sampling geopressured fluids: some contributions from the ...€¦ · high (up to 1400 atm do000...

14
-84- SAMPLING GEOPRESSURED FLUIDS: SOME CONTRIBUTIONS FROM THE PROPERTIES OF THE H20-CH4 SYSTEM Eduardo R. Iglesias Earth Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720 I. INTRODUCTION The geopressured formations of the United States Gulf Coast are being probed for methane recovery feasibility. One of the critical variables involved is the amount of methane actually dissolved in the pore brines. Sampling and subsequent analysis of these geopressured fluids is therefore important for the economic assessment of the resource. Thus, interest in use of conventional downhole fluid samplers and, recently, in develop- ment of samplers especially designed for geopressured environ- ments, has been stimulated. The purpose of these tools is to obtain fluid samples at reservoir conditions and to bring them to the surface, preserving their integrity, for subsequent chemical analysis. The sampling process may be envisioned as the following simplified sequence. First the sampler is lowered along the wellbore to the reservoir depth (hereafter the bottomhole). At the bottomhole the sampler is filled with formation fluid. The valve(s) are then closed and the sampler is pulled back to the surface. There it is housed in the wellhead lubricator. A valve isolating the lubricator from the wellbore is then closed. The next stage is to dispose of the hot, high pressure fluid contained in the lubricator in order to reach the sampler. The sampler is then recovered. Finally, the fluid enclosed in the sampler is transferred to suitable containers for subsequent chemical analysis. Pore fluids in geopressured formations are subjected to very high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and Fisher, 1979); significant amounts of methane, sodium chloride and lesser chemical species are dissolved in the formation waters. During the sampling process described above, the temperatures of the fluid in the sampler in the wellbore may depart significantly from the common bottomhole value; furthermore, the pressure of the fluid surrounding the sampler decreases with decreasing depth. Correspondingly, various effects associated with the thermodynamic properties of the fluids would be induced. These effects may include; gas exsolution, both in the sampler and in the wellbore; vertical compositional changes along

Upload: others

Post on 13-Nov-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-84-

SAMPLING GEOPRESSURED FLUIDS: SOME CONTRIBUTIONS

FROM THE PROPERTIES OF THE H20-CH4 SYSTEM

Eduardo R . I g l e s i a s Ear th Sciences Div is ion

Lawrence Berkeley Laboratory Univers i ty of C a l i f o r n i a

Berkeley, C a l i f o r n i a 94720

I . INTRODUCTION

The geopressured formations of t he United S t a t e s Gulf Coast are being probed f o r methane recovery f e a s i b i l i t y . One of t he c r i t i c a l v a r i a b l e s involved i s t h e amount of methane a c t u a l l y d isso lved i n t h e pore b r i n e s . Sampling and subsequent a n a l y s i s o f t hese geopressured f l u i d s i s t h e r e f o r e important f o r t h e economic assessment of t h e resource . Thus, i n t e r e s t i n u s e of conventional downhole f l u i d samplers a n d , r e c e n t l y , i n develop- ment of samplers e s p e c i a l l y designed f o r geopressured environ- ments, has been s t imu la t ed .

The purpose of t h e s e t o o l s i s t o ob ta in f l u i d samples a t r e s e r v o i r cond i t ions and t o br ing them t o the su r face , p reserv ing t h e i r i n t e g r i t y , f o r subsequent chemical a n a l y s i s . The sampling process may be envis ioned as t h e fol lowing s impl i f i ed sequence. F i r s t t he sampler i s lowered along t h e wel lbore t o t h e r e s e r v o i r depth ( h e r e a f t e r t he bot tomhole) . A t t h e bottomhole t h e s a m p l e r i s f i l l e d with formation f l u i d . The v a l v e ( s ) a r e then closed and t h e sampler i s pul led back t o t h e su r face . There it i s housed i n t h e wellhead l u b r i c a t o r . A v a l v e i s o l a t i n g t h e l u b r i c a t o r from t h e wel lbore i s then c losed . The next s t age i s t o d ispose of t h e h o t , high pressure f l u i d contained i n t h e l u b r i c a t o r i n order t o reach t h e sampler. The sampler i s then recovered. F i n a l l y , t he f l u i d enclosed i n t h e sampler i s t r a n s f e r r e d t o s u i t a b l e con ta ine r s f o r subsequent chemical a n a l y s i s .

