sarah atchison dr. michael pilant - texas a&m...

15
Sarah Atchison Dr. Michael Pilant MATH 614.700 13 May 2009 The Role of Fractal Geometry in the Biological Sciences Introduction Fractals can be seen all throughout the natural world. In fact, “wherever a chaotic process has shaped an environment, a fractal structure is left behind” (Kenkel and Walker 1996). From the coastlines of Great Britain to the perimeter of a cancer cell, fractals are apparent in ways Mandelbrot never thought possible. In the past, scientists tried to use classic Euclidean geometry to analyze geographical structures and biological systems. However, we have since realized that a much more complex type of geometry, fractal geometry, is needed to complete these tasks. Euclidean geometry does “not yield finite answers for certain objects” in the natural world (Bauer and Mackenzie 1995). Kenkel and Walker (1996) note that the “importance of fractal scaling has been recognized at virtually every level of biological organization”. Probably one of the greatest observations of fractal geometry in biology is that, by analyzing the fractal dimensions of tumors and cells, scientists will be able to detect cancer growth in patients earlier and in a more efficient manner. The effects of researching fractals in biological systems of all levels are, in a sense, limitless.

Upload: phungthuan

Post on 13-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

SarahAtchison

Dr.MichaelPilant

MATH614.700

13May2009

TheRoleofFractalGeometryintheBiologicalSciences

Introduction

Fractalscanbeseenallthroughoutthenaturalworld.Infact,“wherevera

chaoticprocesshasshapedanenvironment,afractalstructureisleftbehind”

(KenkelandWalker1996).FromthecoastlinesofGreatBritaintotheperimeterof

acancercell,fractalsareapparentinwaysMandelbrotneverthoughtpossible.In

thepast,scientiststriedtouseclassicEuclideangeometrytoanalyzegeographical

structuresandbiologicalsystems.However,wehavesincerealizedthatamuch

morecomplextypeofgeometry,fractalgeometry,isneededtocompletethesetasks.

Euclideangeometrydoes“notyieldfiniteanswersforcertainobjects”inthenatural

world(BauerandMackenzie1995).KenkelandWalker(1996)notethatthe

“importanceoffractalscalinghasbeenrecognizedatvirtuallyeverylevelof

biologicalorganization”.Probablyoneofthegreatestobservationsoffractal

geometryinbiologyisthat,byanalyzingthefractaldimensionsoftumorsandcells,

scientistswillbeabletodetectcancergrowthinpatientsearlierandinamore

efficientmanner.Theeffectsofresearchingfractalsinbiologicalsystemsofall

levelsare,inasense,limitless.

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

2

SurveyofRelatedWorks

BenoitMandelbrotfirstdemonstratedtheconceptoffractaldimensionby

describingmeasuringthecoastlineofGreatBritainwitharuler.Asthelengthofthe

rulerapproacheszero,theperimeterofGreatBritainapproachesinfinity.Studies

showthatislandswithsmallerperimetershavealowermeanD,fractaldimension,

thanislandswithalargerperimeter.MandelbrotusedthedataLewisRichardson

hadfoundstudyingtheslopesofcoastlinestofindtheequationneededtocalculate

thefractaldimensionofanygivencoastline.Theequationis

N(d)=M/dD

whereN(d)isthenumberofsegmentsoflengthdneededtomeasuretheperimeter,

Misaconstant,andDisthefractaldimensionofthecoastline.

Notonlydocoastlineshavefractaldimension,sodoclouds.Whenflyingin

anairplane,“acloudtwentyfeetawaycanbeindistinguishablefrom[acloud]two

thousandfeetaway(Gleick,1987).Fractalpropertiesarealsoveryapparentin

plants.Fractaldimensionofleafedgesinplantscanbehighlyvariableinsome

species.Oaksareknowntobeanexampleofonesuchspecies.However,fractal

dimensionisthoughttobeapossibletoolfortaxonomicallyclassifyingaplant.Root

systemsalsohavefractaldimension.Rootsystemshave“beenexaminedusingthe

box‐countingmethod”andDshowstoincreaseovertime,varyingbetweenspecies

(KenkelandWalker,1996).Area‐perimeterrelationshipsarealsousedtoexamine

fractalpropertiesofmountains.Thesurfacesofrealmountainshavebeensculpted

byweatherandatmosphericchanges;however,researcherscanoftenmanufacture

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

3

thesameeffectsthemselvestorecreateandanalyzethesamefractaldimensionsof

mountains(Frameetal,2001).

