sdsolns03

51
8/12/2019 SDsolns03 http://slidepdf.com/reader/full/sdsolns03 1/51 Solutions Manual  c to accompany System Dynamics , First Edition by William J. Palm III University of Rhode Island Solutions to Problems in Chapter Three c Solutions Manual Copyright 2004 by McGraw-Hill Companies, Inc. Permission required for use, reproduction, or display. 3-1  ______________________________________________________________________________________________ PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior written  permission of the publisher, or used beyond the limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a student using this Manual, you are using it without permission.

Upload: xjacobll

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 1/51

Solutions Manual c

to accompany

System Dynamics , First Edition

by

William J. Palm III

University of Rhode Island

Solutions to Problems in Chapter Three

cSolutions Manual Copyright 2004 by McGraw-Hill Companies, Inc. Permission requiredfor use, reproduction, or display.

3-1 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 2: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 2/51

3.1   a) Nonlinear because of the   yy   term. b) Nonlinear because of the sin y   term. c)Nonlinear because of the

 √ y  term.

3-2 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 3: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 3/51

3.2 a)

4

   x2

dx = 3

   t0

t dt

x(t) = 2 + 38

t2

b)

5

   x3

dx = 2

   t0

e−4t dt

x(t) = 3.1− 0.1e−4t

c) Let  v  = ˙   x.

3

   v7

dv = 5

   t0

t dt

v(t) =

 dx

dt   = 7 +

 5

6t

2

   x2

dx =

   t0

7 +

 5

6t2

 dt

x(t) = 2 + 7t +  5

18t3

d) Let v  = x.

4

   v2

dv = 7

   t0

e−2t dt

v(t) = 23

8 − 7

8e−2t

   x

4dx =

   t

0

238 − 7

8e−2t

 dt

x(t) = 57

16 +

 23

8 t +

  7

16e−2t

3-3 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 4: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 4/51

3.3 a)    x3

dx

25− 5x2  =

   t0

dt =  t

1

10√ 

5ln

√ 5 + x√ 5 − x

x

3

Let

A = ln

√ 5 + 3√ 5− 3

Thus

ln

√ 5 + x√ 5− x

= 10√ 

5t + A

x(t) =√ 

5eAe10

√ 5t − 1

eAe10√ 5t + 1

b)    x10

dx

36 + 4x2  =

   t0

dt =  y

1

12 tan−1

 x

3

x10

= t

x(t) = 3 tan(12t + C )   C  = tan−1 10

3

c)

   x

4

dx

5x + 25 =  

  t

0dt

1

5 ln(5x + 25)

x4

= t

ln(5x + 25) = 5t + ln 45

x(t) = 9e5t − 5

d)    x5

dx

x  = 2

   t0

e−4t dt

ln x|x5  = −  1

2e−4t

t

0

ln x  = ln 5 −  12

e−4t − 1

x(t) = 5e−(e

−4t−1)/2

3-4 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 5: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 5/51

3.4 a) The roots are −3 and −5. The form of the free response is

x(t) = A1e−3t + A2e−5t

Evaluating this with the given initial conditions gives

x(t) = 27e−3t − 17e−5t

The steady-state solution is  xss = 30/15 = 2. Thus the form of the forced response is

x(t) = 2 + B1e−3t + B2e−5t

Evaluating this with zero initial conditions gives

x(t) = 2− 5e−3t + 3e−5t

The total response is the sum of the free and the forced response. It is

x(t) = 2 + 22e−3t − 14e−5t

The transient response consists of the two exponential terms.b) The roots are −5 and −5. The form of the free response is

x(t) = A1e−5t + A2te−5t

Evaluating this with the given initial conditions gives

x(t) = e−5t + 9te−5t

The steady-state solution is  xss = 75/25 = 3. Thus the form of the forced response is

x(t) = 3 + B1e−5t + B2te−5t

Evaluating this with zero initial conditions gives

x(t) = 3 − 3e−5t − 15te−5t

The total response is the sum of the free and the forced response. It is

x(t) = 3− 2e−5t − 6te−5t

The transient response consists of the two exponential terms.

3-5 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 6: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 6/51

c) The roots are ±5 j. The form of the free response is

x(t) = A1  sin 5t + A2  cos 5t

Evaluating this with the given initial conditions gives

x(t) = 4

5 sin 5t + 10 cos 5t

The form of the forced response is

x(t) = B1 + B2  sin 5t + B3  cos 5t

Thus the entire forced response is the steady-state forced response. There is no transientforced response. Evaluating this function with zero initial conditions shows that  B2   = 0and B3  = −B1. Thus

x(t) = B1 −B1  cos 5t

Substituting this into the differential equation shows that  B1  = 4 and the forced responseis

x(t) = 4 − 4 cos 5t

The total response is the sum of the free and the forced response. It is

x(t) = 4 + 6 cos 5t + 4

5 sin 5t

The entire response is the steady-state response. There is no transient response.d) The roots are −4± 7 j. The form of the free response is

x(t) = A1e−4t sin 7t + A2e−4t cos 5t

Evaluating this with the given initial conditions gives

x(t) = 44

7 e−4t sin 7t + 10e−4t cos 7t

The form of the forced response is

x(t) = B1 + B2e−4t sin 7t + B3e−4t cos 7t

The steady-state solution is  xss = 130/65 = 2. Thus  B1  = 2. Evaluating this function withzero initial conditions shows that  B2  = −8/7 and B3  = −2. Thus the forced response is

x(t) = 2

 8

7

e−4t sin 7t

−2e−4t cos 7t

The total response is the sum of the free and the forced response. It is

x(t) = 2 + 36

7 e−4t sin 7t + 8e−4t cos 7t

The transient response consists of the two exponential terms.

