Fracture-critical members and non-redundant superstructure designs are prohibited.

For the eastbound I-90 Viaduct Structure, a three-dimensional model shall be used to determine the load distribution to the framing system.

The eastbound I-90 Viaduct Structure shall be designed and constructed such that deck repairs and replacement can be accomplished while maintaining three 11-foot traffic lanes and a 2-foot shoulder on each side of the eastbound bridge. Girders shall be designed as non-composite when the concrete deck does not extend across the full width of the top flange.

The Developer shall design temporary support points at each substructure of the eastbound I-90 Viaduct Structure. Temporary support points shall be clearly identified in the Design Documents. Temporary support points shall be designed for dead load only during bearing replacement operations.

The Developer shall use the traffic data in Table 14-6 for fatigue calculations:

Page 14-8

Page 9: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Table 14-6: I-71 and I-90 Traffic Data

Location Current ADT (2015)

Design Year (ADT 2035)

Truck (24-Hour B & C)

Northbound I-71 over I-490 and Ramps 36,000 39,000 8%Southbound I-71 over I-490 and Ramps 40,000 42,000 8%Eastbound I-90 over Starkweather, Kenilworth, Fairfield, and Abbey Avenues

64,000 69,000 8%

Eastbound I-90 on-ramp over Tremont neighborhood parking lot

7,300 7,900 5%

Eastbound I-90 over Cuyahoga River Valley 71,000 77,000 8%Eastbound I-90 over Ontario Street 59,000 64,000 8%Eastbound I-90 off-ramp over Ontario Street 12,100 12,800 15%Eastbound I-90 over E. 9th Street and I-77 Southbound Ramps

45,000 48,000 8%

Westbound I-90 over E. 9th Street and I-77 Southbound Ramps

48,000 47,000 8%

14.2.6 FoundationsBridge foundations shall conform to provisions of Section 9 (Geotechnical), in addition to the requirements of this Section 14. Only bridge foundation types covered by Department Standards are allowed.

Drilled shafts shall be socketed into bedrock a minimum depth of 1.5 times the drilled shaft diameter. Skin friction capacity provided by the top 2 feet of the drilled shaft rock socket shall be neglected. Drilled shaft friction capacity provided by soil shall be neglected for bridge foundations.

All drilled shafts, including demonstration shafts and production shafts, shall be tested with crosshole sonic logging (CSL) and thermal integrity profiling (TIP) procedures as specified in Appendix GE-02 (Drilled Shaft Testing).

For drilled shafts, the minimum clear distance between longitudinal and lateral reinforcement shall not be less than five times the maximum aggregate size.

Drilled shafts shall not be installed on the Project until after successful construction of at least one demonstration drilled shaft as specified in Appendix GE-03 (Demonstration Drilled Shafts).

A substructure foundation with less than four drilled shafts shall be considered non-redundant. A 20-percent capacity reduction factor shall be applied to each drilled shaft when less than four drilled shafts are constructed in an individual substructure.

Page 14-9

Page 10: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Drilled shafts are required for bridge foundations constructed between Abbey Avenue and the Cuyahoga River, due to grading in the west slope region between Abbey Avenue and the Cuyahoga River, as described in Section 9. The tops of foundations located between Abbey Avenue and the Cuyahoga River shall be a minimum of 1 foot below finished grade.

Construction of foundations in the west slope shall not occur until the excavation of the west slope as described in Section 9 is complete.

Spread footings are not allowed for any bridge foundation.

Underreams or belled shafts are not allowed.

Augercast piles and continuous flight auger (CFA) piles are not allowed.

Timber piles are not allowed for any permanent structure.

For pile foundations, the Developer shall perform a driveability analysis using the wave equation method to select the pile driving impact hammer required for installing the piles to the required ultimate bearing value, without damaging the piles. The Developer shall use a hammer that will achieve the required ultimate bearing value for the pile and large enough to permit a dynamic load test to verify that the ultimate bearing capacity shown on the Design Documents can be achieved. Alternative pile driving equipment will not be allowed.