Bacterialcolonies,liketreesandferns,growinafractalmannerunder

stressedconditions.Normally,bacteriagrowsinsoftagarwithabundantnutrient

concentration,leadingtosoftedgesandcompactness.Conversely,ifthebacteria

growsinstressfulconditionswheretheagarishardandnutrientsaremorescarce,

thecoloniestakeonafractalgrowingpatternresemblingthatofDLA(Diffusion‐

LimitedAggregation)clusters.DLAisacomputersimulationthatformsclustersby

“particlesdiffusingthroughamediumthatjostlestheparticlesastheymove”

(Frameetal.,2001).Tmorphotypecoloniesareanexampleofthisbehavior(see

Figure1).WhenTmorphotypecoloniesgrowinenvironmentswherenutrientsare

lowandagarissoft,Cmorphotypecoloniesarisethroughchiralgrowth(seeFigure

2).Consequently,whenCmorphotypesgrowunderextremelystressedconditions,

Vmorphotypesarisethroughvortexgrowth(seeFigure3).Bacteriaisnottheonly

organismthatfollowsthissamebehaviorinaharshenvironment;fungusalsogrow

fractallywhennutrientconcentrationsaredecreasing(seeFigure4).

Fractalscalingisfoundinvarioussystemsinhumananatomy.DNA

sequencesdemonstrateself‐similarityandthe“twistingsofDNAbindingproteins

havefractalproperties(KenkelandWatson,1996).Chromosomalstructure

consistsofa“concatenationof‘mini‐chromosomes’”,makingittree‐like(Kenkeland

Watson,1996).EvolutionarybiologistscanusethefractalpropertiesofDNAto

characterizeandclassifyrelationshipsbetweenorganismsthroughthemultifractal

spectra.Researchershavefoundthatcellsofalltypeshavefractalproperties.

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

4

Fractaldimensionhasbeenusedtomeasurecellularcomplexityandcontour

complexityofimagesofneuralcells(KenkelandWatson,1996).Thereiseven

fractalbehaviorpresentinthehumaneye.Scientistshavefoundthisbehaviorwhen

studying”homeostasisinthecornea,maintainedbyosmoticintegrityprovidedby

thecornealepithelium”(IannacconeandKhokha,1996).

Proteinandenzymeshavebeenextensivelystudiedfortheirfractal

propertiesanddimension.Enzymologistsandbiologistsstudyingmacromolecules

areactivelyresearchingfractalsinenzymesandproteins.Thefractalanalysisof

proteinshasproducedapowerlawintheformof

p~vα

wherepistheproperty,visthevariable,andαistheexponent.Variablesvandα

canberelatedtotheoreticallyorexperimentallyobtainedfractaldimensions.

Proteinsarefatfractals“sincethesurfaceoftheproteinisafractalbutatfinite

volume”(IannacconeandKhokha,1996).Liebovitchandhiscolleaguesexamined

the“kineticsofproteinionchannelsinthephospholipidbilayer”findingthatthe

fractalpropertiesofthe“timingofopeningsandclosingsofionchannels”meant

that“processesoperatingatdifferenttimescalesarerelated,notindependent”

(KenkelandWatson,1996).Proteinfractalshavebeenusedincreatingsynthetic

materials.Keratin,themainproteinfoundingoosedown,wasfoundtohavefractal

nodesandbranchesthatarethekeytodown’sabilitytotrapair(Gleick,1987).

Fractalpropertiesarefoundinthemanydichotomousbranchingsystemsof

thehumanbody,namelytherespiratory,digestive,andcirculatorysystems.Fractal

scalinginphysiologymeans“moresurfaceareaforabsorptionandtransfer”(Frame

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

5

etal,2001).Thelungsdemonstratemorefault‐toleranceduringgrowthduetothe

fractalscaling.Theyneedtohavetheabilitytofillupthebiggestsurfacepossible

intothesmallamountofspacetheyaregiven.Thesurfaceareaofananimal’slungs

isapproximatelyproportionaltoits“abilitytoabsorboxygen”(Gleick,1987).