3-6 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 7: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 7/51

3.5 a) The root is  s  = 5/3, which is positive. So the model is unstable.b) The roots are  s  = 5 and −2, one of which is positive. So the model is unstable.c) The roots are  s  = 3 ± 5 j, whose real part is positive. So the model is unstable.

d) The root is  s  = 0, so the model is neutrally stable.e) The roots are  s  = ±2 j, whose real part is zero. So the model is neutrally stable.f) The roots are  s  = 0 and −5, one of which is zero and the other is negative. So the

model is neutrally stable.

3-7 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 8: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 8/51

3.6 a)

X (s) = 10

s  +

  2

s3

b)X (s) =

  6

(s + 5)2 +

  1

s + 3

c) From Property 8,

X (s) = −dY (s)

ds

where y(t) = e−3t sin 5t. Thus

Y (s) =  5

(s + 3)2 + 52  =

  5

s2 + 6s + 34

dY (s)

ds   = −  10s + 30

(s2 + 6s + 34)2

Thus

X (s) =  10s + 30

(s2 + 6s + 34)2

d)  X (s) = e−5sG(s), where g(t) = t. Thus G(s) = 1/s2 and

X (s) = e−5s

s2

3-8 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 9: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 9/51

3.7

f (t) = 5us(t)− 7us(t− 6) + 2us(t− 14)

Thus

F (s) = 5s − 7 e−6s

s  + 2 e−14s

s

3-9 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 10: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 10/51

3.8 a)

x(0+) = lims→∞

s  5

3s + 7 =

 5

3

x(∞) = lims→0

s   53s + 7

 = 0

b)

x(0+) = lims→∞

s  10

3s2 + 7s + 4 = 0

x(∞) = lims→0

s  10

3s2 + 7s + 4 = 0

3-10 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 11: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 11/51

3.9 a)

X (s) = 3

2

1

s −   1

s + 4

x(t) = 32

1 − e−4t

b)

X (s) = 5

3

1

s +

 31

3

1

s + 3

x(t) = 5

3 +

 31

3 e−3t

c)

X (s) = −1

3

1

s + 2 +

 13

3

1

s + 5

x(t) = −1

3e−2t

+

 13

3  e−5t

d)

X (s) =  5/2

s2(s + 4) =

 5

8

1

s2 −   5

32

1

s +

  5

32

1

s + 4

x(t) = 5

8t−   5

32 +

  5

32e−4t

e)

X (s) = 2

5

1

s2 +

 13

25

1

s −  13

25

1

s + 5

x(t) = 2

5t +

 13

25 − 13

25e−5t

f)

X (s) = −31

4

1

(s + 3)2 +

 79

16

1

s + 3 − 79

16

1

s + 7

x(t) = −31

4  te−3t +

 79

16e−3t −  79

16e−7t

3-11 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 12: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 12/51

3.10  a)

X (s) =  7s + 2

(s + 3)2 + 52  = C 1

5

(s + 3)2 + 52 + C 2

s + 3

(s + 3)2 + 52

orX (s) = −19

5

5

(s + 3)2 + 52 + 7

  s + 3

(s + 3)2 + 52

x(t) = −19

5 e−3t sin 5t + 7e−3t cos 5t

b)

X (s) =  4s + 3

s[(s + 3)2 + 52] =

 C 1s

  + C 25

(s + 3)2 + 52 + C 3

s + 3

(s + 3)2 + 52

or

X (s) =  3

34

1

s

 + 127

170

5

(s + 3)2

+ 52

 −

  3

34

s + 3

(s + 3)2

+ 52

x(t) =  3

34 +

 127

170e−3t sin 5t −   3

34e−3t cos 5t

c)

X (s) =  4s + 9

[(s + 3)2 + 52][(s + 2)2 + 42]

=   C 15

(s + 3)2 + 52 + C 2

s + 3

(s + 3)2 + 52 + C 3

4

(s + 2)2 + 42 + C 4

s + 2

(s + 2)2 + 42

or

X (s) =   −  44

205

5

(s + 3)2 + 52 −  19

82

s + 3

(s + 3)2 + 52

+  69

328

4

(s + 2)2 + 42 +

 19

82

s + 2

(s + 2)2 + 42

x(t) = −  44

205e−3t sin 5t−  19

82e−3t cos 5t +

  69

328e−2t sin 4t +

 19

82e−2t cos 4t

d)

X (s) = 2.625  1

s + 2 −18.75

  1

s + 4

 + 21.125  1

s + 6x(t) = 2.625e−2t − 18.75e−4t + 21.125e−6t

3-12 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 13: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 13/51

