scantlings version_2 for print only

Upload: subrahmanyambhuktha

Post on 04-Jun-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Scantlings Version_2 for Print Only

    1/280

    L= length of craft in meters

    L= 36 m

    B= breadth of the craft in m

    B= 12 m

    D= depth of the craft in m

    D= 4 m

    d= stationary draft in m

    d= 2.5 m (but generally not to be taken as ledd then 0.04L)

    Cb=0.5

    g= 1.005 N/cm2-m

    ncg=the vertical acceleration of the craft

    ncg= N2[(12 h1/3/NhBw)+1] *50-cg](V2(NhBw)

    2/)g

    = 1.45

    Nh=number of hulls

    Nh=2

    kn=0.256

    nxx= ncgKv= 1.45

    N1=0.1

    N2=0.0078

    N3=9.8

    =displacement at design waterline in kg= 297250 kg

    =282.9268 m3

    =290 ton

    g= 9.81 m/s2

    Lw=craft length on the waterline in m= 36 m

    Bw=maximum waterline beam in m= 11.8 m

    H= wave parameter= 0.017L+3.653 m = 4.3 m

    h1/3=significant wave height= 2.5 m

    =running trim at V= 4

    cg=deadrise at LCG= 30

    bx=deadrise at any section clear of LCG= 30

    V= craft design speed in knots= 12 knots

    FD=design area factor= 0.4

    FV=vertical accleration distribution factor (3-2-2/fig-5)

    KV=vertical accleration distribution factor (3-2-2/fig-4)

    KV=1

    AD=design area , cm2

    2.5s2= 6250 cm

    2(for shell plate panel)

    0.33l2

    cm2

    (for longitudenals, stiffners,transverse

    AR=referance area ,cm2

    = 6.95 /d cm2

    = 786.5365854 m2

    = 0.08 cm2

    AD/AR=79462.29

  • 8/13/2019 Scantlings Version_2 for Print Only

    2/280

    s = spacing of longitudenal stiffners in cm= 50 cm

    l= unsupported span of intervals in cm

    LI=mean span of cross structure in cm

    pbcg,pbxx,N1,N2,N3,,Lw,V,FV,nxx,bx,cg,H,d and FDare as defined in 3-2-2/1.1

    C1=0.044L+3.75

    C1=5.33

    C2=0.01Wave bending moment amidships: (3-2-1/1.1.2, pg-47)

    Mws= -k1C1 L2B (Cb+ 0.7) x 10

    -3kN-m sagging moment

    Mws= -10949.97658 kN-m

    Mwh= k2C1L2B Cbx 10

    -3kN-m hogging moment

    Mwh=7880.66 kN-m

    where

    k1= 110

    k2= 190

    Msws=0 kN-m sagging moment

    Mswh= 0.3 fpC1C2L2

    B (Cb+ 0.7) kN-m hogging momentMswh=5226.13 kN-m

    where

    fp= 17.5 kN/cm2

    Slamming induced bending moment:

    Msl=C3(1+ncg)(L-ls) kN-m

    Msl=29187.18 kN-m

    where

    C3= 1.25

    = full load displacement in metric tons

    ls=length of slamming load in m

    ls= AR/Bwl

    ls=6.61

    AR=0.67/d m2

    AR=77.72 m2

    Section Modulus:

    SM=M tCQ/fp cm2-m

    1667.84 cm

    2

    -m0.17 m

    3

    where

    Mt=maximum total bending moment, to be taken greater of the following

    = Mswh+Mwh 13106.79014 kN-m

    = -Msws-Mws -10949.97658 kN-m

    = Msl 29187.18 kN-m

    Mt=29187.18 kN-m 175000

  • 8/13/2019 Scantlings Version_2 for Print Only

    3/280

    C= 1 for steel craft

    Q= 1 for ordinary steel

    fp=17.5 kN/cm2

    K= 50

    Moment of inertia:

    I= (L/QC)*(SM/K) cm2-m

    2

    I= 0.12 cm2-m

    2

    I= 1.20084E-05 m4

    Catamaran transverse loading: (3-2-1/3.3, pg-53)

    Mtb= K1 Bcl (1+ncg) kN-m

    Mtb=17879 kN-m

    Mtt= K2 L(1+ncg) kN-m

    Mtt=35757 kN-m

    Max Mtt=35757.00 kN-m

    Qt= K1 (1+ncg) kN

    Qt=1986.50 kN

    where

    Mtb=design transverse bending moment acting upon the cross structure connecting the hull

    Mtt=design torsional moment acting upon the transverse structure connecting the hulls

    Qt=design vertical shear force acting upon the transverse structure connecting the hulls

    K1 =2.5

    K2 =1.25

    =craft displacement in tonnes

    =290 m3

    Bcl=distance between the hull centerlines in meters

    Bcl=9 m

    ncg vertical accleration at the craft's center of gravity

    1+ncg=2.74 (3-2-1/table 1)

    Design stresses and deflection: (3-2-1/3.5, pg-54)a=design transverse bending stress N/mm

    2

    a= 0.66 y 155.1 N/mm2

    ab=design torsional or combined stress N/mm2

    ab= 0.75 y 176.25 N/mm2

    a=design transverse shear stress N/mm2

    a= 0.38 y 89.3 N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    4/280

    E= tensile or compressive modulus N/mm2

    E= 206000 N/mm2

    y=minium yield strength of material in N/mm2

    y=235 N/mm2

    N/mm2

    A. Keels:

    Bar keelsthickness

    t= 0.625L+12.5 mm

    t= 35 mm

    t= 50 mm provided

    depth

    h= 1.467L+100 mm

    h= 153 mm

    h= 180 mm provided

    B. Bottom structure:

    Bottom plating:

    Bottom slamming for crafts less than 61 m (3-2-2/3.1, pg-62)

    pbxx= N1 (1ncg) FDFV/(Lw Nh Bw) kN/m2

    pbxx=38.51 kN/m2

    afor slamming pressure= 0.90 y= 211.5 N/mm2

    p= 38.51 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 2.04 mm

    Hydrostastic pressure (3-2-2/3.1, pg-62)

    pd= N3(0.64H+d) kN/m2

    pd=51.25 kN/m2

    afor hydrostatic pressure= 0.55 y= 129.25 N/mm2

    p= 51.25 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 1.66 mm

    Minimum thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 2 mm

    ts=4.64 mm

    t= 5 mm pvovided

    Bottom transverse and girder:

  • 8/13/2019 Scantlings Version_2 for Print Only

    5/280

    afor bottom transverse and girder - slamming pressure= 0.80 y= 188

    afor bottom transverse and girder - sea pressure= 0.60 y= 141

    l= 2.96 m

    SM=83.3*p s l2/a cm

    3

    SM= 74.75 cm3

    slamming pressure

    SM= 132.64 cm3

    sea pressure

    provided SM= 139 cm 3

    130 x 75 x 10 A= 21 cm2

    (transverse

    provided SM= 141 cm3

    130 x 10 + 65 x 12 A= 21 cm3

    (transverse

    provided SM= 144 cm3

    250 x 15 A= 38 cm2

    (center gir

    Buckling Criteria for bottom plate: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 218.42 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 10 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mml= 1000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 171.7916241 N/mm2

    c= 171.79 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    a= 159.28 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

  • 8/13/2019 Scantlings Version_2 for Print Only

    6/280

    C. Inner bottom structure

    Tank boundaries

    pt= g(1+0.5nxx)h2 kN/m2

    pt= 2.60 kN/m2

    Watertight boundaries

    The design pressure for water tight boundries is to be not less than given by the following equationpw= N3h kN/m

    2

    h= 1.5 m

    pw= 14.7 kN/m2

    afor lower deck/ other deck= 0.60 y= 141 N/mm2

    p= 14.70 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.52 mm

    Lower deck,WT bulkhead, Deep tank bulkhead

    Minium thickness: (3-2-3/1.3.3, pg-73)

    qs=1 for ordinary steel

    ts= 0.35 (L qs)1/2

    + 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    Inner Bottom transverse and girder:

    afor deck transverse and girder - other deck= 0.75 y= 176.25 N/mm2

    l= 2.76 mSM=83.3*p s l

    2/a cm

    3

    SM= 26.46 cm3

    provided SM= 30 cm3

    75 x 55 x 5 A= 7 cm2

    (transverse

    provided SM= 41 cm3

    100 x 5 + 50 x 5 A= 8 cm2

    (transverse

    provided SM= 41 cm3

    100 x 5 + 50 x 5 A= 8 cm2

    (long. T)

    Buckling Criteria for deck plate: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 73.81 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

  • 8/13/2019 Scantlings Version_2 for Print Only

    7/280

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 7 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mml= 1000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 47.95480602 N/mm2

    c= 73.81 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1 ma= 62.17 N/mm

    2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    D. Side and transom structure:

    Side and transom structure ,design pressure: (3-2-2/3.3, pg-62)

    The side design pressure ps, is to be not less than given by the equations

    slaming pressure

    psxx= [N1 (1nxx)/LwNhBw+ *(70-sx)/(70-cg)] kN/m2

    psxx=36.31 kN/m2

    afor slamming pressure= 0.90 y= 211.5 N/mm2

    p= 36.31 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 1.92 mm

    Hydrostatic pressure

    ps= N3(Hs-y) kN/m2

    ps=27.17 kN/m2

    afor hydrostatic pressure= 0.55 y= 129.25 N/mm2

    p= 27.17 kN/m2

  • 8/13/2019 Scantlings Version_2 for Print Only

    8/280

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.88 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 2 mm

    ts=4.64 mm

    t= 5 mm pvovided

    Side transverse and girders:

    side transverse and girders - slamming pressure 0.80 y 188

    side transverse and girders - sea pressure 0.60 y 141

    s= 0.5 m

    l= 1.5 m

    SM=83.3*p s l2/a cm

    3

    SM= 18.10 cm3

    slamming pressure

    SM= 18.06 cm3

    sea pressure

    provided SM= 20 cm3

    section= 50 x 50 x 6 A= 6 cm2

    (transverse

    Buckling Criteria for side shell: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 107.03 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 7 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1000 mmC2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 106.0033145 N/mm2

    c= 107.03 N/mm2

    Calculated compressive stress:

  • 8/13/2019 Scantlings Version_2 for Print Only

    9/280

    a= c5(Mt(y/I)) N/mm2

    y= 1.5 m

    a= 93.25 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Fore end

    psf= 0.28FaCFN3(0.22+0.15 tan)(00.4V sin0.6 L1/2

    )2 kN/m

    2

    where

    psxx=side design slamming pressure

    ps=side design pressure due to hydrostatic force

    psf=side design pressure for forward of 00.125L stern

    Hs=0.64H+d m

    Hs=5.27 m

    y= distance above base line in m = 2.5 m

    L= craft length

    Fa=3.25 for plating and 1 for longitudinals, transverses and girders

    CF=0.0125L for L

  • 8/13/2019 Scantlings Version_2 for Print Only

    10/280

    afor strength deck= 0.60 y= 141 N/mm2

    p= 11.20 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.39 mm

    afor strength deck= 0.60 y= 141 N/mm2

    p= 71.00 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 2.50 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2+ 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    p= 14.80 kN/m2

    deck transverse and girders - strength decks 0.75 y 176.25 N/mm2

    deck transverse and girders - other decks 0.75 y 176.25 N/mm2

    s= 0.5 m

    l= 3.5 m

    SM=83.3*p s l2/a cm

    3

    SM= 42.84 cm 3 Exposed freeboard deck

    SM= 32.42 cm3

    Freeboard deck

    provided SM= 46 cm3

    section= 60 x 60 x 10 A= 12 cm2

    provided SM= 48 cm3

    section= 100 x 6 + 50 x 6 A= 9 cm2

    Buckling Criteria for deck plate: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 96.41 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 8 mm provided

  • 8/13/2019 Scantlings Version_2 for Print Only

    11/280

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 91.79352336 N/mm2

    c= 96.41 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.42 m

    a= 88.28 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Enclosed accommadations decks= 5 kN/m2

    Concentrated deck cargo loads, equipment foundations= W(1+1.5nxx)

    Enclosed store rooms, machinery spaces, etc= h (10.55nxx)

    W=deck cargo load in kN/m2

    nxx

    =average vertical accleration at the location unbder consideration as defined in 3-2-2/1.1

    =cargo densityin kN/m2

    not to be less than 7.04 kN/m2

    h= height of enclosed store room, machinery space,etc in m

    L= craft length as defined in 3-1-1/3

    F. Wet deck or cross structure: (3-2-2/3.5, pg-65)

    pwd= 30 N1FDF1V V1(1-0.85 ha/h1/3) kN/m2

    0.006144 kN/m2

    where

    N1=0.1

    ha= vertical distance in m, is not be greater than 1.176h1/3= 2.94

    ha= 1.176h1/3 m

    ha=2.94 m

    F1=Wet deck pressure distribution factor as given in 3-2-2/fig-6=

    V1=relative impact velocity as given below

    V1= (4h1/3/L1/2

    )+1 m/s

  • 8/13/2019 Scantlings Version_2 for Print Only

    12/280

    V1=2.67 m/s

    V, h1/3and FDare as defined in 3-2-2/1.1

    The wet deck pressure is

    Pwd=N1[/(0.332LWNhBw+ LwdWwd)]*[Hb+nxx]*[1-(GA/Hw)]*FD

    Pwd=12.78 kN/m2

    where,N1=0.1

    Hb=1 for catamarans

    GA=vertical distance in m

    = 1 m

    Lwd=Length of wet deck in m

    = 36 m

    Wwd=width of wet deck in m

    = 6 m

    Hw= h1/3 m

    afor cross deck= 0.90 y= 211.5 N/mm2

    p= 12.78 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.68 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    wet deck transverse and girders 0.75 y 176.25 N/mm2

    s= 0.5 m

    l= 5.13 m

    SM=83.3*p s l2/a cm

    3

    SM= 79.51 cm3

    provided SM= 101 cm3

    section= 100 x 100 x 8 A= 16 cm2

    provided SM= 119 cm 3

    section= 130 x 8 + 65 x 10 A= 16 cm2

    provided SM= 119 cm3

    section= 130 x 8 + 65 x 10 A= 16 cm2

    Buckling Criteria for wet deck (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

  • 8/13/2019 Scantlings Version_2 for Print Only

    13/280

    E= 96.41 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 8 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 91.79352336 N/mm2

    c= 96.41 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.42 m

    a= 88.28 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    G. Bulkhead structure:

    Tank boundaries

    pt= N3h kN/m2

    9.8 kN/m2

    pt= g (1+0.5nxx)h2 kN/m2

    1.90 kN/m2

    where

    g= specific weight of liquid= 1.055 N/cm2-m

    h2=distance from lower edge of plate panel or center of area support by stiffener to

    the top of the tank in m

    watertight boundaries

    pw= N3h kN/m2

    9.8 kN/m2

  • 8/13/2019 Scantlings Version_2 for Print Only

    14/280

    afor watertight bulkhead= 0.95 y= 223.25 N/mm2

    p= 9.80 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.55 mm

    afor deep tank bulkhead= 0.60 y= 141 N/mm2

    p= 9.80 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.35 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    Lower decks,WT bulkheads,deep tank bulkheads:

    qs=1 for ordinary steel

    ts= 0.35 (L qs)1/2

    + 1 mm

    ts=3.1 mm

    t= 5 mm pvovided

    Bulkhead transverse and girders:

    Tank= 0.60 y 211.5 N/mm2

    Watertight= 0.85 y 129.25 N/mm2

    s= 0.5 m

    l= 1 m

    SM=83.3*p s l2

    /a cm

    3

    SM= 1.93 cm3

    Tank bulkhead

    SM= 3.16 cm3

    Watertight bulkhead

    provided SM= 12 cm3

    section= 75 x 6 A= 5 cm2

    Buckling Criteria for bulkhead: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 107.03 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 7 mm provided

    s= shorter distance of plate panel mm

  • 8/13/2019 Scantlings Version_2 for Print Only

    15/280

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 106.0033145 N/mm2

    c= 107.03 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.5 m

    a= 93.25 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Strength and stiffness:

    SM=83.3*p s l2/a cm

    3

    p=design pressure in kN/m2

    (3-2-2/1 or 3-2-2/5)

    s= spacing in m, of the longitudenal, stiffner, transverse web or girder

    l= length in m, of the longitudenal, stiffner, transverse web or girder between supports;

    where bracketed end connections are supported by bulkheads,

    l, may be measured onto the bracket, the distance given on 3-1-2/fig 1,

    provided both bracket arms are about the same length.

    Where transverse members span chines or Knuckles, l is to be measured

    as shown in 3-2-4/fig-1 and 3-2-4/fig-2

    a=design stress in N/mm2

    Stiffner without end attachment are permited on watertight bulkheads provided the section

    modulus is increased by 50% and provided the bulkhead plating and boundary can transmit

    the shear forces on the stiffners

    Design stress,a: (3-2-4/table-1, pg 89)

    bottom longitudenals - slamming pressure 0.65 y 152.75

    bottom longitudenals - sea pressure 0.50 y 117.5

    side longitudenals - slamming pressure 0.60 y 141

    side longitudenals - sea pressure 0.50 y 117.5

  • 8/13/2019 Scantlings Version_2 for Print Only

    16/280

    deck longitudenals - strength decks 0.33 y 77.55

    deck longitudenals - other decks 0.40 y 94

    wet deck longitudenals 0.75 y 176.25

    bottom transverse and girder - slamming pressure 0.80 y 188

    bottom transverse and girder - sea pressure 0.60 y 141

    side transverse and girders - slamming pressure 0.80 y 188

    side transverse and girders - sea pressure 0.60 y 141

    deck transverse and girders - strength decks 0.75 y 176.25

    deck transverse and girders - other decks 0.75 y 176.25

    wet deck transverse and girders 0.75 y 176.25

    watertight bulkheads 0.85 y 199.75

    tank bulkheads 0.60 y 141

    super structure and deckhouse 0.70 y 164.5

    y=235 N/mm2

    Buckling Criteria (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E=

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2

    for '=/3 m1= 1.45C2(1+(s/l)

    2

    )

    2

    E=2.06 x 105

    N/mm2

    tb=thickness of plate mm

    tb= mm

    s= shorter distance of plate panel mm

    s= mm

    l= longer distance of plate pannel mm

    C2=1.3

    Critical buckling stress:

    c= E when E0.5

    y

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    a=

    a= (fp/CQ)(SMR/SMA) N/mm2

    a=

    c5=1.E+05

  • 8/13/2019 Scantlings Version_2 for Print Only

    17/280

    Permissible buckling stress:

    c=>a

  • 8/13/2019 Scantlings Version_2 for Print Only

    18/280

    A. Keels:

    B. Bottom structure:

    C. Inner bottom structure

    D. Side and transom structure:

    E. Deck structure:

    F. Wet deck or cross structure:

    G. Bulkhead structure:

    and girders)

  • 8/13/2019 Scantlings Version_2 for Print Only

    19/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    20/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    21/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    22/280

    N/mm2

    N/mm2

    L)

    T)

    er)

  • 8/13/2019 Scantlings Version_2 for Print Only

    23/280

    L)

    T)

  • 8/13/2019 Scantlings Version_2 for Print Only

    24/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    25/280

    N/mm2

    N/mm2

    L)

  • 8/13/2019 Scantlings Version_2 for Print Only

    26/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    27/280

    (transverse L)

    (long. T)

  • 8/13/2019 Scantlings Version_2 for Print Only

    28/280

    kN/m2

    kN/m2

    m

    0.4

  • 8/13/2019 Scantlings Version_2 for Print Only

    29/280

    kN/m2

    (transverse L)

    (transverse T)

    (long. T)

  • 8/13/2019 Scantlings Version_2 for Print Only

    30/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    31/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    32/280

    N/mm2

    N/mm2

    N/mm2

    N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    33/280

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

    N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    34/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    35/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    36/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    37/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    38/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    39/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    40/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    41/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    42/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    43/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    44/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    45/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    46/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    47/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    48/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    49/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    50/280