The ultimate bearing values for piles not driven to refusal on bedrock shall not be greater than the tabulated values listed in BDM Section 202.2.3.2.b.

Downdrag loads shall be included in the design of bridges in accordance with AASHTO LRFD Bridge Design Specifications Article 3.11.8.

14.2.7 SubstructuresAll substructures shall be cast-in-place concrete.

Except as noted for the eastbound I-90 Viaduct Structure, all new substructures and substructure widenings, including retaining walls in front of substructures, shall align with adjacent substructures supporting westbound I-90. This provision does not apply to the following:

Bridge Location No. 24, where the alignment of the substructures and retaining walls shall be adjusted to follow the alignment of Fairfield Avenue

Bridge Location No. 25, where a pier may be placed in the Tremont neighborhood parking lot required in accordance with Section 12 (Roadway)

For the eastbound I-90 Viaduct Structure, a pier shall be located in the west bank of the Cuyahoga River that aligns with Pier No. 4 of the westbound I-90 Viaduct Structure. All other substructure locations shall be aligned with the substructure locations of the westbound I-90 Viaduct Structure as much as possible.

Page 14-10

Page 11: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

All Work for the eastbound I-90 Viaduct Structure shall be performed by the Developer to minimize the impact on the existing stabilization structure and monitoring system located in the west slope of the Cuyahoga River. At a minimum, all Work shall be performed without reducing the structural capacity of the stabilization structure or the stability of the west slope of the Cuyahoga River. The measured force and moment in each tie-beam impacted by the Work shall be resisted by new members installed prior to removing existing members such that the measured force and moment resisted by each of the remaining tie-beams is not increased. For example, if a tie-beam to be removed has a measured force of 120 kips and a measured moment of 40 kip-feet on the drilled shaft side as determined from the instrumentation, a new member shall be installed to carry the 120 kips and 40 kip-feet before removal of the tie-beam; a similar approach shall be used on the rock anchor cap side. The Developer shall prepare a Stabilization Structure Mitigation Plan identifying all impacts to the existing stabilization structure and the Developer’s solution to maintain the structural capacity of the structure and stability of the west slope of the Cuyahoga River.

Substructure locations shall adhere to the restrictions shown in Appendix RW-01 (Right-Of-Way Map) and LD-05 (Clearance Envelopes).

Beam seat pedestals are not allowed, except as required for the eastbound I-90 Viaduct Structure to satisfy the requirements of Appendix AE-01 (Aesthetic Detail Requirements).

Cap and column piers shall have a minimum of three columns per unit. This provision does not apply to the following:

Piers supporting only the main span portion of the eastbound I-90 Viaduct Structure The pier supporting the main span portion and east approach spans of the eastbound I-90

Viaduct Structure Bridge Location No. 25

The faces of pier footings shall be a minimum of 10 feet from the back face of dock walls. If dock wall tie-backs are placed through the pier substructure or pier foundations, the tiebacks shall be placed in non-grouted ducts.

Hollow piers shall have all internal forms removed. The bottom of voids for hollow piers shall not extend below the ground line.

Abutments behind MSE walls shall be supported by deep foundations.

The limitations specified in BDM Section 205.8 for integral design and BDM Section 205.9 for semi-integral design shall be considered maximums for both steel and concrete superstructures.

Railway crash walls shall have a minimum height of 10 feet above the top of rail, except where a pier is located within 12 feet of the centerline of tracks, and in that instance, the minimum height shall be 12

Page 14-11

Page 12: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

feet above the top of rail. The crash wall shall be at least 2.5 feet thick. For a cap and column pier, the face of the wall shall extend 12 inches beyond the face of the columns on the track side. The crash wall shall be anchored to the footings and columns.

Porous backfill shall be placed in 6-inch maximum lifts.