3.11  a) x = 7t/5    x3

dx = 7

5

   t0

t dt

x(t) =   710

t2 + 3

b) x = 3e−5t/4    x0

dx = 3

4

   t0

e−5t dt

x(t) =  3

20

1− e−5t

c) x = 4t/7

x(t)−  x(0) = 4

7

   t0

t dt

x(t) =   414 t2 + 5   x3

dx =

   t0

 4

14t2 + 5

 dt

x(t) =  4

42t3 + 5t + 3

d) x = 8e−4t/3

x(t)−  x(0) = 8

3

   t0

e−4t dt

x(t) = 17

3 −   8

12e−4t

   x3

dx =

   t0

17

3 −   8

12e−4t

 dt

x(t) = 17

3 t +

 1

6e−4t +

 17

6

3-13 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 14: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 14/51

3.12   a) The root is −7/5 and the form is   x(t) =   Ce−7t/5. With   x(0) = 4,   C   = 4 andx(t) = 4e−7t/5

b) The root is −7/5 and the form is  x(t) = C 1e−7t/5 + C 2. At steady state,  x  = 15/7 =

C 2. With  x(0) = 0,  C 1  = −15/7. Thus

x(t) = 15

7

1− e−7t/5

c) The root is −7/5 and the form is  x(t) = C 1e−7t/5 + C 2. At steady state,  x = 15/7 =C 2. With  x(0) = 4,  C 1  = 13/7. Thus

x(t) = 13

7

1 + e−7t/5

d)

sX (s)−

x(0) + 7X (s) =  4

s2

X (s) =  5s2 + 4

s2(s + 7) =

  4

7s2 −   4

49 +

 249

49 e−7t

x(t) = 4

7t−   4

49 +

 249

49 e−7t

3-14 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 15: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 15/51

3.13  a) The roots are −7 and −3. The form is

x(t) = C 1e−7t + C 2e−3t

Evaluating  C 1  and C 2  for the initial conditions gives

x(t) = −9

4e−7t +

 25

4 e−3t

b) The roots are −7 and −7. The form is

x(t) = C 1e−7t + C 2te−7t

Evaluating  C 1  and C 2  for the initial conditions gives

x(t) = e−7t + 10te−7t

c) The roots are −7± 3 j. The form is

x(t) = C 1e−7t sin 3t + C 2e−7t cos 3t

Evaluating  C 1  and C 2  for the initial conditions gives

x(t) = 20

3 e−7t sin 3t + 4e−7t cos 3t

3-15 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 16: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 16/51

3.14  a) The roots are −3 and −7. The form is

x(t) = C 1e−3t + C 2e−7t + C 3

At steady state,   x  = 5/63 so  C 3  = 5/63. Evaluating  C 1   and  C 2   for the initial conditionsgives

x(t) = −  35

252e−3t +

  15

252e−7t +

  5

63

b) The roots are −7 and −7. The form is

x(t) = C 1e−7t + C 2te−7t + C 3

At steady state,  x = 98/49 = 2 so  C 3  = 2. Evaluating  C 1  and  C 2  for the initial conditionsgives

x(t) = −2e−7t − 16te−7t + 2

c) The roots are −7± 3 j. The form is

x(t) = C 1e−7t sin 3t + C 2e−7t cos 3t + C 3

At steady state,  x  = 174/58 = 3 so  C 3  = 3. Evaluating  C 1  and C 2  for the initial conditionsgives

x(t) = −7e−7t sin 3t− 3e−7t cos 3t + 3

3-16 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 17: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 17/51

3.15  a)X (s)

F (s)  =

  15

5s + 7

The root is  s  = −7/5.b)

X (s)

F (s)  =

  5

3s2 + 30s + 63

The roots are  s = −7 and s = −3.c)

X (s)

F (s)  =

  4

s2 + 10s + 21

The roots are  s = −7 and s = −3.d)

X (s)

F (s)   =  7

s2 + 14s + 49

The roots are  s = −7 and s = −7.e)

X (s)

F (s)  =

  6s + 4

s2 + 14s + 58

The roots are  s = −7± 3 j.f)

X (s)

F (s)  =

 4s + 15

5s + 7

The root is  s  =

−7/5.

3-17 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 18: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 18/51

3.16  Transform each equation using zero initial conditions.

3sX (s) = Y (s)

sY (s) = F (s)− 3Y (s)− 15X (s)

Solve for  X (s)/F (s) and  Y (s)/F (s).

X (s)

F (s)  =

  1

3s2 + 9s + 15

Y (s)

F (s) =

  3s

3s2 + 9s + 15

3-18 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 19: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 19/51

3.17  Transform each equation using zero initial conditions.

sX (s) = −2X (s) + 5Y  (s)

sY (s) = F (s)− 6Y (s) − 4X (s)

Solve for  X (s)/F (s) and  Y (s)/F (s).

X (s)

F (s)  =

  5

s2 + 8s + 32

Y (s)

F (s) =

  s + 2

s2 + 8s + 32

3-19 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 20: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 20/51

3.18  a)6

s(s + 5) =

  6

5s − 6

5

1

s + 5

x(t) = 65

1 − e−5t

b)

4

s + 3)(s + 8) =

 4

5

1

s + 3 − 4

5

1

s + 8

x(t) = 4

5

e−3t − e−8t

c)

8s + 5

2s2 + 20s + 48 =

 1

2

8s + 5

(s + 4)(s + 6) = −27

4

1

s + 4 +

 43

4

1

s + 6

x(t) = −274  e−4t + 434  e−6t

d) The roots are  s  = −4± 10 j.