    Calculation of section modulus

    Plating t(m) horizontal vertical area of single section

    Deck 0.005 3.000 0.005 0.015

    Bottom 0.005 0.005 2.500 0.013

    Inner bottom 0.005 2.760 0.005 0.014

    wet deck 0.005 3.000 0.005 0.015

    longtidenal bulkhead 0.003 0.003 1.000 0.003

    Bar Keel 0.050 0.050 0.180 0.009

    Side Shell 0.005 0.005 1.500 0.008

    Sum

    Longitudenal total no horizontal vertical area of single section

    center girder 2 0.015 0.25 0.0038

    deck girder 18 0.0016

    inner bottom girder 8 0.0008

    Sum

    a=0.23 m2

    ah=0.60 m3

    ah2=1.97 m

    4

    total Iself=0.03 m4

    y= ah/a= 2.56 m 1.44

    MI and Z of the midship

    IKeel=2.00 m4

    INA= 0.47 m

    4

    = 46948162.49

    IDeck=0.95 m4

    ZDeck=0.33 m3

    = 3.26E+05

    ZKeel=0.18 m3

    = 1.83E+05

    Deck=89395.86 K N/m2

    = 89.40 M Pa

    Keel=159279.94 K N/m2

    = 159.28 M Pa

    Yield stress of steel

    y=235 M Pa

    Depth (m) y Z (M Pa)

  • 8/13/2019 Scantlings Version_2 for Print Only

    51/280

    0 1.44 0.33 89.40

    0.25 1.19 0.40 73.85

    0.5 0.94 0.50 58.31

    0.75 0.69 0.68 42.77

    1 0.44 1.07 27.23

    1.25 0.19 2.50 11.68

    1.5 -0.06 -7.57 -3.86

    1.75 -0.31 -1.50 -19.402 -0.56 -0.84 -34.94

    2.25 -0.81 -0.58 -50.48

    2.5 -1.06 -0.44 -66.03

    2.75 -1.31 -0.36 -81.57

    3 -1.56 -0.30 -97.11

    3.25 -1.81 -0.26 -112.65

    3.5 -2.06 -0.23 -128.20

    3.75 -2.31 -0.20 -143.74

    4 -2.56 -0.18 -159.28

    Approximate steel weight estimation:

    of MS= 7.86 T/m3

    area of plating and longitudenals= 0.23 m2

    weight per meter= 1.83 ton/m

    weight for 36 m= 66.04 ton

    members area length volume mass

    bottom transverse 0.002 2.96 0.006 0.195

    inner bottom transverse 0.001 2.76 0.002 0.030

    side transverse 0.002 1.5 0.003 0.099

    wet deck transverse 0.002 6 0.010 0.075

    cross structure bottom 0.002 6 0.010 0.075

    deck transverse 0.002 6 0.010 0.075

    bulkhead transverse 0.001 1 0.001 0.004

    floors 4.281

    weight of Transverse members= 0.555weight of Transverse members per meter= 1.110

    weight for 36 m= 44.251

    total weight of hull = 110

    other allowance (10%) 121

    total weight of steel hull and superstructure= 127

    Alluminium superstructure weight= 18

    -200.00

    Depth(m)

  • 8/13/2019 Scantlings Version_2 for Print Only

    52/280

    allowance (5%) 18.90

    total weight of steel hull and Alluminium superstructure= 128

    total weight = 140 ton

  • 8/13/2019 Scantlings Version_2 for Print Only

    53/280

    total area(a) lever (h) ah ah2

    Iselfof single section total Iself

    0.030 4.000 0.120 0.480 3.13E-08 6.25E-08

    0.050 1.320 0.066 0.087 6.51E-03 2.60E-02

    0.028 1.500 0.041 0.062 2.88E-08 5.75E-08

    0.030 4.000 0.120 0.480 3.13E-08 6.25E-08

    0.005 3.500 0.018 0.061 2.08E-04 4.17E-04

    0.018 0.230 0.004 0.001 2.43E-05 4.86E-05

    0.030 3.250 0.098 0.317 1.41E-03 5.63E-03

    0.191 0.467 1.488 3.21E-02

    total area (a) lever (h) ah ah2

    Iselfof single section total Iself

    0.0076 0.874 0.007 0.006 1.94E-05 3.87E-05

    0.0288 4.000 0.115 0.461 3.43E-06 6.17E-05

    0.0064 1.500 0.010 0.014 8.80E-07 7.04E-06

    0.0428 0.131 0.481 1.07E-04

    cm

    4

    cm3

    cm3

    a=174 M Pa

  • 8/13/2019 Scantlings Version_2 for Print Only

    54/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    55/280

    ton

    ton

  • 8/13/2019 Scantlings Version_2 for Print Only

    56/280

    Calculation of section modulus

    Plating t(m) horizontal vertical area of single section

    wet deck 0.005 12.000 0.005 0.060

    cross structure bottom 0.005 12.000 0.005 0.060

    Side Shell 0.005 0.005 1.000 0.005

    floors 0.005 0.005 1.000 0.005

    Sum

    transverses total no horizontal vertical area of single section

    top transverses 30 80 120 0.0016

    bottom transverses 30 80 120 0.0016

    Sum

    a=0.30 m2

    ah=0.17 m3

    ah2=

    0.16 m

    4

    total Iself=0.00 m4

    y= ah/a= 0.57 m 0.43

    MI and Z of the midship

    IKeel=0.17 m4

    INA= 0.07 m4

    IDeck=0.12 m4

    ZDeck=0.16 m3

    = 1.60E+05

    ZKeel=0.12 m3

    = 1.21E+05

    Deck=111495.51 K N/m2

    = 111.50 M Pa

    Keel=147715.45 K N/m2

    = 147.72 M Pa

    Yield stress of steel

    y=235 M Pa

    Depth (m) y Z (M Pa)

    0 0.43 0.16 111.50

    0.25 0.18 0.38 46.69

    0.5 -0.07 -0.99 -18.11

  • 8/13/2019 Scantlings Version_2 for Print Only

    57/280

    0.75 -0.32 -0.22 -82.91

    1 -0.57 -0.12 -147.72

    Ordinary-StrengthOrdinary-strength ABS shipbuilding steel comes in a number of grades, A, B, D, E, DS, and CS. On certified stee

    Yield pointfor all ordinary-strength ABS steels is specified as 34,000 psi(235 MPa), except for ABS A in thick

    Ultimate tensile strength of ordinary strength alloys is 58,000 - 71,000 psi (400-490 MPa), except for ABS A sh

    The various grades have slightly differing alloychemical ingredients, and differing fracture toughness.

    Higher-StrengthHigher-strength ABS shipbuilding steel comes in six grades of two strengths, AH32, DH32, EH32, AH36, DH36,

    The 32grades have yield strength of 45,500 psi (315 MPa), and ultimate tensile strength of 64,000 - 85,000 p

    The36

    grades have yield strength of 51,000 psi (355 MPa), and ultimate tensile strength of 71,000 - 90,000 pPer Steel Vessel Rules Part 2 Chapter 1 Section 3 Table 2 (pg 36).

    FOS= 1.35

    -150.00

    Depth(m)

  • 8/13/2019 Scantlings Version_2 for Print Only

    58/280

    total area(a) lever (h) ah ah2

    Iselfof single section total Iself

    0.120 1.000 0.120 0.120 1.25E-07 2.50E-07

    0.120 -0.003 -3.00E-04 7.50E-07 1.25E-07 2.50E-07

    0.010 0.500 0.005 0.003 4.17E-04 8.33E-04

    0.150 0.500 0.075 0.038 4.17E-04 1.25E-02

    0.250 0.125 0.123 8.34E-04

    total area (a) lever (h) ah ah2

    Iselfof single section total Iself

    0.048 0.940 0.045 0.042 2.02E-06 6.06E-05

    0.048 0.060 0.003 0.000 2.02E-06 6.06E-05

    0.048 0.045 0.042 6.06E-05

    cm3

    cm3

    a=174 M Pa

    (M Pa)

    Stress distribution

  • 8/13/2019 Scantlings Version_2 for Print Only

    59/280

    ls, the plates are marked with the grade and a preceding "AB/", e.g. AB/A etc. [2]

    esses of greater than 1 inch (25 mm) which has yield strength of 32,000 psi (225 MPa), and cold flange rolle

    apes and bars with 58,000 - 80,000 psi (400-550 MPa), and cold flanged sections with 55,000 - 65,000 psi (38

    and EH36.[2]

    si (440-590 MPa).

    si (490-620 MPa).

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -100.00 -50.00 0.00 50.00 100.00 150.00

  • 8/13/2019 Scantlings Version_2 for Print Only

    60/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    61/280

    d sections, which have yield strength of 30,000 psi (205 MPa).

    0-450 MPa).

  • 8/13/2019 Scantlings Version_2 for Print Only

    62/280

    frame area lcg vcg tcg wt for 5mm wt for 7m

    2 2.2731 1 1.5261 0 0.089333 0.071466 0.125066

    4 2.3405 2 1.5199 0 0.091982 0.073585 0.128774

    6 2.4129 3 1.5133 0 0.094827 0.075862 0.132758

    8 2.4909 4 1.5064 0 0.097892 0.078314 0.137049

    9 2.5324 4.5 1.5028 0 0.099523 0.099523 0.139333

    10 0.9752 5 1.1589 0 0.038325 0.038325 0.053656

    11 1.0035 5.5 1.155 0 0.039438 0.039438 0.05521312 1.0332 6 1.151 0 0.040605 0.040605 0.056847

    13 1.0645 6.5 1.1469 0 0.041835 0.041835 0.058569

    14 1.0975 7 1.1427 0 0.043132 0.043132 0.060384

    15 0.2665 7.5 0.8866 0 0.010473 0.010473 0.014663

    16 0.2858 8 0.8823 0 0.011232 0.011232 0.015725

    17 0.3067 8.5 0.8778 0 0.012053 0.012053 0.016875

    18 0.3292 9 0.8732 0 0.012938 0.012938 0.018113

    19 0.3536 9.5 0.3536 0 0.013896 0.013896 0.019455

    20 0.38 10 0.8633 0 0.014934 0.014934 0.020908

    21 0.4086 10.5 0.8579 0 0.016058 0.016058 0.022481

    22 0.4397 11 0.8523 0 0.01728 0.01728 0.02419223 0.4736 11.5 0.8464 0 0.018612 0.018612 0.026057