14.2.8 SuperstructureThe following superstructures shall be designed with an operational importance load modifier equal to 1.05 (See Section S1.3.5 of the 2007 ODOT BDM):

Eastbound I-90 Viaduct Structure Bridge Location No. 24 Bridge Location No. 26 Bridge Location No. 30

The Developer shall comply with Article 2.5.2.6.3 of the AASHTO LRFD Bridge Design Specifications in their design.

For the eastbound I-90 Viaduct Structure, expansion joints are only allowed at the following locations:

Ends of the bridge Between the main span portion of the bridge and the approach spans

All joints shall be sealed from bridge deck surface drainage. Open-type joints that accept bridge deck surface drainage, such as finger joints, are not allowed.

Beam and girder bridges shall have a minimum of four stringer lines.

The Developer shall prepare framing plans for the east approach spans of the eastbound I-90 Viaduct Structure and Bridge Location No. 31. Framing plans shall demonstrate the Developer’s approach to addressing the geometric challenges at these locations and shall include the following:

Beam/stringer spacing Crossframe/diaphragm locations Field splice locations Expansion joint locations Bearing locations and types

The Developer is responsible for fit-up and erection of structural steel members. The Developer shall shop assemble structural steel members in accordance with C&MS 513.24. Shop assembly of the eastbound I-90 Viaduct Structure may be waived upon request by the Developer if the Developer provides an adequate erection analysis to ensure proper fit-up of the members, at the sole discretion of

Page 14-12

Page 13: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

the Department. The erection analysis shall include, at a minimum, anticipated deflections and working point elevations for all stages of steel erection.

Design haunch shall be a minimum of 2 inches over the entire width of the flange, excluding the splice plates. Negative design haunches over splice plates are prohibited.

A longitudinal field weld web splice will be allowed for the main span portion of the I-90 Viaduct Structure. Welding shall be in accordance with C&MS 513.21. Field testing of the weld shall be in accordance with C&MS 513.25 A. An Approved organic zinc primer compatible with the inorganic zinc primer will be acceptable for the portion of the web not shop painted or damaged due to welding.

For haunched girders, the corner between the flat bottom flange bearing seat area and the curved section of the bottom flange shall be detailed as two plates with a full penetration weld. Skewed crossframes at intermediate support points are prohibited.

For the steel ductility requirements of AASHTO LRFD Article 6.10.7.3, the design haunch shall not be included in the determination of Dp and Dt.

Prestressed, post-tensioned concrete I-beams shall have a minimum web thickness of 8 inches.

For prestressed members without post-tensioning, approximate methods to determine time-dependent losses utilizing AASHTO LRFD Bridge Design Specifications Eq. 5.9.5.3-1 shall be used.

Except for the eastbound I-90 Viaduct Structure, all new bridges shall use elastomeric bearings.

Elastomeric bearings shall be designed based on a selected durometer of either 50 or 60. Field welding of a beam or girder to the bearing load plate shall be controlled so the temperature to which the elastomer is subjected does not exceed 300 degrees Fahrenheit.

Pot-type bearings, disc-type bearings, and spherical-type bearings shall be designed in accordance with the AASHTO LRFD Bridge Design Specifications and constructed in accordance with the AASHTO LRFD Bridge Construction Specifications, except that the out-of-flatness value between the bearing seat and masonry plate shall not exceed the lesser of 0.005 inches per inch or 0.125 inches.

All new structural steel shall be painted with the Department’s IZEU coating system, per C&MS 514.

Steel box girders shall be painted inside with OZEU or IZEU per C&MS 514. The urethane top coat shall be color approximating FS 595B No. 37875, white. The Epoxy intermediate coat shall be color approximating FS 595B No. 37722, buff.

Sign supports attached to the fascia of overpass bridges are prohibited.

Overhead sign structures placed on the main span portion of the I-90 Viaduct Structure shall be placed within 25 feet of the knuckle of the delta girder.

Page 14-13

Page 14: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Utilities shall not be suspended below the bottom of the bridge superstructure or attached on the outboard side of bridge superstructures.

