screening technologies - university of wyoming · 2020. 6. 16. · spe-78332 15 expert map: polymer...

33
ENHANCED OIL RECOVERY INSTITUTE Screening Technologies 3rd Annual Wyoming IOR/EOR Conference VLADIMIR ALVARADO CHEMICAL AND PETROLEUM ENGINEERING SEPTEMBER 13, 2011

Upload: others

Post on 29-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Screening Technologies 3rd Annual Wyoming IOR/EOR Conference

    V L A D I M I R A LV A R A D O

    C H E M I C A L A N D P E T R O L E U M E N G I N E E R I N G

    S E P T E M B E R 1 3 , 2 0 11

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • Introduction

    • Why run screening?

    • Screening type

    • Engineering (lookup tables)

    • Data-driven (drawn from experience)

    • Geological (ex: pay continuity)

    • Multi-parameter projections

    • Closing remarks

    Outline

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    ValuesUncertaintiesDecisions

    Objective

    Function

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    CO2

    Sequestration

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    NPV

    SAGD

    Yes

    No

    High

    Low

    Base case

    SF Yes

    No

    Yes

    No

    High

    Low

    Base case

    High

    Low

    Base case NPVNPVISC

    ValuesUncertaintiesDecisions

    Objective

    Function

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    CO2

    Sequestration

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    NPVNPV

    SAGD

    Yes

    No

    Yes

    No

    High

    Low

    Base case

    High

    Low

    Base case

    SF Yes

    No

    Yes

    No

    High

    Low

    Base case

    High

    Low

    Base case NPVNPV

    High

    Low

    Base case

    High

    Low

    Base case NPVNPVNPVNPVISC

    Conventional Economic

    Evaluations

    EOR Decision Making

    Manrique et al., SPE 113269, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Natural Depletion

    Water Flooding

    Water-Alternating-Gas (WAG)

    Alkali-Surfactant-Polymer (ASP)

    Gas Flooding

    Miscible

    Immiscible

    Water-Alternating-Gas (WAG)

    CO2 Sequestration

    High Pressure Air Injection

    Gas Injection Water Injection

    WAG IGR by late Depressurization

    Pressure Maint.

    Steam Stimulation

    Steamflooding

    In-Situ Combustion

    Steam-Assisted-Gravity-Drainage (SAGD)

    Problem: Too many choices

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • “Screening guides or criteria are among the first items

    considered when a petroleum engineer evaluates a

    candidate reservoir for enhanced oil recovery (EOR)”1

    • “The choice of enhanced oil recovery processes is

    based on technical and economic data”2

    • “Sophisticated and complex numerical models are used

    in industry to evaluate the suitability of a reservoir for

    CO2 flooding,… Thus, these methods and models are

    not suitable for a regional-scale, quick initial

    assessment and screening of oil pools…with respect to

    suitability…” 3

    Screening

    1Taber & Martin, SPE 12069, 1983 2Guerillot, SPE 17791, 1988 3Shaw & Bachu, JCPT, 2002

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Prospective Simulations

    Screening

    Detailed Appraisal

    Project Implementation

    Stop

    Stop

    Stop

    Goodyear & Gregory, SPE 28844, 1994

    • Several methods for

    feasibility

    • Analytical or sector model

    simulations => performance

    prediction

    • More data serve to build

    detailed models and deal

    with uncertainty

    • A go-ahead is given (or not)

    to deploy a development plan

    and invest resources

    Why run screening?

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E *Taber, Martin & Seright, SPEREE, 1997 (I)

    Lookup tables (Yes or No, or Maybe)

    EOR Method

    Gravity (oAPI)

    Viscosity (cp)

    Comp. So (% PV)

    Formation Type

    Net Thick. (ft)

    (md)

    Depth (ft)

    T (oF)

    N2 & Flue Gas

    > 35↗ 48↗

    40↗ 75↗

    Sandstone Carbonate

    Thin unless Dipping

    NC >6,000 NC

    HC Gas > 23↗ 41↗

    30↗ 80↗

    Sandstone Carbonate

    Thin unless Dipping

    NC >4,000 NC

    CO2 > 22↗ 36↗

    20↗ 55↗

    Sandstone Carbonate

    Wide range NC >2,500 NC

    Immisc. gases

    > 12 35↗ 70↗

    Sandstone Carbonate

    NC if dipping and/or good Kv

    NC >1,800 NC

    • Similar tables are available for chemical and thermals methods.