    24 0.5103 12 0.84 0 0.020055 0.020055 0.028077

    25 0.55 12.5 0.8333 0 0.021615 0.021615 0.030261

    26 2.004 13 1.1342 0 0.078757 0.078757 0.11026

    28 2.146 14 1.1181 0 0.084338 0.06747 0.118073

    30 2.282 15 1.1006 0 0.089683 0.071746 0.125556

    32 2.4051 16 1.0817 0 0.09452 0.075616 0.132329

    34 2.5117 17 1.0614 0 0.09871 0.078968 0.138194

    36 2.598 18 1.0402 0 0.102101 0.081681 0.142942

    38 2.657 19 1.0201 0 0.10442 0.083536 0.146188

    39 2.6728 19.5 1.0116 0 0.105041 0.105041 0.147057

    41 2.6706 20.5 0.9997 0 0.104955 0.104955 0.146936

    42 2.652 21 0.9966 0 0.104224 0.104224 0.145913

    44 2.5804 22 0.9955 0 0.10141 0.10141 0.141974

    60 0.6597 30 1.1133 0 0.025926 0.025926 0.036297

    61 0.4858 30.5 1.1463 0 0.019092 0.019092 0.026729

    62 0.329 31 1.1864 0 0.01293 0.01293 0.018102

    63 0.1947 31.5 1.2345 0 0.007652 0.007652 0.010712

    64 0.085 32 1.3053 0 0.003341 0.003341 0.004677

    65 0.009 32.5 1.4445 0 0.000354 0.000354 0.000495

    66 33 0 0 0 0

    67 33.5 0 0 0 0

    1.983491 1.793929 03.587859

    frame length area lcg vcg tcg wt for 5mm

    7 5.97298 5.97298 3.5 3.5 0 0.029865 0.023892

    9 5.91773 5.97298 4.5 3.5 0 0.029865 0.023892

    11 5.86319 5.97298 5.5 3.5 0 0.029865 0.023892

    13 5.810619 5.97298 6.5 3.5 0 0.029865 0.023892

    15 5.761905 5.97298 7.5 3.5 0 0.029865 0.023892

  • 8/13/2019 Scantlings Version_2 for Print Only

    63/280

    17 5.717945 5.97298 8.5 3.5 0 0.029865 0.023892

    19 5.680125 5.97298 9.5 3.5 0 0.029865 0.023892

    21 5.649625 5.97298 10.5 3.5 0 0.029865 0.023892

    23 5.628279 5.97298 11.5 3.5 0 0.029865 0.023892

    25 5.61738 5.97298 12.5 3.5 0 0.029865 0.023892

    27 5.61738 5.97298 13.5 3.5 0 0.029865 0.023892

    29 5.632318 5.97298 14.5 3.5 0 0.029865 0.023892

    31 5.662726 5.97298 15.5 3.5 0 0.029865 0.02389233 5.710281 5.97298 16.5 3.5 0 0.029865 0.023892

    35 5.773803 5.97298 17.5 3.5 0 0.029865 0.023892

    37 5.851391 5.97298 18.5 3.5 0 0.029865 0.023892

    39 5.943862 5.97298 19.5 3.5 0 0.029865 0.023892

    41 6.054369 5.97298 20.5 3.5 0 0.029865 0.023892

    43 6.185897 5.97298 21.5 3.5 0 0.029865 0.023892

    45 6.337644 5.97298 22.5 3.5 0 0.029865 0.023892

    47 6.505303 5.97298 23.5 3.5 0 0.029865 0.023892

    49 6.683062 5.97298 24.5 3.5 0 0.029865 0.023892

    51 6.865736 5.97298 25.5 3.5 0 0.029865 0.023892

    53 7.048982 5.97298 26.5 3.5 0 0.029865 0.02389255 7.229482 5.97298 27.5 3.5 0 0.029865 0.023892

    57 7.405514 5.97298 28.5 3.5 0 0.029865 0.023892

    59 7.578677 5.97298 29.5 3.5 0 0.029865 0.023892

    61 7.75411 5.97298 30.5 3.5 0 0.029865 0.023892

    63 7.93658 5.97298 31.5 3.5 0 0.029865 0.023892

    0.692866

    after buckling:

    ABOVE DWL= 108.54

    VOLUME= 0.75978

    WEIGHT= 5.9718708

    TOTAL 2 HULLS= 11.94374 ton

    BELOW DWL= 189.6

    VOLUME= 1.7064

    WEIGHT= 13.412304

    TOTAL 2 HULLS= 26.82461 ton

    Deck area= 405.0028Volume= 3.2400224

    Deck Weight= 25.46658 ton

    Bottom deck of cross structure= 188.45422

    Volume= 1.5076337

    B C S Deck Weight= 11.85 ton

    Sides of cross structure FWD= 8.12

  • 8/13/2019 Scantlings Version_2 for Print Only

    64/280

    Volume= 0.05684

    S C FWD Weight= 0.446762 ton

    Sides of cross structure AFT= 6.028

    Volume= 0.042196

    S C AFT Weight= 0.331661 ton

    mid= 24.0617

    frd= 1.8526145

    aft= 34.625165

    Inner bottom plating= 60.53948

    Volume= 0.4237764

    S C FWD Weight= 3.330882 ton

    VCG

    Area of bulkhead in cross structure= 30 3.5

    Bulkhead at FR 0= 7.3595 2.5618

    Bulkhead at FR 9= 5.6789 3.0053

    Bulkhead at FR 26= 8.4229 2.7592Bulkhead at FR 44= 8.5832 2.7693

    Bulkhead at FR 53= 9.6738 2.4701

    Bulkhead at FR 60= 4.9344 2.8913

    Total area of bulkhead= 74.6527

    volume= 0.5225689

    weight= 4.107392

    84.30162 ton

    39.9698 ton

    136.9187 ton

    allowance of 10%= 150.6106 ton

    before buckling:

    ABOVE DWL= 108.54

    VOLUME= 0.5427

    WEIGHT= 4.265622

    TOTAL 2 HULLS= 8.531244 ton

    BELOW DWL= 189.6

    VOLUME= 0.948

    WEIGHT= 7.45128

    TOTAL 2 HULLS= 14.90256 ton

    Deck area= 405.0028Volume= 2.025014

    Deck Weight= 15.91661 ton

    Bottom deck of cross structure= 188.45422

    Volume= 0.9422711

    B C S Deck Weight= 7.406251 ton

    Sides of cross structure FWD= 8.12

  • 8/13/2019 Scantlings Version_2 for Print Only

    65/280

    Volume= 0.0406

    S C FWD Weight= 0.319116 ton

    Sides of cross structure AFT= 6.028

    Volume= 0.03014

    S C AFT Weight= 0.2369 ton

    mid= 24.0617

    frd= 1.8526145

    aft= 34.625165

    Inner bottom plating= 60.53948

    Volume= 0.3026974

    S C FWD Weight= 2.379202 ton

    Area of bulkhead in cross structure= 30 3.5

    Bulkhead at FR 0= 7.3595 2.5618

    Bulkhead at FR 9= 5.6789 3.0053

    Bulkhead at FR 26= 8.4229 2.7592Bulkhead at FR 44= 8.5832 2.7693

    Bulkhead at FR 53= 9.6738 2.4701

    Bulkhead at FR 60= 4.9344 2.8913

    Total area of bulkhead= 74.6527

    volume= 0.3732635

    weight= 2.933851

    52.62573 ton

    39.9698 ton

    96.87626 ton

    allowance of 10%= 106.5639 ton

  • 8/13/2019 Scantlings Version_2 for Print Only

    66/280

    0.100053

    0.103019

    0.106206

    0.109639

    0.139333

    0.053656

    0.0552130.056847

    0.058569

    0.060384

    0.014663

    0.015725

    0.016875

    0.018113

    0.019455

    0.020908

    0.022481

    0.0241920.026057

    0.028077

    0.030261

    0.11026

    0.094458

    0.100445

    0.105863

    0.110555

    0.114354

    0.116951

    0.147057

    0.146936

    0.145913

    0.141974

    0.036297

    0.026729

    0.018102

    0.010712

    0.004677

    0.000495

    0

    0

    2.5115015.023002

    wt for 7mm

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

  • 8/13/2019 Scantlings Version_2 for Print Only

    67/280

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.2629070.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.2629070.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    0.328633 0.262907

    7.624294

  • 8/13/2019 Scantlings Version_2 for Print Only

    68/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    69/280

    Calculation of section modulus

    Plating t(m) horizontal vertical area of single section

    Deck 0.008 3.000 0.008 0.024

    Bottom 0.010 0.010 2.500 0.025

    Inner bottom 0.007 2.760 0.007 0.019

    wet deck 0.008 3.000 0.008 0.024longtidenal bulkhead 0.004 0.004 1.000 0.004

    Bar Keel 0.050 0.050 0.180 0.009

    Side Shell 0.007 0.007 1.500 0.011

    Sum

    Longitudenal total no horizontal vertical area of single section

    center girder 2 0.015 0.25 0.0038

    deck girder 18 0.0016

    inner bottom girder 8 0.0008

    Sum

    a=0.34 m2

    ah=0.87 m3

    ah2=2.81 m

    4

    total Iself=0.06 m4

    y= ah/a= 2.53 m 1.47

    MI and Z of the midship

    IKeel=2.87 m4

    INA= 0.67 m4

    = 66899022.22

    IDeck=1.42 m4

    ZDeck=0.45 m3

    = 4.54E+05

    ZKeel=0.26 m3

    = 2.65E+05

    Deck=64247.04 K N/m2

    = 64.25 M Pa

    Keel=110267.80 K N/m2

    = 110.27 M Pa

    Yield stress of steel

  • 8/13/2019 Scantlings Version_2 for Print Only

    70/280

    y=235 M Pa

    Depth (m) y Z (M Pa)

    0 1.47 0.45 64.25

    0.25 1.22 0.55 53.34

    0.5 0.97 0.69 42.430.75 0.72 0.93 31.53

    1 0.47 1.42 20.62

    1.25 0.22 3.01 9.71

    1.5 -0.03 -24.40 -1.20

    1.75 -0.28 -2.41 -12.10

    2 -0.53 -1.27 -23.01

    2.25 -0.78 -0.86 -33.92

    2.5 -1.03 -0.65 -44.82

    2.75 -1.28 -0.52 -55.73

    3 -1.53 -0.44 -66.64

    3.25 -1.78 -0.38 -77.55

    3.5 -2.03 -0.33 -88.45

    3.75 -2.28 -0.29 -99.36

    4 -2.53 -0.26 -110.27

    Approximate steel weight estimation:

    of MS= 7.86 T/m3

    area of plating and longitudenals= 0.34 m2

    weight per meter= 2.71 ton/m

    weight for 36 m= 97.46 ton

    members area length volume mass

    bottom transverse 0.002 2.96 0.006 0.195inner bottom transverse 0.002 2.76 0.006 0.087

    side transverse 0.001 1.5 0.001 0.028

    wet deck transverse 0.002 6 0.010 0.075

    cross structure bottom 0.002 6 0.012 0.094

    deck transverse 0.001 6 0.007 0.057

    bulkhead transverse 0.001 1 0.001 0.004

    floors 3.588

    weight of Transverse members= 0.541

    -200.00

    Depth(m)