4s + 13

s2 + 8s + 116 +

  4s + 13

(s + 4)2 + 102  =   C 1

10

(s + 4)2 + 102 + C 2

s + 4

(s + 4)2 + 102

=   −  3

10

10

(s + 4)2 + 102 + 4

  s + 4

(s + 4)2 + 102

x(t) = −  3

10e−4t sin 10t + 4e−4t cos 10t

3-20 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 21: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 21/51

3.19  a)3s + 2

s2(s + 10)  =

 1

5

1

s2 −   1

50

1

s +

  1

50

1

s + 10

x(t) = 15

t−   150

1− e−10t

b)

5

(s + 4)2(s + 1) = 1.25

  1

(s + 4)2 − 0.3125

  1

s + 4 + 0.3125

  1

s + 1

x(t) = 1.25te−4t − 0.3125e−4t + 0.3125e−t

c)s2 + 3s + 5

s3(s + 2)  =

 5

4

1

s3 +

  7

16

1

s2 +

  9

64

1

s −   9

64

1

s + 4

x(t) =

 5

8 t2

+

  7

16 t +

  9

64 −  9

64 e−4t

d)s3 + s + 6

s4(s + 2)  = 3

 1

s4 −   1

s3 +

 1

2

1

s2 +

 1

4

1

s −  1

4

1

s + 2

x(t) = 1

2t3 −  1

2t2 +

 1

2t +

 1

4 − 1

4e−2t

3-21 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 22: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 22/51

3.20  a)

5[sX (s) − 2] + 3X (s) = 10

s  +

  2

s3

X (s) = 10s3 + 10s2 + 2

5s3(s + 3)  =

 2s3 + 2s2 + 2/5

s3(s + 3/5)  =

 2

3

1

s3 −  10

9

1

s2 +

 140

9

1

s −  86

27

1

s + 3/5

x(t) = 1

3t2 −  10

9 t +

 140

27 − 86

27e−3t/5

b)

4[sX (s)− 5] + 7X (s) =  6

(s + 5)2 +

  1

s + 3

X (s) =  1

4

20s3 + 261s2 + 1116s + 1525

(s + 5)2(s + 7/4)(s + 3)

=  1

4

60

13

1

(s + 5)2 −  474

169

1

s + 5 +

 16904

845

1

s + 7/4 +

 14

5

1

s + 3

x(t) = 1.1538te−5t − 0.7012e−5t + 5.0012e−7t/4 + 0.7e−3t

c) This simple-looking problem actually requires quite a lot of algebra to find the solu-tion, and thus it serves as a good motivating example of the convenience of using MATLAB.The algebraic complexity is due to a pair of repeated complex roots.

First obtain the transform of the forcing function. Let f (t) = te−3t sin 5t. From Prop-erty 8,

F (s) =

−dY (s)

dswhere y(t) = e−3t sin 5t. Thus

Y (s) =  5

(s + 3)2 + 52  =

  5

s2 + 6s + 34

dY (s)

ds  = −   10s + 30

(s2 + 6s + 34)2

Thus

F (s) =  10s + 30

(s2 + 6s + 34)2  (1)

Using the same technique, we find that the transform of  te−3t cos 5t   is

2s2 + 12s + 18

(s2 + 6s + 34)2 −   1

s2 + 6s + 34  (2)

This fact will be useful in finding the forced response.

3-22 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 23: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 23/51

From the differential equation,

4[s2X (s)− 10s + 2] + 3X (s) = F (s) =  10s + 30

(s2 + 6s + 34)2

Solve for  X (s).

X (s) = 40s − 8

4s2 + 3 +

  10s + 30

[(s + 3)2 + 25]2(4s2 + 3)

The free response is given by the first fraction, and is

xfree(t) = −   4√ 3

sin

√ 3

2  t + 10 cos

√ 3

2  t   (3)

The forced response is given by the second fraction, which can be expressed as

2.5s + 7.5

[(s + 3)2

+ 25]2

(s2

+ 3/4)

  (4)

The roots of this are  s  = ± j√ 

3/2 and the repeated pair  s  = −3 ± 5 j. Thus, referring to(1), (2), and (3), we see that the form of the forced response will be

xforced(t) =   C 1te−3t sin 5t + C 2te−3t cos 5t

+   C 3e−3t sin 5t + C 4e−3t cos 5t

+   C 5   sin

√ 3

2  t + C 6   cos

√ 3

2  t   (5)

The forced response can be obtained several ways. 1) You can substitute the form (5)into the differential equation and use the initial conditions to obtain equations for the  C i

coefficients. 2) You can use (1) and (2) to create a partial fraction expansion of (4) in termsof the complex factors. 3) You can perform an expansion in terms of the six roots, of theform

A1

(s + 3 + 5 j)2  +

  A2

s + 3 + 5 j +

  A3

(s + 3− 5 j)2 +

  A4

s + 3 − 5 j

+

√ 3A5/2

s2 + 3/4 +

  A6s

s2 + 3/4

4) You can use the MATLAB  residue function.The solution for the forced response is

xforced

(t) =  −

0.0034te−3t sin 5t + 0.0066te−3t cos 5t

−   0.0026e−3t sin 5t + 2.308 × 10−4e−3t cos 5t

+ 0.00796 sin 0.866t − 2.308 × 10−4 cos 0.866t

The initial condition x(0) = 0 is not exactly satisfied by this expression because of thelimited number of digits used to display it.