    • “Screening criteria are based on a combination of the reservoir and oil characteristics of successful projects plus our understanding of the optimum conditions needed for good oil displacement by the different EOR fluids”*

    Expert: having, involving, or displaying special skill or knowledge derived from training or experience

    http://www.merriam-webster.com/dictionary/experience

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • Each triangle represents a comfort reference interval

    • A second triangle is the reservoir interval for each variable

    • The overlapping area yields an index (0,1); the closer to “1” the better

    Comfort intervals (Ex: f)

    Softening lookup tables

    Alvarado, Thyne & Murrell, SPE 115940, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Out[18]=

    VARIABLE MINIMUM MOST LIKELY MAXIMUM INDEX

    Depth 30 2515 5000 0.760022

    Thickness 3 251.5 500 0.0117616

    Pressure 10 250 500 0.380952

    Permeability 100 2550 5000 0.496016

    Viscosity 0.2 1.35 2.5 0.0636642

    Temperature 0 100 200 0.35

    TOTAL 0.343736

    Fuzzy lookup tables

    Alvarado, Thyne & Murrell, SPE 115940, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Soft lookup tables can rank

    Alvarado, Thyne & Murrell, SPE 115940, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    WY Test Cases

    Alvarado, Thyne & Murrell, SPE 115940, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Triangle U Field

    0

    5000

    10000

    15000

    20000

    25000

    30000

    Jan-

    76

    Jan-

    80

    Jan-

    84

    Jan-

    88

    Jan-

    92

    Jan-

    96

    Jan-

    00

    Jan-

    04

    Jan-

    08

    Jan-

    12

    Jan-

    16

    Jan-

    20

    Jan-

    24

    Jan-

    28

    Jan-

    32

    Jan-

    36

    Date

    Oil r

    ate

    (B

    bl/m

    on

    th)

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    Wa

    ter

    Cu

    t (%

    )

    Waterflooding

    startedChemical treatment

    started

    WY Test Cases

    • Can we use learned lessons?

    • Critical conditions & parameters?

    • Can we develop strategies for basins?

    • Can we recommend objectively?

    Alvarado, Thyne & Murrell, SPE 115940, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Violations

    0

    10

    20

    30

    40

    50

    60

    70

    Dep

    th

    Per

    mea

    bility

    Thickn

    ess

    Tem

    pera

    ture

    Oil visc

    osity

    Pre

    ssur

    e

    Oil de

    nsity

    Aniso

    tropy

    (kv/kh

    )

    Clay co

    nten

    t

    Salinity

    Parameters

    Fre

    qu

    en

    cy

    Waterflooding

    Chemical Flooding

    Results for Minnelusa

    Alvarado, Thyne & Murrell, SPE 115940, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    0

    10

    20

    30

    40

    0 0.2 0.4 0.6 0.8 1

    Index

    Fre

    qu

    en

    cy

    Waterflooding

    Chemical Flooding

    Results for Minnelusa

    Alvarado, Thyne & Murrell, SPE 115940, 2008

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    15 SPE-78332

    Expert Map: Polymer Floods CO2 Immisc.

    CO2 Misc.

    N2 Immisc.

    N2 Misc.

    Polymer

    Steam

    WAG CO2 Immisc.

    WAG HC Immisc.

    WAG CO2 Misc.

    WAG HC Misc.