Utilities shall not be hung from bridge decks.

14.2.9 DeckAll bridge decks shall be full-depth, cast-in-place concrete. Full-depth, precast concrete deck panels are not allowed.

Metal stay-in-place deck forms are not allowed, except for the following structures:

Main span portion of the I-90 Viaduct Structure East approach spans of the I-90 Viaduct Structure for the span over the GCRTA only Bridge Location No. 31

Stay-in-place forms shall be galvanized. Except as needed for installation using screws, the Developer shall not cut or drill stay-in-place forms after being shop-galvanized.

The flutes of stay-in-place forms shall be filled with concrete. Synthetic materials such as expanded polystyrene are not allowed for filling the flutes. Removable deck form work shall be used for a distance of 5 feet on both sides of all deck expansion joints and scuppers.

Precast concrete deck forms (panels) are not allowed. Bituminous wearing surfaces are not allowed for permanent bridge deck construction.

The Developer shall seal all monolithic deck construction joints in accordance with C&MS 511.19.

14.2.10 Approach SlabsApproach slabs shall be used for all bridges on the Project.

For the eastbound I-90 Viaduct Structure, approach slab lengths shall be 50 feet measured along the roadway baseline. The thickness of the slab and size of the reinforcing steel shall be based on an approach slab length of 30 feet per ODOT SCD AS-1-81. The number and length of bars shall be modified as needed for a 50-foot length.

The unclassified excavation beneath approach slabs shall be in accordance with C&MS 503, except that the backfill material shall conform to C&MS 703.17 and meet the compaction requirements of C&MS 304.05. In addition, the backfill material shall be placed and compacted in 6-inch maximum lifts.

Joints separating moment slabs and approach slabs, and intermediate expansion and contraction joints in moment slabs, shall be sealed with a precompressed expansion joint filler in accordance with Appendix ST-01 (Structures Project Provisions, Precompressed Foam Joint).

Page 14-14

Page 15: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

14.2.11 BarriersExcept as noted, barriers on the outside deck edges shall be 42 inches high, straight face deflector type per ODOT SCD SBR-1-99. At the following locations, barriers on the outside deck edges shall conform to the Texas Department of Transportation Type T80HT Traffic Rail (TL-5 Rating) using the elliptical tube with rail details (not the rectangular pipe rail details) in accordance with Appendix ST-03 (Texas Type HT Drawings):

The eastbound I-90 Viaduct Structure Bridge Location No. 25

The metal railing and supports for the Type T80HT Traffic Rail shall be hot-dip galvanized and powder coated (including appropriate surface preparation). The tube rail shall be tied into the structure grounding system.

Bridge deck median barriers shall match approach roadway median barriers. Barriers and sidewalks shall not be included as part of the cross-section for calculation of structural capacity.

Slip forming is not allowed for concrete barrier on bridges, moment slabs, or retaining walls.

Parapet reinforcing steel shall be cast into the bridge deck and approach slabs.

14.2.12 Drainage SystemThe allowable spread of flow shall be as calculated in the ODOT Location and Design Manual.

Deck surface drainage shall be collected in a closed system off the end of all bridges, except at the following locations, where deck drains are allowed:

Bridge Location No. 21 The eastbound I-90 Viaduct Structure

At Bridge Location No. 21, the location of new free fall scuppers shall not be placed closer to the roadways below the bridge than currently existing scuppers.

Over-the-side drainage is not allowed, except at the following location:

Bridge Location No. 31

Where over-the-side drainage is allowed, the drainage area shall be limited to the deck area behind the barrier on the outside edge of the deck. The Developer shall provide a stilling basin and outlet where over-the-side drainage will fall, in accordance with Hydraulic Engineering Circular No. 14.

Bridge deck drainage systems shall conform to the following:

Deck drainage shall be collected at the gutter lines (toe of parapet) by scuppers.

Page 14-15

Page 16: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

The shoulder cross-slope shall not exceed 4 percent or the slope of the adjacent lane, whichever is greater.