Humanlungshaveasurfaceareaaboutthesizeofatenniscourt.Tissuesinthe

digestivetractshowfoldswithinfolds,givingthedigestivesystemitsfractalnature.

Theurinarycollectingsystemandthebiliaryductarealsoexamplesoffractal

structures.

Thecirculatorysystemisprobablythemostfractallycomplexsysteminthe

body.Liketherespiratorysystem,itmustfitanenormoussurfaceareaintoavery

tinyvolume.Bloodvesselsdivideandbranchoffsomanytimesthatthevesselsare

narrowenoughthebloodcellscanonlygothroughonebehindtheother.Inmost

tissues“nocellisevermorethanthreeorfourcellsawayfromavessel”,soitis

amazinghow“vesselsandbloodtakeupnomorethanaboutfivepercentofthe

body”(Gleick,1987).Theheartisfilledwithfractalnetworks.Examplesofthese

networksarethecoronaryarteriesandveins,thefibersbindingthevalvestothe

heartwall,andthecardiacmusclesthemselves.TheHis‐Purkinjesystem,”a

networkofspecialfibersinthehearthatcarrypulsesofelectriccurrenttothe

contractingmuscles”,iskeyinthefractalfrequencyspectrumofheartbeattiming

anditselfhasfractalproperties(Gleick,1987;Frameetal,2001).Theiterationof

fractalstructuresinthecirculatorysystemmakeitsostrongagainstinjurythatthe

heart“continuestofunctionevenaftertheHis‐Purkinjesystemhassuffered

considerabledamage”(Frameetal,2001;KenkelandWatson,1996).Theoretical

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

6

biologistshaveconcludedthatfractalscalingis“universalinmorphogenesis”

(Gleick,1987).

Manydiseasescausecellstofollowfractallaws.Histopathologistshave

turnedtofractalgeometryandmicroscopicimageprocessingtomoreeffectively

studythefractaleffectsdiseaseshaveontissueandcellgrowth.Usingthese

techniques,histopathologistscanmoreaccuratelygivediagnosesandprognoses.A

majorproblemhistopathologistshavewithdiagnosisisuniformity.Notonlywill

fractalgeometryaidinachievingartificialintelligence‐baseddiagnosis,itmightalso

provide“insightintosomediseaseprocesses”(IannacconeandKhokha,1996).Not

onlydosuchdiseasesastheherpessimplexvirushavefractalproperties,butsodo

most,ifnotall,typesofcancer.

InJanuaryof1998,itwasreleasedthatDrAndrewEinsteinandhis

colleaguesattheMountSinaiSchoolofMedicinehadbeenanalyzingthefractal

patternsofbreastcancercells.Theseresearchersanalyzedthenucleiofthesecells

andthedistributionandfractalpatternsofthechromatininside.Bymeasuring

differenceinlacunarityandbyexaminingthedifferencesinfractaldimension

betweenbenignandmalignantcells,theywereabletodeliverthecorrectdiagnosis

to39outof41patientsinablindstudy(ScheweandStein,1998).

Outlinesoftumorsrevealthelocalgrowthbehavioroftumorsto

histopathologists.Benigntumorshave“expansive”,smoothoutlineswhile

malignanttumorshave“localaggressivefeatureswithinvasionofsurrounding

tissue”(IannacconeandKhokha,1996).Theinvadingedgesaretypicallyirregular

andfragmented“withdetachmentofislandsfromthetumor”(Iannacconeand

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

7

Khokha,1996).Histopathologistshaveattemptedtoquantifythesepatterninto

classificationcategoriestoincreaseprognosisinoral,esophageal,andlaryngeal

carcinomas(IannacconeandKhokha,1996).Scientistsresearchedcanceroustumor

growthinmiceandfoundthatthetumorvesselsyieldedfractaldimensions1.89±

0.04whilethenormalvesselshaddimensionsof1.70±0.03.Tumorvesselshave

manysmallerbendsinsideoflargerbends.Beingableto“quantifytheirregular

structuresthatarepresentintumorshelpstoclarifywhytreatmentisso

frustratinglydifficult”(BaishandJain,2000).Thereare,however,limitationsto

applyingfractallawstocancerresearch.Whileincreasedfractaldimensionis

commoninmalignanttumorgrowth,itisnotuniversal.Normalbonemarrowcells

exhibitanincreasedfractaldimensionwhilethemalignantcellshaveadecreased

fractaldimension(BaishandJain,2000).