    Air

    Water Flooding

    Cluster 1

    Cluster 5

    Cluster 2

    Cluster 3

    Cluster 6

    Cluster 4

    Method %

    Air 41.38

    Steam 27.59

    CO2 Immisc. 10.34

    Polymer 8.62

    WAG CO2 Immisc. 5.17

    Water Flooding 5.17

    N2 Immisc. 1.72

    Method %

    CO2 Immisc. 22.58Air 12.90

    Water Flooding 12.90

    CO2 Misc. 9.68

    Polymer 9.68WAG HC Immisc. 9.68

    N2 Misc. 6.45

    WAG HC Misc. 6.45

    N2 Immisc. 3.23Steam 3.23

    WAG CO2 Misc. 3.23

    Method %

    Water Flooding 29.17

    CO2 Misc. 20.83

    Polymer 18.75

    N2 Immisc. 6.25

    Steam 6.25WAG HC Misc. 6.25

    CO2 Immisc. 4.17

    WAG CO2 Misc. 4.17

    N2 Misc. 2.08

    WAG N2 Misc. 2.08

    Method %Water Flooding 48.28

    Polymer 25.29WAG CO2 Misc. 12.64

    CO2 Misc. 10.34

    N2 Immisc. 1.15WAG HC Misc. 1.15

    Steam 1.15

    Method %

    Water Flooding 38.46

    WAG CO2 Misc. 13.46

    WAG HC Misc. 13.46

    N2 Misc. 9.62

    CO2 Misc. 7.69

    N2 Immisc. 7.69

    Polymer 5.77

    Air 3.85

    Method %N2 Misc. 42.86

    N2 Immisc. 21.43

    WAG N2 Misc. 14.29Water Flooding 14.29

    WAG HC Misc. 7.14

    Polymer floods in shallow and low

    pressure reservoirs

    Alvarado et al., SPE 78332, 2002

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    16

    Geologic Screening Criteria LOW MODERATE HIGH

    LATERAL HETEROGENEITY

    LO

    WM

    OD

    ERATE

    HIG

    H

    VE

    RT

    ICA

    LH

    ET

    ER

    OG

    EN

    EIT

    Y

    Wave-dominated delta Barrier core Barrier shore face

    Sand-rich strand plain

    Delta-front mouth bars Proximal delta front

    (accretionary) Tidal Deposits Mud-rich strand plain

    Meander belts*

    Fluvially dominated delta* Back Barrier*

    Eolian Wave-modified delta(distal)

    Shelf barriers

    Alluvial Fans Fan Delta Lacustrine delta

    Distal delta front

    Braided stream

    Tide-dominated delta

    Basin-flooring turbiditesCoarse-grained meander belt Braid delta

    Back barrier**

    Fluvially dominated delta** Fine-grained meander belt**

    Submarine fans**

    * Single units **Stacked Systems

    (1) / [1] (3) / [1]

    [1] (6)

    (7) / [2] (2) (2)

    (3) / [2]

    Tyler and Finley clastic heterogeneity matrix showing depositional systems of 24 successful (Blue) and 7 failed [Red] CO2 injection projects

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    1. Conventional screening (XY Plots)

    2. Screening with analytical tools

    3. Geological screening

    4. Advanced screening

    5. Inclusion of soft variables

    6. Evaluate constraints (simulation)

    7. Economic evaluation

    A possible methodology

    Conventional Screening

    Geologic Screening

    Advanced Screening

    Evaluation of Soft Variables

    Decision Analysis

    Performance Prediction

    Analytical Simulation Numerical Simulation

    Economics

    Stop

    Decision Analysis Stop

    Re-e

    valu

    ation c

    ycle

    Fie

    ld C

    ases T

    ype I

    Fie

    ld C

    ases T

    ype II

    Conventional Screening

    Geologic Screening

    Advanced Screening

    Evaluation of Soft Variables

    Decision Analysis

    Performance Prediction

    Analytical Simulation Numerical Simulation

    Economics

    Stop

    Decision Analysis Stop

    Re-e

    valu

    ation c

    ycle

    Conventional Screening

    Geologic Screening

    Advanced Screening

    Evaluation of Soft Variables

    Decision Analysis

    Performance Prediction

    Analytical Simulation Numerical Simulation

    Economics

    Stop

    Decision Analysis Stop

    Conventional Screening

    Geologic Screening

    Advanced Screening

    Evaluation of Soft Variables

    Decision Analysis

    Performance Prediction

    Analytical Simulation Numerical Simulation

    Economics

    Stop

    Decision Analysis Stop

    Re-e

    valu

    ation c

    ycle

    Fie

    ld C

    ases T

    ype I

    Fie

    ld C

    ases T

    ype II

    Fie

    ld C

    ases T

    ype I

    Fie

    ld C

    ases T

    ype II

    Manrique et al., SPEREE, 2009

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    CO2 Misc.

    N2 Immisc.

    N2 Misc.

    Polymer

    WAG-CO2 Misc.

    WAG-HC Misc.

    air

    Water flooding

    Field A - Case 1

    Field A - Case 2

    Field A - Case 3

    Cluster 2-3

    Method %

    N2 Immiscible 50.0

    Polymer 25.0

    Water Flooding 25.0

    Cluster 2-4

    Method %

    WAG-HC 38.5

    N2 Miscible 23.1

    Water Flooding 23.1

    N2 Immiscible 15.4

    Cluster 2-1

    Method %

    Water Flooding 47.6

    WAG-CO2 Misc. 23.8

    Air 9.5

    CO2 Misc. 9.5

    Polymer 9.5

    Cluster 2-2

    Method %

    Water Flooding 42.9

    CO2 Misc. 14.3

    N2 Miscible 14.3

    WAG-CO2 Misc. 14.3

    WAG-HC 14.3

    Binger

    East Binger

    Field “A” sensitivity cases

    CO2 Misc.