3-23 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 24: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 24/51

Page 25: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 25/51

d)s2X (s) − 4s− 7 + 14[sX (s) − 4] + 58X (s) = 4

X (s) =

  4s + 67

s2 + 14s + 58  =

  4s + 67

(s + 7)2 + 32   = 13

  3

(s + 7)2 + 32  + 4

  s + 7

(s + 7)2 + 32

x(t) = 13e−7t sin 3t + 4e−7t cos 3t

From the initial value theorem

x(0+) = lims→∞

s  4s + 67

s2 + 14s + 58 = 4

which is the same as  x(0). However, the initial value theorem is invalid for computing x(0+)and gives an undefined result because the order of the numerator of  sX (s) is greater thanthe denominator (see the bottom of page 146).

3-25 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 26: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 26/51

3.22  a)

7[sX (s) − 3] + 5X (s) = 4s1

s  = 4

X (s) =   257s + 5

 =   25/7s + 5/7

x(t) = 25

7 e−5t/7

From the initial value theorem

x(0+) = lims→∞

s  25/7

s + 5/7  =

 25

7

b)

7[sX (s)− 3] + 5X (s) = 4s1

s +

 6

s

X (s) =  25s + 6

s(7s + 5) =

 1

7

25s + 6

s(s + 5/7) =

 6

5

1

s +

 83

35

1

s + 5/7

x(t) = 6

5 +

 83

35e−5t/7

which gives   x(0+) = 25/7. However, the initial value theorem is invalid for computingx(0+) and gives an undefined result because the orders of the numerator and denominatorof  X (s) are equal (see the bottom of page 146).

c)

3[s2X (s) − 2s− 3] + 30[sX (s)− 2] + 63X (s) = 4s1

s  = 4

X (s) = 1

3

6s + 73

(s + 3)(s + 7) =

 55

12

1

s + 3 − 31

12

1

s + 7

x(t) = 5512

e−3t −  3112

e−7t

From the initial value theorem

x(0+) = lims→∞

s1

3

6s + 73

(s + 3)(s + 7) = 2

which is the same as  x(0). However, the initial value theorem is invalid for computing x(0+)and gives an undefined result because the order of the numerator of  sX (s) is greater thanthe denominator (see the bottom of page 146).

d)

3[s2X (s) − 4s− 7] + 30[sX (s) − 4] + 63X (s) = 4s1

s +

 6

s

X (s) = 13

12s2 + 145s + 6s(s2 + 10s + 21)

 = 0.09521s

 + 8.9167   1s + 3

 − 5.0119   1s + 7

x(t) = 0.0952 + 8.9167e−3t − 5.0119e−7t

The initial value theorem gives  x(0+) = 4 but is invalid for computing x(0+) because theorders of the numerator and denominator of  sX (s) are equal (see the bottom of page 146).

3-26 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 27: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 27/51

3.23  Transform each side of the equation.

6[sX (s)

−2] +

 5

s

X (s) = 4

s

X (s) = 2

3

3s + 1

s2 + 5/6  =

 2

3

 6

5

 5/6

s2 + 5/6 + 3

  s

s2 + 5/6

x(t) = 2

3

 6

5 sin

 5

6t + 3 cos

 5

6t

3-27 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 28: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 28/51

3.24  Transform each equation.

3[sX (s) − 5] = Y (s)

sY (s)− 10 = 4− 3Y (s) − 15X (s)

Solve for  X (s) and Y (s).

X (s) =  15s + 59

3s2 + 9s + 15 =

 1

3

15s + 59

s2 + 3s + 5

Y (s) =  42s− 225

3s2 + 9s + 15 =

  14s − 75

s2 + 3s + 5

The denominator roots are  s  = −1.5 ± 1.658 j. Thus

X (s) =  1

3C 1

1.658

(s + 1.5)2 + 2.75

 + C 2s + 1.5

(s + 1.5)2 + 2.75

= 7.3368  1.658

(s + 1.5)2 + 2.75 + 5

  s + 1.5

(s + 1.5)2 + 2.75

andx(t) = 7.3368e−1.5t sin 1.658t + 5e−1.5t cos 1.658t

Also,

Y (s) =   C 11.658

(s + 1.5)2 + 2.75 + C 2

s + 1.5

(s + 1.5)2 + 2.75

=

  −57.901

  1.658

(s + 1.5)2

+ 2.75

 + 14  s + 1.5

(s + 1.5)2

+ 2.75and

y(t) = −57.901e−1.5t sin 1.658t + 14e−1.5t cos 1.658t

3-28 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 29: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 29/51

3.25  Transform each equation.

sX (s)− 5 = −2X (s) + 5Y (s)

sY (s)− 2 = −6Y (s) − 4X (s) + 10

s

Solve for  X (s) and Y (s).