Transverse deck drains are not allowed. Welding of scuppers, downspouts, or drainage supports is not allowed in tension areas of main

steel members. Conduit enclosed within box-type superstructures is not allowed. Conduit enclosed in substructures is not allowed. The conduit shall have sufficient slope to maintain a minimum velocity of 3 feet per second and

shall not be sloped less than 15 degrees. Provide the steepest slopes possible while satisfying all other Contract requirements.

The bridge deck drainage system for the eastbound I-90 Viaduct Structure shall conform to the requirements of ST-01 (Structures Project Provisions, Specification for Bridge Deck Drainage System) and the following:

The minimum allowable conduit diameter is 14 inches Vertical conduit runs to the ground drainage system shall only be located at piers. All bridge drainage inlets/scuppers shall be located within 20 feet of a substructure unit or the

knuckle of the delta girder. Vertical conduit from the superstructure shall flow into a drain pan attached to the

substructure. Vertical conduit runs to the ground drainage system shall consist of closed conduit, except at

drain pans attached to substructures, overflow points, and a free fall of 2 feet above the ground. The drainage shall be controlled at the point of discharge (i.e., bottom of the vertical conduit) by

permanent features that completely contain the discharge and prevent erosion to the adjacent ground, while discharging up to the 25-year design storm.

The conduit system shall be designed to overflow before the deck floods. The maximum allowable conduit bend angle is 45 degrees. Cleanouts shall be provided immediately upstream of each bend, on vertical downspouts

accessible from the ground, and at the end of each horizontal segment.

14.2.13 Material PropertiesConcrete for all structures shall be designated as QC/QA Concrete and shall satisfy the requirements of C&MS 455.

The use of fly ash is prohibited for mass concrete elements.

The design concrete compressive strengths listed in the ODOT BDM shall be considered minimum values. The maximum design concrete compressive strengths as specified in Standard Bridge Drawing PSID-1-99 shall not apply.

Page 14-16

Page 17: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Lightweight concrete shall not be used for cast-in-place concrete decks or overlays.

All coarse aggregate shall have an absorption of 1 percent or greater as defined by ASTM C127. This requirement shall be included as a note in the Released for Construction Plans.

14.2.14 Sealing Of Concrete SurfacesConcrete surfaces shall be sealed with an epoxy-urethane sealer.

For prestressed bulb-tees, the limits of sealing shall be as specified for prestressed concrete beams per ODOT BDM Figure 302.1.4.3-1.

Except for Bridge Location No. 24, the Developer shall seal the bottom surface and vertical surfaces of the bottom flange for interior prestressed concrete I-beams and bulb-tees.

For steel beams, steel I-girders, and steel box girders, the limits of sealing shall be per ODOT BDM Figure 302.1.4.3-2, except that the limits of sealing for the underside of the deck overhang shall extend to the flange of the fascia beam or girder.

14.2.15 Bridge Load RatingsAll bridges shall be load-rated per Section 900 of the ODOT BDM, with the following clarifications and exceptions:

Load and Resistance Factor Rating (LRFR) shall be used for bridges designed following Load and Resistance Factor Design (LRFD) procedures.

Load Factor Rating (LFR) shall be used for bridges designed following Load Factor Design (LFD) procedures.

The bridge load rating shall be based on the Interim Condition. The Developer shall provide a rating manual for any bridge type that is not compatible with

BARS-PC or AASHTO Virtis software. The rating manual shall include a Microsoft Excel-compatible spreadsheet in electronic format to load-rate the bridge for future permit vehicles (e.g., overweight or superload vehicles). The spreadsheet shall be capable of performing the analysis with the permit vehicle isolated and included with legal loads. Such vehicles may weigh up to 600,000 pounds, have as many as 25 axles with two to eight tires per axle, and have a width of 20 feet and a length of 200 feet.