    N2 Immisc.

    N2 Misc.

    Polymer

    WAG-CO2 Misc.

    WAG-HC Misc.

    air

    Water flooding

    Field A - Case 1

    Field A - Case 2

    Field A - Case 3

    Cluster 2-3

    Method %

    N2 Immiscible 50.0

    Polymer 25.0

    Water Flooding 25.0

    Cluster 2-4

    Method %

    WAG-HC 38.5

    N2 Miscible 23.1

    Water Flooding 23.1

    N2 Immiscible 15.4

    Cluster 2-1

    Method %

    Water Flooding 47.6

    WAG-CO2 Misc. 23.8

    Air 9.5

    CO2 Misc. 9.5

    Polymer 9.5

    Cluster 2-2

    Method %

    Water Flooding 42.9

    CO2 Misc. 14.3

    N2 Miscible 14.3

    WAG-CO2 Misc. 14.3

    WAG-HC 14.3

    Binger

    East Binger

    Field “A” sensitivity cases

    A. Light-Oil Dolomitic Reservoir

    Manrique et al., SPEREE, 2009

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 20 40 60 80 100

    % Pore Volume Injected

    Reco

    very

    facto

    r, %

    CMG-75

    CMG-150

    CMG-300

    Prize-75

    Prize-150

    Prize-300

    Screening Criteria

    c1 c2

    cn

    ...

    cn-1

    Analytic

    Numeric

    Simulation

    Analytical vs. Numerical

    0

    20000

    40000

    60000

    80000

    100000

    120000

    140000

    160000

    180000

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    Time, year

    Cu

    mu

    lati

    ve

    Oil

    Pro

    du

    cti

    on

    , m

    3

    SAGD NP=21m

    SAGD NP=10m

    STEAM NP=21m

    STEAM NP=10m

    IN-SITU NP=21m

    IN-SITU NP=10m

    ValuesUncertaintiesDecisions

    Objective

    Function

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    CO2

    Sequestration

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    NPV

    SAGD

    Yes

    No

    High

    Low

    Base case

    SF Yes

    No

    Yes

    No

    High

    Low

    Base case

    High

    Low

    Base case NPVNPVISC

    ValuesUncertaintiesDecisions

    Objective

    Function

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    CO2

    Sequestration

    EOR MethodNPV

    Tax

    CAPEX

    OPEXReservoir

    Properties

    Oil

    ProductionProduction

    revenue

    Oil Price

    Water

    Handling Costs

    NPVNPV

    SAGD

    Yes

    No

    Yes

    No

    High

    Low

    Base case

    High

    Low

    Base case

    SF Yes

    No

    Yes

    No

    High

    Low

    Base case

    High

    Low

    Base case NPVNPV

    High

    Low

    Base case

    High

    Low

    Base case NPVNPVNPVNPVISC

    CO2 Immisc.

    N2 Immisc.

    Polymer

    Steam

    Air

    Water Flooding

    WAG CO2 Immisc.

    ASP

    SAGD (Canada)

    Avg. Grosmont Carbonate

    Peace River, Shell

    Cold Lake, IOL

    Primrose, CNRL

    Ikiztepe (Heavy Oil Carbonate)

    Qarn Alam (Heavy Oil Carbonate)

    Issaran (Heavy Oil Carbonate)

    Cluster 5-1

    Cluster 5-3

    Cluster 5-4

    Cluster 5-2

    Cluster 5-6

    Cluster 5-5

    Method %

    CO2 Immisc. 33.33

    Air 22.22

    WAGCO2 Immisc. 22.22

    Water Flooding 11.11

    Polymer 11.11

    Method %

    Air

    35.71

    Steam

    28.57

    CO2 Immisc.