  • 8/13/2019 Scantlings Version_2 for Print Only

    71/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    72/280

    total area(a) lever (h) ah ah2

    Iselfof single section total Iself

    0.048 4.000 0.192 0.768 1.28E-07 2.56E-07

    0.100 1.320 0.132 0.174 1.30E-02 5.21E-02

    0.039 1.500 0.058 0.087 7.89E-08 1.58E-07

    0.048 4.000 0.192 0.768 1.28E-07 2.56E-070.007 3.500 0.025 0.086 2.92E-04 5.83E-04

    0.018 0.230 0.004 0.001 2.43E-05 4.86E-05

    0.042 3.250 0.137 0.444 1.97E-03 7.88E-03

    0.302 0.739 2.328 6.06E-02

    total area (a) lever (h) ah ah2

    Iselfof single section total Iself

    0.0076 0.874 0.007 0.006 1.94E-05 3.87E-05

    0.0288 4.000 0.115 0.461 3.43E-06 6.17E-05

    0.0064 1.500 0.010 0.014 8.80E-07 7.04E-06

    0.0428 0.131 0.481 1.07E-04

    cm4

    cm3

    cm3

  • 8/13/2019 Scantlings Version_2 for Print Only

    73/280

    a=174 M Pa

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00

    (M Pa)

    Stress distribution

  • 8/13/2019 Scantlings Version_2 for Print Only

    74/280

    ton/m

    ton

    ton

    ton

    ton

    ton

    ton

    ton

  • 8/13/2019 Scantlings Version_2 for Print Only

    75/280

    L= length of craft in meters

    L= 36 m

    B= breadth of the craft in m

    B= 12 m

    D= depth of the craft in m

    D= 4 m

    d= stationary draft in m

    d= 2.5 m (but generally not to be taken as ledd then 0.04L)

    Cb=0.5

    g= 1.005 N/cm2-m

    ncg=the vertical acceleration of the craft

    ncg= N2[(12 h1/3/NhBw)+1] *50-cg](V2(NhBw)

    2/)g

    = 1.45

    Nh=number of hulls

    Nh=2

    kn=0.256

    nxx= ncgKv= 1.45

    N1=0.1

    N2=0.0078

    N3=9.8

    =displacement at design waterline in kg= 297250 kg

    =282.9268 m3

    =290 ton

    g= 9.81 m/s2

    Lw=craft length on the waterline in m= 36 m

    Bw=maximum waterline beam in m= 11.8 m

    H= wave parameter= 0.017L+3.653 m = 4.3 m

    h1/3=significant wave height= 2.5 m

    =running trim at V= 4

    cg=deadrise at LCG= 30

    bx=deadrise at any section clear of LCG= 30

    V= craft design speed in knots= 12 knots

    FD=design area factor= 0.4

    FV=vertical accleration distribution factor (3-2-2/fig-5)

    KV=vertical accleration distribution factor (3-2-2/fig-4)

    KV=1

    AD=design area , cm2

    2.5s2= 6250 cm

    2(for shell plate panel)

    0.33l2

    cm2

    (for longitudenals, stiffners,transverse

    AR=referance area ,cm2

    = 6.95 /d cm2

    = 786.5365854 m2

    = 0.08 cm2

    AD/AR=79462.29

  • 8/13/2019 Scantlings Version_2 for Print Only

    76/280

    s = spacing of longitudenal stiffners in cm= 50 cm

    l= unsupported span of intervals in cm

    LI=mean span of cross structure in cm

    pbcg,pbxx,N1,N2,N3,,Lw,V,FV,nxx,bx,cg,H,d and FDare as defined in 3-2-2/1.1

    C1=0.044L+3.75

    C1=5.33

    C2=0.01Wave bending moment amidships: (3-2-1/1.1.2, pg-47)

    Mws= -k1C1 L2B (Cb+ 0.7) x 10

    -3kN-m sagging moment

    Mws= -10949.97658 kN-m

    Mwh= k2C1L2B Cbx 10

    -3kN-m hogging moment

    Mwh=7880.66 kN-m

    where

    k1= 110

    k2= 190

    Msws=0 kN-m sagging moment

    Mswh= 0.3 fpC1C2L2

    B (Cb+ 0.7) kN-m hogging momentMswh=5226.13 kN-m

    where

    fp= 17.5 kN/cm2

    Slamming induced bending moment:

    Msl=C3(1+ncg)(L-ls) kN-m

    Msl=29187.18 kN-m

    where

    C3= 1.25

    = full load displacement in metric tons

    ls=length of slamming load in m

    ls= AR/Bwl

    ls=6.61

    AR=0.67/d m2

    AR=77.72 m2

    Section Modulus:

    SM=M tCQ/fp cm2-m

    1667.84 cm

    2

    -m0.17 m

    3

    where

    Mt=maximum total bending moment, to be taken greater of the following

    = Mswh+Mwh 13106.79014 kN-m

    = -Msws-Mws -10949.97658 kN-m

    = Msl 29187.18 kN-m

    Mt=29187.18 kN-m

  • 8/13/2019 Scantlings Version_2 for Print Only

    77/280

    C= 1 for steel craft

    Q= 1 for ordinary steel

    fp=17.5 kN/cm2

    K= 50

    Moment of inertia:

    I= (L/QC)*(SM/K) cm2-m

    2

    I= 0.12 cm2-m

    2

    I= 1.20084E-05 m4

    Catamaran transverse loading: (3-2-1/3.3, pg-53)

    Mtb= K1 Bcl (1+ncg) kN-m

    Mtb=17879 kN-m

    Mtt= K2 L(1+ncg) kN-m

    Mtt=35757 kN-m

    Max Mtt=35757.00 kN-m

    Qt= K1 (1+ncg) kN

    Qt=1986.50 kN

    where

    Mtb=design transverse bending moment acting upon the cross structure connecting the hull

    Mtt=design torsional moment acting upon the transverse structure connecting the hulls

    Qt=design vertical shear force acting upon the transverse structure connecting the hulls

    K1 =2.5

    K2 =1.25

    =craft displacement in tonnes

    =290 m3

    Bcl=distance between the hull centerlines in meters

    Bcl=9 m

    ncg vertical accleration at the craft's center of gravity

    1+ncg=2.74 (3-2-1/table 1)

    Design stresses and deflection: (3-2-1/3.5, pg-54)a=design transverse bending stress N/mm

    2

    a= 0.66 y 155.1 N/mm2

    ab=design torsional or combined stress N/mm2

    ab= 0.75 y 176.25 N/mm2

    a=design transverse shear stress N/mm2

    a= 0.38 y 89.3 N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    78/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    79/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    80/280

    C. Inner bottom structure

    Tank boundaries

    pt= g(1+0.5nxx)h2 kN/m2

    pt= 2.60 kN/m2

    Watertight boundaries

    The design pressure for water tight boundries is to be not less than given by the following equationpw= N3h kN/m

    2

    h= 1.5 m

    pw= 14.7 kN/m2

    afor lower deck/ other deck= 0.60 y= 141 N/mm2

    p= 14.70 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.52 mm

    Lower deck,WT bulkhead, Deep tank bulkhead

    Minium thickness: (3-2-3/1.3.3, pg-73)

    qs=1 for ordinary steel

    ts= 0.35 (L qs)1/2

    + 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    Inner Bottom transverse and girder:

    afor deck transverse and girder - other deck= 0.75 y= 176.25 N/mm2

    l= 2.76 mSM=83.3*p s l

    2/a cm

    3

    SM= 26.46 cm3

    provided SM= 30 cm3

    75 x 55 x 5 A= 7 cm2

    (transverse

    provided SM= 41 cm3

    100 x 5 + 50 x 5 A= 8 cm2

    (transverse

    provided SM= 41 cm3

    100 x 5 + 50 x 5 A= 8 cm2

    (long. T)

    Buckling Criteria for deck plate: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 54.23 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

  • 8/13/2019 Scantlings Version_2 for Print Only

    81/280

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 6 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mml= 1000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y -19.58929181 N/mm2

    c= 54.23 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1 ma= 43.63 N/mm

    2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    D. Side and transom structure:

    Side and transom structure ,design pressure: (3-2-2/3.3, pg-62)

    The side design pressure ps, is to be not less than given by the equations

    slaming pressure

    psxx= [N1 (1nxx)/LwNhBw+ *(70-sx)/(70-cg)] kN/m2

    psxx=36.31 kN/m2

    afor slamming pressure= 0.90 y= 211.5 N/mm2

    p= 36.31 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 1.92 mm

    Hydrostatic pressure

    ps= N3(Hs-y) kN/m2

    ps=27.17 kN/m2

    afor hydrostatic pressure= 0.55 y= 129.25 N/mm2

    p= 27.17 kN/m2

  • 8/13/2019 Scantlings Version_2 for Print Only

    82/280

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.88 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 2 mm

    ts=4.64 mm

    t= 5 mm pvovided

    Side transverse and girders:

    side transverse and girders - slamming pressure 0.80 y 188

    side transverse and girders - sea pressure 0.60 y 141

    s= 0.5 m

    l= 1.5 m

    SM=83.3*p s l2/a cm

    3

    SM= 18.10 cm3

    slamming pressure

    SM= 18.06 cm3

    sea pressure

    provided SM= 20 cm3

    section= 50 x 50 x 6 A= 6 cm2

    (transverse

    Buckling Criteria for side shell: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 78.63 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 2.03

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.95

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 6 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1000 mmC2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 59.42117806 N/mm2

    c= 78.63 N/mm2

    Calculated compressive stress:

  • 8/13/2019 Scantlings Version_2 for Print Only

    83/280

    a= c5(Mt(y/I)) N/mm2

    y= 1.5 m

    a= 65.44 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Fore end

    psf= 0.28FaCFN3(0.22+0.15 tan)(00.4V sin0.6 L1/2

    )2 kN/m

    2

    where

    psxx=side design slamming pressure

    ps=side design pressure due to hydrostatic force

    psf=side design pressure for forward of 00.125L stern

    Hs=0.64H+d m

    Hs=5.27 m

    y= distance above base line in m = 2.5 m

    L= craft length

    Fa=3.25 for plating and 1 for longitudinals, transverses and girders

    CF=0.0125L for L

  • 8/13/2019 Scantlings Version_2 for Print Only

    84/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    85/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    86/280