Each bridge load rating submission shall include the computer files in electronic format. At Bridge Location No. 21, the bridge load rating report requirement may be waived upon

request by the Developer, if the Developer’s design sufficiently corresponds with the Department’s preliminary design work, at the sole discretion of the Department.

14.3 PERMANENT RETAINING WALL CRITERIAIn CCG1, retaining walls were constructed to retain the embankment around certain bridge abutments. Where new bridges are being designed and constructed adjacent to such bridge locations, the retaining

Page 14-17

Page 18: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

walls shall be continued in front of the new bridge abutments except as noted for the eastbound I-90 Viaduct Structure and Bridge Location No. 30. The retaining wall type shall be the same as that of the adjacent wall. Segments of the existing walls parallel with the I-90 alignment and between I-90 bridges shall be abandoned and left in place.

At the forward abutment of the eastbound I-90 Viaduct Structure, the Developer shall design and construct one of the following:

A retaining wall of the same type as that of the adjacent wall in front of the abutment An abutment that aligns with the existing retaining wall in front of the abutment

At Retaining Wall H supporting eastbound I-90 and the rear abutment of Bridge Location No. 30, a cast-in-place cantilever wall, soil nail wall, soldier pile wall, or secant wall (adjacent drilled shafts) shall be used.

At Retaining Wall 1 supporting the entrance ramp embankment and rear abutment of Bridge Location No. 25, an MSE wall type shall be used.

At Bridge Location No. 24 where new MSE walls abut existing MSE walls, a vertical concrete coping shall be constructed at the interface.

Cast-in-place concrete facings are required for soil nail walls, soldier pile walls, and secant walls. Cast-in-place concrete facings shall have a minimum thickness of 6 inches.

All coarse aggregate shall have an absorption of 1 percent or greater as defined per ASTM C127. This requirement shall be included as a note in the Released for Construction Plans.

The Developer shall not use timber for permanent retaining walls.

Modular block walls are not allowed for walls greater than 3 feet of total overall wall height, except as noted for Walls C and 3. Wall C shall use Redi-Rock, limestone finish units produced by a licensed manufacturer. Wall 3 shall be constructed as specified in Appendix GE-01 (West Slope Grading Plans). MSE walls with modular block facings are prohibited.

Utilities shall not be placed within the reinforced soil mass of MSE walls, with the exception of roadway/storm drainage systems in Type B conduits in accordance with ODOT L&D Volume 2, Section 1002.3.2. Utilities shall be encased in casing pipe per BDM Section 301.7.

Drainage for overland flow shall be provided at the top of retaining walls preventing water from flowing across vertical faces of walls.

For retaining wall foundations, the Developer is not required to socket drilled shaft foundations into bedrock. Drilled shaft friction capacity provided by soil is allowed for retaining wall foundations.

Page 14-18

Page 19: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Slip forming is not allowed for concrete barrier on top of retaining walls or moment slabs.

Fall protection consisting of black, vinyl-coated, chain-link fence shall be installed on top of retaining walls accessible to pedestrians or maintenance personnel.

14.3.1 Cuyahoga River Bulkhead WallsSteel sheet pile vertical bulkhead walls shall comply with Section 5 (Environmental Commitments). The Developer shall comply with City of Cleveland City Ordinance, Title XI – Port Control, Chapter 573 for design criteria and requirements, and Chapter 575 for dock line alignment. Design of sheet pile bulkhead shall be coordinated with Section 9 (Geotechnical).

Driven piles shall not be used to anchor tiebacks supporting the bulkhead walls.

The Developer shall provide a procedure in the Design Documents for replacement of all tiebacks without requiring temporary support or shoring of the bulkhead walls. The procedure shall not include any modifications to the steel sheet pile members other than that needed to anchor new tiebacks.

All tiebacks shall be galvanized. Alternative methods of corrosion protection may be submitted to the Department for Approval.

Cranes, crane pads, outriggers, and stored materials 60,000 pounds or more gross weight are prohibited within 25 feet of the bulkhead walls.