    14.29

    Polymer

    7.14

    Water Flooding

    7.14

    ASP

    7.14

    Method %

    CO2 Immisc. 33.33

    N2 Immisc. 16.67

    WAG CO2 Immisc. 16.67

    Polymer 16.67

    ASP 16.67

    Method %

    Air 70

    Steam 30

    Method %

    Air 52.94

    Steam 47.06

    Method %

    Steam 37.5

    Air 25

    Polymer 25

    12.5Water Flooding

    Reservoir “B”

    Burnt Lake

    Foster

    Creek

    CO2 Immisc.

    N2 Immisc.

    Polymer

    Steam

    Air

    Water Flooding

    WAG CO2 Immisc.

    ASP

    SAGD (Canada)

    Avg. Grosmont Carbonate

    Peace River, Shell

    Cold Lake, IOL

    Primrose, CNRL

    Ikiztepe (Heavy Oil Carbonate)

    Qarn Alam (Heavy Oil Carbonate)

    Issaran (Heavy Oil Carbonate)

    Cluster 5-1

    Cluster 5-3

    Cluster 5-4

    Cluster 5-2

    Cluster 5-6

    Cluster 5-5

    Method %

    CO2 Immisc. 33.33

    Air 22.22

    WAGCO2 Immisc. 22.22

    Water Flooding 11.11

    Polymer 11.11

    Method %

    Air

    35.71

    Steam

    28.57

    CO2 Immisc.

    14.29

    Polymer

    7.14

    Water Flooding

    7.14

    ASP

    7.14

    Method %

    CO2 Immisc. 33.33

    N2 Immisc. 16.67

    WAG CO2 Immisc. 16.67

    Polymer 16.67

    ASP 16.67

    Method %

    Air 70

    Steam 30

    Method %

    Air 52.94

    Steam 47.06

    Method %

    Steam 37.5

    Air 25

    Polymer 25

    12.5Water Flooding

    Reservoir “B”

    Burnt Lake

    Foster

    Creek

    CO2 Immisc.

    N2 Immisc.

    Polymer

    Steam

    Air

    Water Flooding

    WAG CO2 Immisc.

    ASP

    SAGD (Canada)

    Avg. Grosmont Carbonate

    Peace River, Shell

    Cold Lake, IOL

    Primrose, CNRL

    Ikiztepe (Heavy Oil Carbonate)

    Qarn Alam (Heavy Oil Carbonate)

    Issaran (Heavy Oil Carbonate)

    Cluster 5-1

    Cluster 5-3

    Cluster 5-4

    Cluster 5-2

    Cluster 5-6

    Cluster 5-5

    Method %

    CO2 Immisc. 33.33

    Air 22.22

    WAGCO2 Immisc. 22.22

    Water Flooding 11.11

    Polymer 11.11

    Method %

    Air

    35.71

    Steam

    28.57

    CO2 Immisc.

    14.29

    Polymer

    7.14

    Water Flooding

    7.14

    ASP

    7.14

    Method %

    CO2 Immisc. 33.33

    N2 Immisc. 16.67

    WAG CO2 Immisc. 16.67

    Polymer 16.67

    ASP 16.67

    Method %

    Air 70

    Steam 30

    Method %

    Air 52.94

    Steam 47.06

    Method %

    Steam 37.5

    Air 25

    Polymer 25

    12.5Water Flooding

    Reservoir “B”

    Burnt Lake

    Foster

    Creek

    CO2 Immisc.

    N2 Immisc.

    Polymer

    Steam

    Air

    Water Flooding

    WAG CO2 Immisc.

    ASP

    SAGD (Canada)

    Avg. Grosmont Carbonate

    Peace River, Shell

    Cold Lake, IOL

    Primrose, CNRL

    Ikiztepe (Heavy Oil Carbonate)

    Qarn Alam (Heavy Oil Carbonate)

    Issaran (Heavy Oil Carbonate)

    Cluster 5-1

    Cluster 5-3

    Cluster 5-4

    Cluster 5-2

    Cluster 5-6

    Cluster 5-5

    Method %

    CO2 Immisc. 33.33

    Air 22.22

    WAGCO2 Immisc. 22.22

    Water Flooding 11.11

    Polymer 11.11

    Method %

    Air

    35.71

    Steam

    28.57

    CO2 Immisc.