    V1=2.67 m/s

    V, h1/3and FDare as defined in 3-2-2/1.1

    The wet deck pressure is

    Pwd=N1[/(0.332LWNhBw+ LwdWwd)]*[Hb+nxx]*[1-(GA/Hw)]*FD

    Pwd=12.78 kN/m2

    where,N1=0.1

    Hb=1 for catamarans

    GA=vertical distance in m

    = 1 m

    Lwd=Length of wet deck in m

    = 36 m

    Wwd=width of wet deck in m

    = 6 m

    Hw= h1/3 m

    afor cross deck= 0.90 y= 211.5 N/mm2

    p= 12.78 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.68 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    wet deck transverse and girders 0.75 y 176.25 N/mm2

    s= 0.5 m

    l= 5.13 m

    SM=83.3*p s l2/a cm

    3

    SM= 79.51 cm3

    provided SM= 101 cm3

    section= 100 x 100 x 8 A= 16 cm2

    provided SM= 119 cm 3

    section= 130 x 8 + 65 x 10 A= 16 cm2

    provided SM= 119 cm3

    section= 130 x 8 + 65 x 10 A= 16 cm2

    Buckling Criteria for wet deck (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

  • 8/13/2019 Scantlings Version_2 for Print Only

    87/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    88/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    89/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    90/280

    deck longitudenals - strength decks 0.33 y 77.55

    deck longitudenals - other decks 0.40 y 94

    wet deck longitudenals 0.75 y 176.25

    bottom transverse and girder - slamming pressure 0.80 y 188

    bottom transverse and girder - sea pressure 0.60 y 141

    side transverse and girders - slamming pressure 0.80 y 188

    side transverse and girders - sea pressure 0.60 y 141

    deck transverse and girders - strength decks 0.75 y 176.25

    deck transverse and girders - other decks 0.75 y 176.25

    wet deck transverse and girders 0.75 y 176.25

    watertight bulkheads 0.85 y 199.75

    tank bulkheads 0.60 y 141

    super structure and deckhouse 0.70 y 164.5

    y=235 N/mm2

    Buckling Criteria (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E=

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2

    for '=/3 m1= 1.45C2(1+(s/l)

    2

    )

    2

    E=2.06 x 105

    N/mm2

    tb=thickness of plate mm

    tb= mm

    s= shorter distance of plate panel mm

    s= mm

    l= longer distance of plate pannel mm

    C2=1.3

    Critical buckling stress:

    c= E when E0.5

    y

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    a=

    a= (fp/CQ)(SMR/SMA) N/mm2

    a=

    c5=1.E+05

  • 8/13/2019 Scantlings Version_2 for Print Only

    91/280

    Permissible buckling stress:

    c=>a

  • 8/13/2019 Scantlings Version_2 for Print Only

    92/280

    A. Keels:

    B. Bottom structure:

    C. Inner bottom structure

    D. Side and transom structure:

    E. Deck structure:

    F. Wet deck or cross structure:

    G. Bulkhead structure:

    and girders)

  • 8/13/2019 Scantlings Version_2 for Print Only

    93/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    94/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    95/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    96/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    97/280

    L)

    T)

  • 8/13/2019 Scantlings Version_2 for Print Only

    98/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    99/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    100/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    101/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    102/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    103/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    104/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    105/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    106/280

    N/mm2

    N/mm2

    N/mm2

    N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    107/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    108/280

    Calculation of section modulus

    Plating t(m) horizontal vertical area of single section

    Deck 0.008 3.500 0.008 0.028

    Duct side 0.007 0.007 1.000 0.007

    Duct bottom 0.008 1.052 0.008 0.008

    Bottom 0.009 0.009 2.500 0.023

    Inner bottom 0.007 2.760 0.007 0.019

    wet deck 0.008 2.500 0.008 0.020

    Bar Keel 0.050 0.050 0.180 0.009

    Side Shell 0.007 0.007 1.500 0.011

    Sum

    Longitudenal total no horizontal vertical area of single section

    long floor 2 0.0039

    deck girder 2 0.0014

    Sum

    a=0.33 m2

    ah=0.83 m3

    ah2=2.65 m

    4

    total Iself=0.06 m4

    y= ah/a= 2.54 m 1.46

    MI and Z of the midship

    IKeel=2.71 m4

    INA= 0.61 m

    4

    = 60988034.89

    IDeck=1.31 m4

    ZDeck=0.42 m3

    = 4.17E+05

    ZKeel=0.24 m3

    = 2.40E+05

    Deck=70002.71 K N/m2

    = 70.00 M Pa

    Keel=121426.18 K N/m2

    = 121.43 M Pa

    Yield stress of steel

    y=235 M Pa

    Depth (m) y Z (M Pa)

  • 8/13/2019 Scantlings Version_2 for Print Only

    109/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    110/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    111/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    112/280

    T-sections:

    area length volume

    0.000 2 0.000

    0.000 2.76 0.000

    0.002 1.5 0.006

    0.002 6 0.010

    0.002 1 0.004

    0.002 1.052 0.003

    0.002 6 0.010

    0.001 2.5 0.007

    0.033

    0.696494

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    -150.00 -100.00 -50.00 0.00 50.00 100.00 150.00

    (M Pa)

  • 8/13/2019 Scantlings Version_2 for Print Only

    113/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    114/280

    AD/AR=0.0076 (for shell plate panel)

    AD/AR=0.0518 (for longitudenals, stiffners,transverses and girders)

    s = spacing of longitudenal stiffners in cm= 50 cm

    l= unsupported span of intervals in cm= 360 cm

    LI=mean span of cross structure in cm

    pbcg,pbxx,N1,N2,N3,,Lw,V,FV,nxx,bx,cg,H,d and FDare as defined in 3-2-2/1.1

    C1=0.044L+3.75

    C1=5.33

    C2=0.01

    Wave bending moment amidships: (3-2-1/1.1.2, pg-47)

    Mws= -k1C1 L2B (Cb+ 0.7) x 10

    -3kN-m sagging moment

    Mws= -10949.97658 kN-m

    Mwh= k2C1L2B Cbx 10

    -3kN-m hogging moment

    Mwh=7880.66 kN-m

    where

    k1= 110

    k2= 190Msws=0 kN-m sagging moment

    Mswh= 0.3 fpC1C2L2B (Cb+ 0.7) kN-m hogging moment

    Mswh=5226.13 kN-m

    where

    fp= 17.5 kN/cm2

    Slamming induced bending moment:

    Msl=C3(1+ncg)(L-ls) kN-m

    Msl=29187.18 kN-m

    whereC3=1.25

    = full load displacement in metric tons

    ls=length of slamming load in m

    ls= AR/Bwl

    ls=6.61

    AR=0.67/d m2

    AR=77.72 m2

    Section Modulus:

    SM=M tCQ/fp cm

    2

    -m1667.84 cm

    2-m

    0.17 m3

    where

    Mt=maximum total bending moment, to be taken greater of the following

    = Mswh+Mwh 13106.79014 kN-m

    = -Msws-Mws -10949.97658 kN-m

    = Msl 29187.18 kN-m

  • 8/13/2019 Scantlings Version_2 for Print Only

    115/280

    Mt=29187.18 kN-m

    C= 1 for steel craft

    Q= 1 for ordinary steel

    fp=17.5 kN/cm2

    K= 50

    Moment of inertia:

    I= (L/QC)*(SM/K) cm2-m

    2

    I= 0.12 cm2-m

    2

    I= 1.20084E-05 m4

    Catamaran transverse loading: (3-2-1/3.3, pg-53)

    Mtb= K1 Bcl (1+ncg) kN-m

    Mtb=17879 kN-m

    Mtt= K2 L(1+ncg) kN-m

    Mtt=35757 kN-m

    Max Mtt=35757.00 kN-m

    Qt= K1 (1+ncg) kN

    Qt=1986.50 kN

    where

    Mtb=design transverse bending moment acting upon the cross structure connecting the hull

    Mtt=design torsional moment acting upon the transverse structure connecting the hulls

    Qt=design vertical shear force acting upon the transverse structure connecting the hulls

    K1 =2.5

    K2 =1.25

    =craft displacement in tonnes

    =290 m3

    Bcl=distance between the hull centerlines in meters

    Bcl=9 m

    ncg vertical accleration at the craft's center of gravity

    1+ncg=2.74 (3-2-1/table 1)

    Design stresses and deflection: (3-2-1/3.5, pg-54)

    a=design transverse bending stress N/mm2

    a= 0.66 y 155.1 N/mm2

    ab=design torsional or combined stress N/mm2

    ab= 0.75 y 176.25 N/mm2

    a=design transverse shear stress N/mm2

    a= 0.38 y 89.3 N/mm2

    E= tensile or compressive modulus N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    116/280

    E= 206000 N/mm2

    y=minium yield strength of material in N/mm2

    y=235 N/mm2

    N/mm2

    A. Keel:

    Bar keels

    thicknesst= 0.625L+12.5 mm

    t= 35 mm

    t= 50 mm provided

    depth

    h= 1.467L+100 mm

    h= 153 mm

    h= 180 mm provided

    B. Bottom structure:

    Bottom plating:

    Bottom slamming for crafts less than 61 m (3-2-2/3.1, pg-62)

    pbxx= N1 (1ncg) FDFV/(Lw Nh Bw) kN/m2

    pbxx=77.02 kN/m2

    (for shell plate panel)

    pbxx=44.29 kN/m2

    (for longitudenals, stiffners,transverses and girder

    afor slamming pressure= 0.90 y= 211.5 N/mm2

    p= 77.02 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 4.07 mm

    Hydrostastic pressure (3-2-2/3.1, pg-62)

    pd= N3(0.64H+d) kN/m2

    pd=51.25 kN/m2

    afor hydrostatic pressure= 0.55 y= 129.25 N/mm2

    p= 51.25 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 1.66 mm

    Minimum thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 2 mm

    ts=4.64 mm

    t= 5 mm pvovided

    Watertight boundaries

  • 8/13/2019 Scantlings Version_2 for Print Only

    117/280

    The design pressure for water tight boundries is to be not less than given by the following equation

    pw= N3h kN/m2

    h= 1.5 m

    pw= 14.7 kN/m2

    Buckling Criteria for bottom plate: (midship region from fr 10 to fr 45)

    Ideal Elastic Stress: (3-2-3/1.5, pg-73)E= 0.9m1E(tb/s)