SummaryandConclusions

Fractalsaretheresultofchaoticprocesses.Notonlyarefractalsfoundin

mathematics,butalsointhereal,naturalworld.Fractalgeometryhasoftenbeen

dubbed“thegeometryofnature”,butitseffectsstretchmuchfurtherintobiologyas

well.Notonlydocoastlines,mountains,clouds,andplantshavefractaldimension,

thereismorecomplexfractaldimensiontobefoundinthebloodvessels,alveoliof

thelungs,andcellsinthehumanbody.Studyingfractalpropertiesofbiological

systemshasleadtomanyrevolutionarydiscoveries.Amongtheseepitomesisthe

knowledgethatfractaldimensioncanassistoncologistsindetecting,andtherefore

treating,severaltypesofcancerearlierandmoreeffectively.Ifsuchconclusionscan

befoundfromstudyingthesefractalsnow,withthecurrenttechnology,whatdoes

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

8

thefutureholdwithnewtechnologyandcontinuedstudyintofractalgeometryin

biologicalsciences?

MATLAB

Afterreading“CancerDetectionviaDeterminationofFractalCellDimension”

byWolfgangBauerandCharlesD.Mackenzie(1995),Idecidedtotrytoreplicate

theirfindingsfromtheirresearchofhumanlymphocytesaffectedbyhairy‐cell

leukemiausingthebox‐countingmethodandMatlab.PaulFrenchwrotetheMatlab

codeIusedandmodified.Itusesthebox‐countingmethodtofindtheHausdorff

dimensionofuploadedimages.IusedittofindtheHausdorffdimensionofan

“electronicmicroscopeimageofasectionofahumanlymphocyte,affectedwith

hairy‐cellleukemia,digitizedwith256greylevels”(BauerandMackenzie,1995).

ThearticleBauerandMackenziepublishedalreadyhadanimageoftheperimeterof

thelymphocyte,soIuploadedthatimagetopreventpossibleerrorsinconverting

theoriginal(Figure5)intothedesiredgrayscaleimage(Figure6).Ithenranthe

programandcalculatedtheHausdorffdimensiontobe1.3041(also,seefigures7‐

9).BauerandMackenzie’smethodismoreaccurateandcanbeusedonmanytypes

ofcellsororganisms,couldpossibly“deriveaquantitativemeasureforthe

raggednessofcellsorsmallbiologicalorganisms”,andalso“showeditispossibleto

distinguishbetweenhealthypersonsandhairy‐cellleukemiacancerpatients”

(BauerandMackenzie,2000).

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

9

Graphics

Figure1:Tmorphotypecoloniesunderincreasingstressedconditions

Nutrient=15(g/l),Agar=2.25%Nutrient=4(g/l),Agar=2.25%

Nutrient=2(g/l),Agar=1.75%Nutrient=0.01(g/l),Agar=1.75%

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

10

Figure2:Cmorphotypesinstressedenvironments

Figure3:Vmorphotypesinstressedenvironments

Figure4:Fungalgrowthinstressedenvironments

Figure5:Cancerpg2fig1a.jpg

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

11

Figure6:Cancerpg2fig1d.jpg(PerimeterofFigure1)

Figure7:DetectionoftheedgeofCancerpg2fig1d.jpg

Figure8:RawDataPlotwithBestFitLine

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

12

Figure9:CalculationofHausdorffDimension

AppendixA–MatlabCode

Fractaldimensionmeasurement.m(withinputfilenameschanged)%%%%%%%%%%% % this is used to find the hausdorff dimension via the box counting method % email: [email protected] % web: www.ee.ucl.ac.uk/~pfrench %%%%%%%%%%% clear clc table =[,2]; % load up original image and convert to gray-scale p = imread('Cancerpg2fig1d.jpg'); %p = rgb2gray(P); figure(1) imshow(p) % detect the edge of image 'p' using the Canny algorithm % this gives edge as 'e2' bw = im2bw(p, graythresh(p)); e = edge(double(bw)); fi = imfill(bw, 'holes'); op = imerode(fi,strel('disk',4)); e2 = edge(double(op)); figure(2)