    14.29

    Polymer

    7.14

    Water Flooding

    7.14

    ASP

    7.14

    Method %

    CO2 Immisc. 33.33

    N2 Immisc. 16.67

    WAG CO2 Immisc. 16.67

    Polymer 16.67

    ASP 16.67

    Method %

    Air 70

    Steam 30

    Method %

    Air 52.94

    Steam 47.06

    Method %

    Steam 37.5

    Air 25

    Polymer 25

    12.5Water Flooding

    Reservoir “B”

    Burnt Lake

    Foster

    Creek

    0

    0.2

    0.4

    0.6

    0.8

    1

    Porosity (%) (16-45)

    Permeability (mD) (5-10500)

    Depth (ft) (200-6800)

    API Gravity (5.8-35)

    Oil Viscosity (cp) (0.4-6000000)

    Temperature (F) (10-280)

    Primrose Gueheng Karamay 9-5 - 9-9McKittrick Karamay 6 Elk PointIron River Frog Lake MorganYorba Linda Maguerite Lake AthabascaPeace River Area Saner Ranch Cat CanyonKern River Tangleflags East Wolf Lake/Primrose/Burnt LakeFoster Creek Lean LindberghCaribou Lake Charlotte Lake Gregoire (Athabasca)Pikes Peak Cold Lake San Miguel-4Reservoir "A" Lost Hills Sec. 30 Schoonebeeck

    0

    0.2

    0.4

    0.6

    0.8

    1

    Porosity (%) (16-45)

    Permeability (mD) (5-10500)

    Depth (ft) (200-6800)

    API Gravity (5.8-35)

    Oil Viscosity (cp) (0.4-6000000)

    Temperature (F) (10-280)

    Primrose Gueheng Karamay 9-5 - 9-9McKittrick Karamay 6 Elk PointIron River Frog Lake MorganYorba Linda Maguerite Lake AthabascaPeace River Area Saner Ranch Cat CanyonKern River Tangleflags East Wolf Lake/Primrose/Burnt LakeFoster Creek Lean LindberghCaribou Lake Charlotte Lake Gregoire (Athabasca)Pikes Peak Cold Lake San Miguel-4Reservoir "A" Lost Hills Sec. 30 Schoonebeeck

    LOW MODERATE HIGH

    LO

    W

    Wave-dominated delta

    Barrier core

    Barrier shore face

    Sand-rich strand plain

    Delta-front mouth bars

    Proximal delta front

    (accretionary)

    Tidal Deposits

    Mud-rich strand plain

    Meander belts*

    Fluvially dominated delta*

    Back Barrier*

    MO

    DER

    ATE

    Eolian

    Wave modified delta (distal)

    Shelf barriers

    Alluvial Fans

    Fan Delta

    Lacustrine delta

    Distal delta front

    Braided stream

    Tide-dominated delta

    HIG

    H

    Basin-flooring turbiditesCoarse-grained meander belt

    Braid delta

    Back barrier**

    Fluvially dominated delta**

    Fine-grained meander belt**

    Submarine fans**

    * Single units **Stacked Systems

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    (9) / [1] (9) / [2]

    (9) (83) / [14] (52) / [4]

    (19) / [1] (2) (4)

    LOW MODERATE HIGH

    LO

    W

    Wave-dominated delta

    Barrier core

    Barrier shore face

    Sand-rich strand plain

    Delta-front mouth bars

    Proximal delta front

    (accretionary)

    Tidal Deposits

    Mud-rich strand plain

    Meander belts*

    Fluvially dominated delta*

    Back Barrier*

    MO

    DER

    ATE

    Eolian

    Wave modified delta (distal)

    Shelf barriers

    Alluvial Fans

    Fan Delta

    Lacustrine delta

    Distal delta front

    Braided stream

    Tide-dominated delta

    HIG

    H

    Basin-flooring turbiditesCoarse-grained meander belt

    Braid delta

    Back barrier**

    Fluvially dominated delta**

    Fine-grained meander belt**

    Submarine fans**

    * Single units **Stacked Systems

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    (9) / [1] (9) / [2]

    (9) (83) / [14] (52) / [4]

    (19) / [1] (2) (4)

    (9) / [1] (9) / [2]

    (9) (83) / [14] (52) / [4]

    (19) / [1] (2) (4)

    Decision and Risk Analysis and EE

    B. Canadian Oil Sand

    Manrique et al., SPEREE, 2009

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • Comparison of basic geologic

    properties.

    • DP coefficient from log and

    core data to estimate the

    impact on steam chamber

    development.

    • Lateral and vertical

    heterogeneity indexes for

    feasibility of SAGD well pairs in

    the same units, vertical

    separation and length.