    2 N/mm2

    E= 127.83 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.47

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.13

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 9 mm provided

    s= shorter distance of plate panel mms= 500 mm

    l= longer distance of plate pannel mm

    l= 2000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 126.9930353 N/mm2

    c= 126.99 N/mm2

    Calculated compressive stress:a= c5(Mt(y/I)) N/mm

    2

    a= 121.43 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Buckling Criteria for bottom plate: (forward region from fr 45 to fr 70 )

    Ideal Elastic Stress: (3-2-3/1.5, pg-73)

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 125.23 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.44

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.08

  • 8/13/2019 Scantlings Version_2 for Print Only

    118/280

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 9 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 2200 mmC2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 124.7535034 N/mm2

    c= 124.75 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    a= 121.43 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Buckling Criteria for bottom plate: (aft region from fr -3 to fr 9)

    Ideal Elastic Stress: (3-2-3/1.5, pg-73)

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 127.83 N/mm

    2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.47

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.13

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 9 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 2000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 126.9930353 N/mm2

    c= 126.99 N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    119/280

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    a= 121.43 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Bottom transverse and girder:

    afor bottom transverse and girder - slamming pressure= 0.80 y= 188 N/mm2

    afor bottom transverse and girder - sea pressure= 0.60 y= 141 N/mm2

    midship region (from fr 10 to fr 45):

    s= 0.5 m

    l= 2 m

    SM=83.3*p s l2/a cm

    3

    SM= 68.25 cm3

    slamming pressure

    SM= 60.56 cm3

    sea pressure

    provided SM= 69 cm3

    section= 80 x 80 x 8 (transverse L)

    s= 1.5 m

    l= 2 m

    SM=83.3*p s l2/a cm

    3

    SM= 117.73 cm3

    slamming pressure

    SM= 181.67 cm3

    sea pressure

    provided SM= 208 cm3

    section= 150 x 10 + 75 x 12 (transverse T)

    s= 1.5 m

    l= 3.3 m

    SM=83.3*p s l2/a cm

    3

    SM= 494.58 cm3

    sea pressure

    provided SM= 802 cm3

    section= 650 x 6 (transverse floor)

    s= 1.6 m

    l= 3 m

    SM=83.3*p s l2/a cm

    3

    SM= 436.00 cm3

    sea pressure

    provided SM= 805 cm3

    section= 650 x 6 (long floor)

  • 8/13/2019 Scantlings Version_2 for Print Only

    120/280

    s= 0.5 m

    l= 0.98 m

    SM=83.3*p s l2/a cm

    3

    SM= 4.17 cm3

    tank pressure

    provided SM= 14 cm3

    section= 45 x 45 x 5 (floor stiffner)

    s= 1.6 m

    l= 3 m

    SM=83.3*p s l2/a cm

    3

    SM= 282.56 cm3

    slamming pressure

    SM= 436.00 cm3

    sea pressure

    provided SM= 499 cm3

    section= 180 x 50 (keel)

    forward regions (from fr 45 to fr 70) :

    s= 0.5 m

    l= 2.2 mSM=83.3*p s l

    2/a cm

    3

    SM= 82.58 cm3

    slamming pressure

    SM= 73.27 cm3

    sea pressure

    provided SM= 85 cm3

    section= 80 x 80 x 10 (transverse L)

    aft region(from fr -3 to fr 10):

    s= 0.5 m

    l= 2 m

    SM=83.3*p s l2/a cm

    3

    SM= 68.25 cm3

    slamming pressure

    SM= 60.56 cm3

    sea pressure

    provided SM= 69 cm3

    section= 80 x 80 x 8 (transverse L)

    C. Inner bottom structure

    Tank boundaries

    pt= g(1+0.5nxx)h2 kN/m2

    pt= 2.60 kN/m2

    Watertight boundariesThe design pressure for water tight boundries is to be not less than given by the following equation

    pw= N3h kN/m2

    h= 1.5 m

    pw= 14.7 kN/m2

    afor lower deck/ other deck= 0.60 y= 141 N/mm2

    p= 14.70 kN/m2

  • 8/13/2019 Scantlings Version_2 for Print Only

    121/280

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.52 mm

    Lower deck,WT bulkhead, Deep tank bulkhead

    Minium thickness: (3-2-3/1.3.3, pg-73)

    qs=1 for ordinary steel

    ts= 0.35 (L qs)1/2

    + 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    Buckling Criteria for inner bottom plate: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 55.77 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.53

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.23

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 7 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1700 mm

    C2=1.3Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y -12.57282316 N/mm2

    c= 55.77 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.04 m

    a= 49.77 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Inner Bottom transverse and girder:

  • 8/13/2019 Scantlings Version_2 for Print Only

    122/280

    afor deck transverse and girder - other deck= 0.75 y= 176.25 N/mm2

    s= 0.5 m

    l= 1.7 m

    SM=83.3*p s l2/a cm

    3

    SM= 10.04 cm3

    provided SM= 15 cm3

    section= 45 x 45 x 5 (transverse L)

    s= 1.5 m

    l= 2.76 m

    SM=83.3*p s l2/a cm

    3

    SM= 79.39 cm3

    provided SM= 96 cm3

    section= 120 x 8 + 60 x 8 (transverse T)

    D. Side and transom structure:

    Side and transom structure ,design pressure: (3-2-2/3.3, pg-62)The side design pressure ps, is to be not less than given by the equations

    slaming pressure

    psxx= [N1 (1nxx)/LwNhBw+ *(70-sx)/(70-cg)] kN/m2

    psxx=72.62 kN/m2

    psxx=41.76 kN/m2

    afor slamming pressure= 0.90 y= 211.5 N/mm2

    p= 72.62 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 3.84 mm

    Hydrostatic pressure

    ps= N3(Hs-y) kN/m2

    ps=27.17 kN/m2

    afor hydrostatic pressure= 0.55 y= 129.25 N/mm2

    p= 27.17 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.88 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 2 mm

    ts=4.64 mm

    t= 5 mm pvovided

  • 8/13/2019 Scantlings Version_2 for Print Only

    123/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    124/280

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 2520 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 48.42208764 N/mm2

    c= 74.00 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.46 m

    a= 69.87 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Buckling Criteria for side shell: (aft region from fr -3 to fr 10)

    Ideal Elastic Stress: (3-2-3/1.5, pg-73)

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 77.33 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.47

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.13

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 7 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 2000 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 56.45787474 N/mm2

    c= 77.33 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    125/280

    y= 1.46 m

    a= 69.87 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Side transverse and girders:

    side transverse and girders - slamming pressure 0.80 y 188 N/mm2

    side transverse and girders - sea pressure 0.60 y 141 N/mm2

    midship region (from fr 10 to fr 45):

    s= 0.5 m

    l= 2.6 m

    SM=83.3*p s l2/a cm

    3

    SM= 108.75 cm3

    slamming pressure

    SM= 54.25 cm3

    sea pressure

    provided section= 60 cm3

    section= 80 x 80 x 7 (transverse L)

    s= 1.5 m

    l= 2.6 m

    SM=83.3*p s l2/a cm

    3

    SM= 187.60 cm3

    slamming pressure

    SM= 162.75 cm3

    sea pressure

    provided section= 170 cm 3

    section= 150 x 8 + 75 x 10 (transverse T)

    forward regions (from fr 45 to fr 70) :

    s= 0.5 m

    l= 2.52 m

    SM=83.3*p s l2/a cm

    3

    SM= 58.74 cm3

    slamming pressure

    SM= 50.96 cm3

    sea pressure

    provided section= 60 cm3

    section= 80 x 80 x 7 (transverse L)

    s= 1.5 m

    l= 2.52 m

    SM=83.3*p s l2/a cm

    3

    SM= 176.23 cm3

    slamming pressure

    SM= 152.89 cm3

    sea pressure

    provided section= 170 cm3

    section= 150 x 8 + 75 x 10 (transverse T)

  • 8/13/2019 Scantlings Version_2 for Print Only

    126/280

    aft region(from fr -3 to fr 10):

    s= 0.5 m

    l= 2 m

    SM=83.3*p s l2/a cm

    3

    SM= 37.00 cm3

    slamming pressure

    SM= 32.10 cm

    3

    sea pressureprovided section= 39 cm

    3

    section= 60 x 60 x 8 (transverse L)

    s= 1.5 m

    l= 2 m

    SM=83.3*p s l2/a cm

    3

    SM= 111.01 cm3

    slamming pressure

    SM= 96.30 cm3

    sea pressure

    provided section= 107 cm3

    section= 130 x 8 + 60 x 8 (transverse T)

    Fore end

    psf= 0.28FaCFN3(0.22+0.15 tan)(00.4V sin0.6 L1/2

    )2 kN/m

    2

    where

    psxx=side design slamming pressure

    ps=side design pressure due to hydrostatic force

    psf=side design pressure for forward of 00.125L stern

    Hs=0.64H+d m

    Hs=5.27 m

    y= distance above base line in m = 2.5 mL= craft length

    Fa=3.25 for plating and 1 for longitudinals, transverses and girders

    CF=0.0125L for L

  • 8/13/2019 Scantlings Version_2 for Print Only

    127/280

    t= 0.52 mm

    Freeboard deck inside enclosed superstructures and deckhouse decks aft of 0.25L,

    and internal decks included in the hull girder bending moment=

    p= 0.10L+6.1 kN/m2

    p= 11.2 kN/m2

    afor strength deck= 0.60 y= 141 N/mm2

    p= 11.20 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.39 mm

    afor strength deck= 0.60 y= 141 N/mm2

    p= 71.00 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 2.50 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    Buckling Criteria for deck plate:(midship region from fr 10 to fr 60)

    Ideal Elastic Stress: (3-2-3/1.5, pg-73)

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 71.59 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.51