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

13

imshow(e2) % once we have e2, set up a grid of blocks across the image % and scan each block too see if the edge occupies any of the blocks. % If a block is occupied then flag it and record it in boxCount -- % store both size of blocks (numBlocks) and no of occupied boxes (boxCount) % in table() Nx = size(e2,1); Ny = size(e2,2); for numBlocks = 1:25 sizeBlocks_x = floor(Nx./numBlocks); sizeBlocks_y = floor(Ny./numBlocks); flag = zeros(numBlocks,numBlocks); for i = 1:numBlocks for j = 1:numBlocks xStart = (i-1)*sizeBlocks_x + 1; xEnd = i*sizeBlocks_x; yStart = (j-1)*sizeBlocks_y + 1; yEnd = j*sizeBlocks_y; block = e2(xStart:xEnd, yStart:yEnd); flag(i,j) = any(block(:)); %mark this if ANY part of block is true end end boxCount = nnz(flag); table(numBlocks,1) = numBlocks; table(numBlocks,2) = boxCount; end % from the above table of discrete points, take a line of best fit and plot % the raw data (ro) and line of best fit (r-) x = table(:,1); % x is numBlocks y = table(:,2); % y is boxCount p = polyfit(x,y,1); BestFit = polyval(p,x);

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

14

figure(3) hold on grid on plot(x,y, 'ko','LineWidth',1) plot(x,BestFit, 'k-','LineWidth',2) xlabel('Number of blocks, N','FontSize',12) ylabel('Box Count, N(s)','FontSize',12) % calculate Hausdorff Dimension x2 = log(x); y2 = log(y); p2 = polyfit(x2,y2,1); BestFit2 = polyval(p2,x2); figure(4) hold on grid on plot(x2,y2, 'bo','LineWidth',1) plot(x2,BestFit2, 'b-','LineWidth',2) xlabel('Number of blocks, log N','FontSize',12) ylabel('Box Count, log N(s)' ,'FontSize',12) HausdorffDimension = p2(:,1)

AppendixB–References

Baish,J.W.,&R.K.Jain(2000).FractalsandCancer.CancerResearch.60,3683‐3688.Bauer,W.,&C.D.Mackenzie(1995).Cancerdetectionviadeterminationoffractalcelldimension.RetrievedApril20,2009,fromhttp://www.pa.msu.edu/~bauer/cancer/cancer.pdfFrame,M.,B.Mandelbrot,&N.Neger(2001).Fractalgeometrypanorama.RetrievedMay11,2009,fromFractalgeometryWebsite:http://classes.yale.edu/Fractals/Panorama/welcome.htmlFrench,P.(2007,August13).MATLABcentral‐Filedetail‐Hausdorffdimensionbytheboxcountingmethod.RetrievedMay9,2009,fromMATLABCentralWebsite:http://www.mathworks.com/matlabcentral/fileexchange/15918Gleick,J.(1987).Chaos:Makinganewscience.NewYork,NY:PenguinBooks.

SarahAtchisonTheRoleofFractalGeometryintheBiologicalSciences

15

Iannaccone,P.M.,&M.Khokha(Ed.).(1996).Fractalgeometryinbiologicalsystems:Ananalyticalapproach.BocaRaton,FL:CRCPress,Inc.Kenkel,N.C.,&D.J.Walker(1996).Fractalsinthebiologicalsciences.Coenoses,11,RetrievedApril20,2009,fromhttp://www.umanitoba.ca/faculties/science/botany/LABS/ECOLOGY/FRACTALS/fractal.htmlSchewe,P.F.,&B.Stein(1998,January,05).InsideScienceResearch.PhysicsNewsUpdate,353,RetrievedApril20,2009,fromhttp://www.aip.rg/pnu/1998/physnews.353.htm