X (s) = 5s2 + 40s + 50

s3 + 8s2 + 32s

Y (s) =  2s2 − 6s + 20

s3 + 8s2 + 32s

The denominator roots are  s  = 0 and  s  = −4± 4 j. Thus

X (s) =  C 1

s

  + C 24

(s + 4)2

+ 42

 + C 3s + 4

(s + 4)2

+ 42

=  25

16s +

 55

16

4

(s + 4)2 + 42 +

 55

16

s + 4

(s + 4)2 + 42

x(t) = 25

16 +

 55

16e−4t sin 4t +

 55

16e−4t cos 4t

Also,

Y (s) =  C 1

s  + C 2

4

(s + 4)2 + 42 + C 3

s + 4

(s + 4)2 + 42

=  5

8s − 33

8

4

(s + 4)2 + 42 +

 11

8

s + 4

(s + 4)2 + 42

y(t) = 5

8 −  33

8 e−4t sin 4t +

 11

8 e−4t cos 4t

3-29 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 30: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 30/51

3.26  For zero initial conditions, the transform gives

(s2 + 4)X (s) =  3

s2

or

X (s) =  3

s2(s2 + 4) =

 C 1s2

  + C 2

s  + C 3

2

s2 + 4 + C 4

s

s2 + 4

The solution form is thus

x(t) = C 1t + C 2 + C 3  sin 2t + C 4  cos 2t

This form satisfies the differential equation if  C 1  = 3/4 and  C 2   = 0. From x(0) = 10, weobtain C 4  = 10. From  x(5) = 30, we obtain  C 3  = −63.675. Thus

x(t) = 3

4t−

63.675 sin 2t + 10 cos 2t

3-30 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 31: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 31/51

3.27  Transform the equation.

(s2 + 12s + 40)X (s) = 3  5

s2

+ 25The characteristic roots are s  = −6± 2 j. Thus

X (s) =  15

(s2 + 25)(s2 + 12s + 40)

=   C 15

s2 + 25 + C 2

s

s2 + 25 + C 3

2

(s + 6)2 + 4 + C 4

s + 6

(s + 6)2 + 4

or

X (s) =  1

85

5

s2 + 25 −   4

85

s

s2 + 25 +

  19

170

2

(s + 6)2 + 4 +

  4

85

s + 6

(s + 6)2 + 4

Thus

x(t) =   185  sin 5t −   485  cos 5t +   19170 e−6t sin 2t +   485 e−6t cos 2t

3-31 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 32: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 32/51

3.28  From Example 3.7.6, the form A  sin(ωt + φ) has the transform

As sin  φ + ω  cos  φ

s2

+ ω2

For this problem, ω = 5. Comparing numerators gives

s sin φ + 5 cos  φ = 4s + 9

ThusA sin φ  = 4 5A cos φ = 9

With A >  0,  φ   is seen to be in the first quadrant.

φ = tan−1 sin  φ

cos  φ = tan−1

  4/A

9/5A = tan−1

 20

9  = 1.148 rad

Because sin2 φ + cos2 φ = 1,  4

A

2

+

  9

5A

2

= 1

which gives  A = 4.386. Thus

x(t) = 4.386 sin(5t + 1.148)

3-32 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 33: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 33/51

3.29  Transform the equation.

(s2 + 12s + 40)X (s) = 10

s

or, since the characteristic roots are  s  = −6± 2 j,

X (s) =  10

s[(s + 6)2 + 22]  (1)

From Example 3.7.6(b), the form  Ae−at sin(ωt + φ) has the transform

As sin φ + a  sin φ  + ω  cos  φ

(s + a)2 + ω2

For this problem, a = 6 and ω = 2. Thus

X (s) =  10

s[(s + 6)2 + 22]  = C 1

s   + C 2s sin φ + 6 sin φ  + 2 cos  φ

(s + 6)2 + 22

or

X (s) = C 1(s2 + 12s + 40) + C 2s2 sin φ   + 6C 2s sin φ + 2C 2s cos  φ

s[(s + 6)2 + 22]  (2)

Collecting terms and comparing the numerators of equations (1) and (2), we have

(C 1 + C 2   sin φ)s2 + (12C 1 + 6C 2   sin φ + 2C 2   cos φ)s + 40C 1  = 10

Thus comparing terms, we see that C 1  = 1/4 and

1

4

 + C 2   sin φ  = 0

3 + 6C 2   sin φ  + 2C 2   cos  φ = 0

So

C 2  sin φ = −1

4  C 2   cos φ = −3

4

Thus φ  is in the third quadrant and

φ = tan−1 −1/4

−3/4 = 0.322 + π = 3.463 rad

Because sin2 φ + cos2 φ = 1,

  1

4C 22

+   3

4C 22

= 1

which gives  C 2  = 0.791. Thus

x(t) = 1

4 + 0.791e−6t sin(2t + 3.463)

3-33 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 34: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 34/51

3.30  Transform the equation.

X (s) =  F (s)

s2 + 8s + 1

ThusF (s) −X (s) = F (s)−   F (s)

s2 + 8s + 1 =

  s2 + 8s

s2 + 8s + 1F (s)

Because F (s) = 6/s2,

F (s)−X (s) =  s2 + 8s

s2 + 8s + 1

6

s2  =

  s + 8

s2 + 8s + 1

6

s

From the final value theorem,

f ss − xss = lims→0

s[F (s)−X (s)] = lims→0

s  s + 8

s2 + 8s + 1

6

s  = 8

3-34 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 35: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 35/51

3.31  The roots are  s  = −2 and −4. Thus

X (s) =  1− e−3s

(s + 2)(s + 4)Let

F (s) =  1

(s + 2)(s + 4) =

 1

2

  1

s + 2 −   1

s + 4

so

f (t) = 1

2

e−2t − e−4t

From Property 6,

x(t) = 1

2

e−2t − e−4t

−  1

2

e−2(t−3) − e−4(t−3)

us(t− 3)

3-35 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 36: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 36/51