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.19

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 8 mm provideds= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1800 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    128/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    129/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    130/280

    section= 45 x 45 x 5 (transverse L)

    s= 1.5 m

    l= 3.5 m

    SM=83.3*p s l2/a cm

    3

    SM= 128.53 cm3

    Exposed freeboard deck

    SM= 97.27 cm

    3

    Freeboard deckprovided SM= 136 cm

    3

    section= 130 x 8 + 70 x 10 (transverse T)

    s= 1.7 m

    l= 3 m

    SM=83.3*p s l2/a cm

    3

    SM= 107.02 cm3

    Exposed freeboard deck

    SM= 80.99 cm3

    Freeboard deck

    provided SM= 123

    section= 130 x 8 + 60 x 10 (long. T)

    forward regions (from fr 60 to fr 70) :

    s= 0.5 m

    l= 1.2 m

    SM=83.3*p s l2/a cm

    3

    SM= 5.04 cm3

    Exposed freeboard deck

    SM= 3.81 cm3

    Freeboard deck

    provided SM= 15 cm3

    section= 45 x 45 x 5 (transverse L)

    s= 1.5 m

    l= 2 m

    SM=83.3*p s l2/a cm

    3

    SM= 41.97 cm3

    Exposed freeboard deck

    SM= 31.76 cm3

    Freeboard deck

    provided SM= 62 cm3

    section= 100 x 6 + 50 x 8 (transverse T)

    s= 1.7 m

    l= 2 m

    SM=83.3*p s l2/a cm

    3

    SM= 47.56 cm

    3

    Exposed freeboard deckSM= 36.00 cm

    3Freeboard deck

    provided SM= 62 cm3

    section= 100 x 6 + 50 x 8 (long. T)

    aft region (from fr -3 to fr 10):

    s= 0.5 m

    l= 1.5 m

  • 8/13/2019 Scantlings Version_2 for Print Only

    131/280

    SM=83.3*p s l2/a cm

    3

    SM= 7.87 cm3

    Exposed freeboard deck

    SM= 5.96 cm3

    Freeboard deck

    provided SM= 15 cm3

    section= 45 x 45 x 5 (transverse L)

    s= 1.5 ml= 2.8 m

    SM=83.3*p s l2/a cm

    3

    SM= 82.26 cm3

    Exposed freeboard deck

    SM= 62.25 cm3

    Freeboard deck

    provided SM= 111 cm3

    section= 120 x 8 + 60 x 10 (transverse T)

    s= 1.7 m

    l= 3 m

    SM=83.3*p s l2/a cm

    3

    SM= 107.02 cm3

    Exposed freeboard deck

    SM= 80.99 cm3

    Freeboard deck

    provided SM= 111

    section= 120 x 8 + 60 x 10 (long. T)

    Enclosed accommadations decks= 5 kN/m2

    Concentrated deck cargo loads, equipment foundations= W(1+1.5nxx) kN/m2

    Enclosed store rooms, machinery spaces, etc= h (10.55nxx) kN/m2

    W=deck cargo load in kN/m2

    nxx=average vertical accleration at the location unbder consideration as defined in 3-2-2/1.1

    =cargo densityin kN/m2

    not to be less than 7.04 kN/m2

    h= height of enclosed store room, machinery space,etc in m

    L= craft length as defined in 3-1-1/3

    F. Wet deck or cross structure: (3-2-2/3.5, pg-63)

    pwd= 30 N1FDF1V V1(1-0.85 ha/h1/3) kN/m2

    pwd=0.012288 kN/m2

    (for shell plate panel)

    pwd

    =0.0070656

    kN/m2

    (for longitudenals, stiffners,transverses and girderwhere

    N1=0.1

    ha= vertical distance in m, is not be greater than 1.176h1/3= 2.94 m

    ha= 1.176h1/3 m

    ha=2.94 m

    F1=Wet deck pressure distribution factor as given in 3-2-2/fig-6= 0.4

    V1=relative impact velocity as given below

  • 8/13/2019 Scantlings Version_2 for Print Only

    132/280

    V1= (4h1/3/L1/2

    )+1 m/s

    V1=2.67 m/s

    V, h1/3and FDare as defined in 3-2-2/1.1

    The wet deck pressure is (ABS Oct 2001, 3-8-3/8.3.3, pg-51)

    Pwd=N1[/(0.332LWNhBw+ LwdWwd)]*[Hb+nxx]*[1-(GA/Hw)]*FD kN/m2

    Pwd=25.57 kN/m2

    (for shell plate panel)

    Pwd=14.70 kN/m2

    (for longitudenals, stiffners,transverses and girder

    where,

    N1=0.1

    Hb=1 for catamarans

    GA=vertical distance in m

    = 1 m

    Lwd=Length of wet deck in m

    = 36 m

    Wwd=width of wet deck in m

    = 6 mHw= h1/3 m

    afor cross deck= 0.90 y= 211.5 N/mm2

    p= 25.57 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 1.35 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    qs=1 for ordinary steel

    ts= 0.44 (L qs)1/2

    + 1 mm

    ts=3.64 mm

    t= 5 mm pvovided

    Buckling Criteria for wet deck:(midship region (from fr 10 to fr 60)

    Ideal Elastic Stress: (3-2-3/1.5, pg-73)

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 71.04 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.50

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.17

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 8 mm provided

    s= shorter distance of plate panel mm

  • 8/13/2019 Scantlings Version_2 for Print Only

    133/280

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1850 mm 1000

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2

    0.5y= 117.5N/mm2

    c= E when E0.5y 40.66725265 N/mm2

    c= 71.04 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.46 m

    a= 69.87 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    Buckling Criteria for wet deck:(forward regions from fr 60 to fr 70 & aft region from fr -3 to fr 10)

    Ideal Elastic Stress: (3-2-3/1.5, pg-73)

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 71.04 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C

    2(1+(s/l)

    2)2= 1.50

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.17

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 8 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 1850 mm 1000

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm2 0.5y= 117.5N/mm

    2

    c= E when E0.5y 40.66725265 N/mm2

    c= 71.04 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.46 m

  • 8/13/2019 Scantlings Version_2 for Print Only

    134/280

    a= 69.87 N/mm2

    a= (fp/CQ)(SMR/SMA) N/mm2

    y= vertical distance in m, from the neutral axis to the consideration location

    c5=1.E+05

    Permissible buckling stress:

    c=>a TRUE

    wet deck transverse and girders

    wet deck transverse and girders 0.75 y 176.25 N/mm2

    midship region (from fr 10 to fr 60):

    s= 0.5 m

    l= 1.85 m

    SM=83.3*p s l2/a cm

    3

    SM= 11.89 cm3

    provided SM= 15 cm3

    section= 45 x 45 x 5 (transverse L)

    s= 1.5 m

    l= 3.5 m

    SM=83.3*p s l2/a cm

    3

    SM= 127.68 cm3

    provided SM= 136 cm3

    section= 130 x 8 + 70 x 10 (transverse T)

    s= 1.7 m

    l= 3 mSM=83.3*p s l

    2/a cm

    3

    SM= 106.32 cm3

    provided SM= 123 cm3

    section= 130 x 8 + 60 x 10 (long. T)

    forward regions (from fr 60 to fr 70)/aft region (from fr -3 to fr 10):

    s= 0.5 m

    l= 1.85 m

    SM=83.3*p s l2/a cm

    3

    SM= 11.89 cm3

    provided SM= 15 cm 3

    section= 45 x 45 x 5 (transverse L)

    s= 1.5 m

    l= 3.6 m

    SM=83.3*p s l2/a cm

    3

    SM= 135.08 cm3

    provided SM= 136 cm3

  • 8/13/2019 Scantlings Version_2 for Print Only

    135/280

    section= 130 x 8 + 70 x 10 (transverse T)

    s= 1.7 m

    l= 3 m

    SM=83.3*p s l2/a cm

    3

    SM= 106.32 cm3

    provided SM= 123 cm

    3

    section= 130 x 8 + 60 x 10 (long. T)

    G. Bulkhead structure:

    Tank boundaries

    pt= N3h kN/m2

    9.8 kN/m2

    pt= g (1+0.5nxx)h2 kN/m2

    1.90 kN/m2

    where

    g= specific weight of liquid= 1.055 N/cm2-m

    h2=distance from lower edge of plate panel or center of area support by stiffener to

    the top of the tank in m

    watertight boundaries

    pw= N3h kN/m2

    9.8 kN/m2

    afor watertight bulkhead= 0.95 y= 223.25 N/mm2

    p= 9.80 kN/m2

    s= 0.5 m

    k= 0.5t= s*(pk/1000a)

    1/2

    t= 0.55 mm

    afor deep tank bulkhead= 0.60 y= 141 N/mm2

    p= 9.80 kN/m2

    s= 0.5 m

    k= 0.5

    t= s*(pk/1000a)1/2

    t= 0.35 mm

    Minium thickness: (3-2-3/1.3.3, pg-72)

    Lower decks,WT bulkheads,deep tank bulkheads:

    qs=1 for ordinary steel

    ts= 0.35 (L qs)1/2

    + 1 mm

    ts=3.1 mm

    t= 5 mm pvovided

    Bulkhead transverse and girders:

  • 8/13/2019 Scantlings Version_2 for Print Only

    136/280

    Tank= 0.60 y 211.5 N/mm2

    Watertight= 0.85 y 129.25 N/mm2

    s= 1.8 m

    l= 2.5 m

    SM=83.3*p s l2/a cm

    3

    SM= 43.42 cm3

    Tank bulkhead

    SM= 71.05 cm3

    Watertight bulkhead

    provided SM= 77 cm3

    section= 100 x 8 +50 x 10 (vertical T)

    s= 0.5 m

    l= 2.5 m

    SM=83.3*p s l2/a cm

    3

    SM= 12.06 cm3

    Tank bulkhead

    SM= 19.74 cm3

    Watertight bulkhead

    provided SM= 21 cm3

    section= 50 x 50 x 6 (vertical L)

    Buckling Criteria for bulkhead: (3-2-3/1.5, pg-73)

    Ideal Elastic Stress:

    E= 0.9m1E(tb/s)2 N/mm

    2

    E= 74.09 N/mm2

    m1=buckling coefficient as given in 3-2-3/table-3

    for '= m1= C2(1+(s/l)2)2= 1.41

    for '=/3 m1= 1.45C2(1+(s/l)2)2= 2.04

    E= 2.06E+05 N/mm2

    tb=thickness of plate mm

    tb= 7 mm provided

    s= shorter distance of plate panel mm

    s= 500 mm

    l= longer distance of plate pannel mm

    l= 2500 mm

    C2=1.3

    Critical buckling stress:

    y= 235 N/mm

    2

    0.5y= 117.5N/mm

    2

    c= E when E0.5y 48.6489265 N/mm2

    c= 74.09 N/mm2

    Calculated compressive stress:

    a= c5(Mt(y/I)) N/mm2

    y= 1.46 m

    a= 69.87 N/mm2

  • 8/13/2019 Scantlings Version_2 for Print Only

    137/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    138/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    139/280

  • 8/13/2019 Scantlings Version_2 for Print Only

    140/280

  • 8/13/2019 Scantl