    LOW MODERATE HIGH

    LO

    WM

    OD

    ERATE

    HIG

    H

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    LOW MODERATE HIGH

    LO

    WM

    OD

    ERATE

    HIG

    H

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    LOW MODERATE HIGH

    LO

    WM

    OD

    ERATE

    HIG

    H

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    LOW MODERATE HIGH

    LO

    WM

    OD

    ERATE

    HIG

    H

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    LOW MODERATE HIGH

    LO

    WM

    OD

    ERATE

    HIG

    H

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    LOW MODERATE HIGH

    LO

    WM

    OD

    ERATE

    HIG

    H

    LATERAL HETEROGENEITY

    VE

    RT

    ICA

    L H

    ET

    ER

    OG

    EN

    EIT

    Y

    B. Canadian Oil Sand

    Manrique et al., SPEREE, 2009

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    • Cells (120 m x 800 m)

    indicates potential SAGD

    well pairs locations.

    • Cumulative oil and CSOR

    can be estimated from

    correlations for different

    net pays with and w/o top

    gas and bottom water.

    • As expected, RF

    decreases and CSOR

    increases with thickness

    and presence of top gas

    and bottom water.

    Discarded for SAGD

    B. Canadian Oil Sand

    Manrique et al., SPEREE, 2009

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Ongoing efforts at EORI-PETE (UW)

    • Selection of adequate clustering algorithms to data-mine EORI database and others

    • Reservoir type identification

    • Incorporation of reservoir, fluids and geologic data into clustering methods

    • Per-basin analysis of historical data

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Screening: Variables used

    • 3-7 variables (median) were considered: depth, permeability, thickness, temperature, viscosity, pressure, salinity. Example:

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Gran

    ularity

    As one goes from top to bottom by fixing a horizontal line at certain levels, the number of clusters can be identified. The numbers at the bottom represent the individual reservoirs in the database

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Projections One way of visually looking at the data is projections. Here is an example of 7 parameters projected on 3 Principal Component (PCA). Colors identify clusters.

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Projections A more familiar look can be seen from the 2D projection

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Projections (analogs)

    The cluster structure can be used to find analogs

    The lines joining “+”

    with points identify

    the connection

    between 3 “new”

    reservoirs with their

    analog cases.

    Minimum distance

    was used to find the

    analogs

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Closing remarks

    • Screening is not a one-step process and does not replace reservoir studies, but helps to assist decisions

    • Several screening methods should be considered, especially when different data types are used

    • Data-mining approaches alleviate expert opinions’ biases and can lead to the concept of “reservoir type”

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    BACKUP SLIDES SPEREE

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    C. Steam flooding project

    • Decreasing well spacing increases the recovery factor

    • Steam quality > 0.6 is required for significant increments in recovery factor – this is a critical design variable

    0

    10

    20

    30

    40

    50

    0 50 100 150 200 250 300

    Well Spacing (m)R

    eco

    very

    Facto

    r, %

    SQ=1.0

    SQ=0.8

    SQ=0.6

    SQ=0.4

    SQ=0.2

    SQ=0.0

    0

    10

    20

    30

    40

    50

    60

    0 20 40 60 80 100

    % Pore Volume Injected

    Rec

    ove

    ry F

    ac

    tor,

    %

    Well Spacing = 75mWell Spacing = 150 mWell Spacing = 225 mWell Spacing = 300 mWell Spacing = 75mWell Spacing = 150 mWell Spacing = 225 mWell Spacing = 300 m

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    C. Steam flooding project

    • Performance predictions from simulations indicated improvement in oil recovery for smaller well spacing

    • However, economics dictates an optimal well spacing below which no economic gain can be obtained

    $0

    $400

    $800

    $1,200

    $1,600

    $2,000

    0 100 200 300 400

    Well Spacing, (m)

    Net

    Pre

    sen

    t V

    alu

    e

    PVI=70%, Oil Price = $90

    PVI=70%, Oil Price = $60

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    5000 100005000 10000

    • Decision problem is well spacing for a steam flooding

    • Framing is for optimal recovery/production

    • Building petrophysical models was not feasible

    C. Steam flooding project

    Manrique et al., SPEREE, 2009

  • E N H A N C E D O I L R E C O V E R Y I N S T I T U T E

    Screening: Variables used

    • Parameters values were rescaled (normalized)

    • Once processed, the data were partitioned and clustered

    • Dendograms were produced as a way to see the structure of the data and analyzed granularity of the dataset