3.32

f (t) =  C 

Dtus(t) − 2C 

D (t−D)us(t−D) +

 C 

D(t− 2D)us(t− 2D)

From Property 6,

F (s) =  C 

Ds2 −   2C 

Ds2e−Ds +

  C 

Ds2e−2Ds =

  C 

Ds2

1− 2e−Ds + e−2Ds

3-36 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 37: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 37/51

3.33

f (t) =  C 

Dtus(t) −  C 

D(t−D)us(t−D) −Cus(t−D)

From Property 6,F (s) =

  C 

Ds2 −   C 

Ds2e−Ds −  C 

s e−Ds

3-37 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 38: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 38/51

3.34

f (t) = M us(t)− 2Mus(t − T ) + Mus(t− 2T )

From Property 6,

F (s) =  M s − 2M 

s  e−Ts + M 

s e−2Ts

3-38 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 39: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 39/51

3.35

P (t) = 3us(t) − 3us(t − 5)

From Property 6,

P (s) = 3s −  3

se−5s

X (s) =  P (s)

4s + 1 =

 3

1− e−5s

s(4s + 1)  =

 3

4

1− e−5s

s(s + 1/4)

Let

F (s) = 3

4

1

s(s + 1/4) = 3

1

s −   1

s + 1/4

Thenf (t) = 3

1− e−t/4

Since

X (s) = F (s)

1− e−5s

we have

x(t) = f (t)− f (t− 5)us(t − 5) = 3

1− e−t/4− 3

1− e−(t−5)/4

us(t− 5)

3-39 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 40: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 40/51

3.36

f (t) = 7

5 [tus(t)− (t− 10)us(t− 10) − (t − 30)us(t− 30)]

From Property 6,F (s) =

  7

5s2

1− e−10s − e−30s + e−40s

Thus

X (s) =  F (s)

2s + 1 =

  7

10s2(s + 1/2)

1− e−10s − e−30s + e−40s

Let

Y (s) =  1

s2(s + 1/2)

Then

Y (s) =  2

s2 −  4

s +

  4

s + 1/2

andy(t) = 2t− 4 + 4e−t/2

Thus, from Property 6,

x(t) =  7

10 [y(t)− y(t− 10)us(t− 10) − y(t− 30)us(t− 30) + y(t− 40)us(t− 40)]

or

x(t) =  7

10

2t− 4 + 4e−t/2 −

2(t− 10)− 4 + 4e−(t−10)/2

us(t− 10)

−  7

102(t

−30)

−4 + 4e−(t−30)/2us(t

−30)

+  7

10

2(t− 40)− 4 + 4e−(t−40)/2

us(t− 40)

3-40 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 41: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 41/51

3.37  Let

f (t) = t + t3

3  +

 2t5

15

ThenF (s) =

  1

s2 +

  2

s4 +

 16

s6  =

 s4 + 2s2 + 16

s6

From the differential equation,

X (s) =  F (s)

s + 1 =

 s4 + 2s2 + 16

s6(s + 1)

=  16

s6 −  16

s5  +

 18

s4 −  18

s3  +

 19

s2 −  19

s  +

  19

s + 1

Thus

x(t) =  2

15

t5

 2

3

t4 + 3t3

−9t2 + 19t

−19 + 19e−t

On a plot of this and the solution obtained from the lower-order approximation, the twosolutions are practically indistinguishable.

3-41 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 42: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 42/51

3.38  a)

[r,p,k] = residue([8,5],[2,20,48])

The result is   r = [10.7500, -6.7500],   p = [-6.0000, -4.0000], and   k = [ ]. Thesolution is

x(t) = 10.75e−6t − 6.75e−4t

b)

[r,p,k] = residue([4,13],[2,8,116])

The result is  r = [1.0000 - 0.1701i, 1.0000 + 0.1701i],   p = [-2.0000 + 7.3485i,

-2.0000 - 7.3485i], and   k = [ ]. The solution is

x(t) = (1 − 0.1701 j)e(−2+7.3485 j)t + (1 + 0.1701 j)e(−2−7.3485 j)t

From (3.8.4) and (3.8.5), the solution is

x(t) = 2e−2t (cos 7.3485t + 0.1701 sin 7.3485t)

c)

[r,p,k] = residue([3,2],[1,10,0,0])

The result is   r = [ -0.2800, 0.2800, 0.2000],   p = [-10, 0, 0], and   k = [ ]. The

solution isx(t) = −0.28e−10t + 0.28 + 0.2t

d)

[r,p,k] = residue([1,0,1,6],[1,2,0,0,0,0])

The result is  r = [-0.2500, 0.2500, 0.5000, -1.0000, 3.0000],   p =[ -2, 0, 0, 0,

0], and   k = [ ]. The solution is

x(t) = −0.25e−2t + 0.25 + 0.5t−  1

2t2 +

 1

2t3

3-42 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 43: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 43/51

e)

[r,p,k] = residue([4,3],[1,6,34,0])

The result is   r = [-0.0441 - 0.3735i, -0.0441 + 0.3735i, 0.0882],   p = [-3.0000

+ 5.0000i, -3.0000 - 5.0000i, 0], and   k = [ ].The solution is

x(t) = (−0.0441 − 0.3735 j)e(−3+5 j)t + (−0.0441 + 0.3735 j)e(−3−5 j)t + 0.0882

From (3.8.4) and (3.8.5), the solution is

x(t) = 2e−3t (−0.0441 cos 5t + 0.3735 sin 5t) + 0.0882

f)