14.3.2 Green BulkheadsThe Developer shall construct two green bulkhead additions to provide larval fish habitats along the Cuyahoga River. The additions shall serve as pocket habitats. Green bulkhead additions shall be within Project Right-of-Way on the Cuyahoga River and outside the footprint of the new structure. The green bulkhead additions shall be located on the east bank of the Cuyahoga River within the limits of the new bulkhead construction. The green bulkhead additions shall be designed to be self-sustainable and require minimal maintenance. The Developer shall consult and incorporate the recommendations of an environmental professional experienced in wetland plantings for design of the pocket habitat with respect to plantings and issues related to establishing a functional habitat.

General scope of work includes:

Remove shoreline material from behind the wall as follows:o Excavate to a depth approximately 10 feet below the top of the bulkhead. The

excavation shall extend for 10 feet behind the wall at approximately the same depth.o Beyond the first 10 feet behind the wall, the excavation shall follow a 1.5:1 (H:V)

maximum slope until existing grade is met. Provide geotextile fabric along the bottom of the excavated section.

Page 14-19

Page 20: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Place a clean soil layer (4 to 6 inches thick) immediately landward of the waterside bulkhead structure.

Place a gravel fill layer over the new soil layer. Cut vertical slots in the webs of the wall along the entire length of the excavated area to

accommodate habitat access to the excavated area. Vertical slots shall be approximately 4 inches wide. The top of the slots shall be no more than 3 inches below the OHWM. The bottom of the slots shall be 6 inches above the top of the newly placed soil layer.

Install aquatic plantings to provide cover for the fish and aid in increasing dissolved oxygen levels.

Each green bulkhead addition shall be 20 to 25 feet wide (measured perpendicular to the bulkhead), and the entire length of work, including grading, along the wall shall be 60 feet for each pocket habitat. Pocket habitats shall be separated by at least 50 feet.

Bulkhead wall anchors shall not be placed within the pocket habitats.

For additional reference information, the Developer may contact the Cuyahoga RAP Executive Director:

Cuyahoga RAP Executive Director1299 Superior AvenueCleveland, OH 44114Attention: Jane Goodman216-241-2414 [email protected]

14.4 TOWPATH TRAIL CANOPYThe Developer shall design and construct a permanent canopy over the Towpath Trail in accordance with Appendix ST-14 (Towpath Trail Canopy).

14.5 DELIVERABLESUnless otherwise indicated, all deliverables shall be submitted in both electronic format and hardcopy format. Acceptable electronic formats include Microsoft Word, Microsoft Excel, or Adobe Acrobat (.PDF) files, unless otherwise indicated. At a minimum, the Developer shall submit the following to the Department:

Deliverable For Acceptance, Approval, or

Submittal

Number of Copies Submittal Schedule Reference Section

Hardcopy Electronic

Demolition Plans Submittal 7 1 60 days before construction for Central

Viaduct Structure, 50

14.2.4

Page 14-20

Page 21: Section 14 - Web viewCCG2 Project Scope_Section 14_Structures_IR Draft.docx. ... and thermal integrity ... Concrete for all structures shall be designated as QC/QA Concrete and shall

document.docx

Deliverable For Acceptance, Approval, or

Submittal

Number of Copies Submittal Schedule Reference Section

Hardcopy Electronic

days before construction for other bridges with

railroad involvement, and 7 days before

construction otherwise

Drilled Shaft Installation Plan

Submittal 1 1 Submit prior to construction of any

demonstration drilled shafts

GE-03

Stabilization Structure Mitigation Plan

Approval 1 1 Submit prior to performing any work

that would impact the existing stabilization

structure

14.2.7

Framing Plans Submittal 1 1 Submit prior to any interim design submittals for

structures

14.2.8

Bridge Load Rating Reports

Submittal 1 1 Submit each report with the final design submittal for each

bridge

14.2.15

Bridge Load Rating Manuals

Submittal 1 1 Submit each manual with the Released for Construction design submittal for each

bridge

14.2.15

Page 14-21