[r,p,k] = residue([5,3,7],[1,12,144,48])

The result is r = [2.4759 + 1.3655i, 2.4759 - 1.3655i, 0.0482], p = -5.8286 +10.2971i,

-5.8286 -10.2971i, -0.3428], and   k = [ ]. The solution is

x(t) = (2.4759+1.3655 j)e(−5.8286+10.2971 j)t+(2.4759−1.3655 j)e(−5.8286−10.2971 j)t+0.0482e−0.3428t

From (3.8.4) and (3.8.5), the solution is

x(t) = 2e−5.8286t (2.4759 cos 10.29t − 1.3655 sin 10.29t) + 0.0482e−0.3428t

3-43 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 44: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 44/51

3.39  a)

[r,p,k] = residue(5,conv([1,8,16],[1,1]))

The result is   r = [-0.5556, -1.6667, 0.5556],   p = [-4.0000, -4.0000, -1.0000],  k

= [ ]. The solution is

x(t) = −0.5556e−4t − 1.6667te−4t + 0.5556e−t

b)

[r,p,k] = residue([4,9],conv([1,6,34],[1,4,20]))

The result is r = [-0.1159 + 0.1073i, -0.1159 - 0.1073i, 0.1159 - 0.1052i, 0.1159

+ 0.1052i], p = -3.0000 + 5.0000i, -3.0000 - 5.0000i, -2.0000 + 4.0000i, -2.0000- 4.0000i], and  k = [ ]. The solution is

x(t) = (−0.1159 + 0.1073 j)e(−3+5 j)t + (−0.1159 − 0.1073 j)e(−3−5 j)t

+ (0.1159 − 0.1052 j)e(−2+4 j)t + (0.1159 + 0.1052 j)e(−2−4 j)t

From (3.8.4) and (3.8.5), the solution is

x(t) = 2e−3t (−0.1159 cos 5t − 0.1073 sin 5t) + 2e−2t (0.1159 cos 4t + 0.1052 sin 4t)

3-44 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 45: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 45/51

3.40  a)

sys = tf(1,[3,21,30]);

step(sys)

b)

sys = tf(1,[5,20, 65]);

step(sys)

c)

sys = tf([3,2],[4,32,60]);

step(sys)

3-45 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 46: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 46/51

3.41  a)

sys = tf(1,[3,21,30]);

impulse(sys)

b)

sys = tf(1,[5,20, 65]);

impulse(sys)

3-46 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 47: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 47/51

3.42

sys = tf(5,[3,21,30]);

impulse(sys)

3-47 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 48: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 48/51

3.43

sys = tf(5,[3,21,30]);

step(sys)

3-48 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 49: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 49/51

3.44  a)

sys = tf(1,[3,21,30]);

t = [0:0.001:1.5];f = 5*t;

[x,t] = lsim(sys,f,t);

plot(t,x)

b)

sys = tf(1,[5,20,65]);

t = [0:0.001:1.5];

f = 5*t;

[x,t] = lsim(sys,f,t);

plot(t,x)

c)

sys = tf([3,2],[4,32,60]);

t = [0:0.001:1.5];

f = 5*t;

[x,t] = lsim(sys,f,t);

plot(t,x)

3-49 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 50: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 50/51

3.45  a)

sys = tf(1,[3,21,30]);

t = [0:0.001:6];f = 6*cos(3*t);

[x,t] = lsim(sys,f,t);

plot(t,x)

b)

sys = tf(1,[5,20,65]);

t = [0:0.001:6];

f = 6*cos(3*t);

[x,t] = lsim(sys,f,t);

plot(t,x)

c)

sys = tf([3,2],[4,32,60]);

t = [0:0.001:6];

f = 6*cos(3*t);

[x,t] = lsim(sys,f,t);

plot(t,x)

3-50 ______________________________________________________________________________________________ 

PROPRIETARY MATERIAL. © 2005 The McGraw-Hill Companies, Inc. All rights reserved. No part of thisManual may be displayed, reproduced or distributed in any form or by any means, without the prior written

 permission of the publisher, or used beyond the limited distribution to teachers and educators permitted byMcGraw-Hill for their individual course preparation.If you are a student using this Manual, you are using it without permission.

Page 51: SDsolns03

8/12/2019 SDsolns03

http://slidepdf.com/reader/full/sdsolns03 51/51

3.46  The following is a modification of the code on pages 160-161.

C = 5 ; D 1 = 2 ; D 2 = 4 ; D 3 = 6 ; D 4 = 8 ;

 m1 = C/D1; m2 = C/(D3 - D2);dt = 0.01;

t1 = [0:dt:D1-dt]; t2 = [D1:dt:D2-dt];

t3 = [D2:dt:D3-dt]; t4 = [D3:dt:D4];

t = [t1, t2, t3, t4];

f1 = m1*t1;

f2 = m1*t2 - m1*(t2-D1);

f3 = m1*t3-m1*(t3-D1)-m2*(t3-D2);

f4 = m1*t4-m1*(t4-D1)-m2*(t4-D2)+m2*(t4-D3);

f = [f1,f2,f3,f4];

sys = tf(1, [3,21,30]);

[x,t] = lsim(sys,f,t);

plot(t,x)