Pore f l u i d s i n geopressured formations a re subjec ted t o very high (up t o 1400 a t m d o 0 0 0 p s i ) p re s su res , and moderately high (up t o 20OoC) temperatures ( e . g . , Dorfman and F i s h e r , 1979); s i g n i f i c a n t amounts of methane, sodium ch lo r ide and lesser chemical spec ie s are d i s so lved i n t h e formation waters . During t h e sampling process descr ibed above, t h e temperatures of t h e f l u i d i n t h e s a m p l e r i n t h e wel lbore may depa r t s i g n i f i c a n t l y from t h e common bottomhole va lue ; fur thermore, t h e p re s su re of t h e f l u i d surrounding t h e sampler decreases with decreas ing depth. Correspondingly, va r ious e f f e c t s a s soc ia t ed with t h e thermodynamic p r o p e r t i e s of t h e f l u i d s would be induced. These e f f e c t s may inc lude ; gas exso lu t ion , both i n t h e sampler and i n t h e wel lbore ; v e r t i c a l composi t ional changes along

Page 2: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-85-

t h e wel lbore due t o s l i ppage between t h e gas and t h e l i q u i d phase; temperature-induced pressure drops i n t h e f l u i d sample; s u b s t a n t i a l changes of t h e d i f f e r e n t i a l p ressure exe r t ed on t h e s a m p l e r w a l l s , which r e l a t e t o poss ib l e l eaks ; and formation i n t h e sampler of a s o l i d methane hydra te .

P red ic t ion of such e f f e c t s , and e s t ima tes of t h e i r magnitudes a r e use fu l f o r both u s e r s and des igners of downhole geopressured f l u i d samplers. For example, t h i s knowledge may h e l p i n t e r p r e t f i e l d r e s u l t s , be used i n assessment of sampling cond i t ions t o avoid those t h a t favor leakage of t h e sampler, and suggest s a f e r procedure f o r handl ing t h e sampler i n su r face ope ra t ions , as w i l l be shown i n t h i s paper.

This paper i s devoted t o p red ic t ing and q u a n t i t a t i v e l y e s t ima t ing geopressured f l u i d behavior dur ing sampling of r e s e r v o i r s i n t h e i r n a t u r a l , unperturbed cond i t ions . Both the f l u i d i n t h e sampler and t h e wel lbore f l u i d are considered. To t h a t end, I have developed a simple model ( an ' 'equation of s t a t e " ) t o es t imate thennophysical p r o p e r t i e s of geopressured f l u i d s . This model i s b r i e f l y descr ibed i n Sec t ion 11; f u l l d e t a i l s are given elsewhere ( I g l e s i a s , 1980) .

I n Sec t ion I11 t h e "equation o f s ta te" i s appl ied t o compute and d i s c u s s f l u i d p r o p e r t i e s a s soc ia t ed with the d i f f e r e n t s t ages of t he sampling process . Questions explored inc lude : t h e probable range of CH4 content of t he s a m p l e s ; p re s su re , phase t r a n s i t i o n s , f r a c t i o n of t o t a l volume corresponding t o each phase, and composition of each phase present i n t h e sample, over t h e expected range of temperatures; whether and under what condi t ions t h e f l u i d c o l l e c t e d a t wellhead i n a flowing w e l l provides a r e p r e s e n t a t i v e sample of t h e bottomhole f l u i d composition; t h e expected range of f l u i d p re s su res i n t h e l u b r i c a t o r ; and t h e expected range of d i f f e r e n t i a l s t r e s s e s on t h e s a m p l e r . Bottomhole t e m p e r a t u r e s and p res su res g e n e r a l l y inc rease with depth i n t h e geopressured formations of t h e Gulf Coast ( e . g . , Dorfman and F i s h e r , 1 9 7 9 ) . Thus, two w e l l dep ths , r ep resen t ing approximatley t h e t o p and t h e bottom of t h e geopressured zone, w e r e considered i n d e t a i l t o a s s e s s e f f e c t s a s soc ia t ed with depth.

F i n a l l y , r e s u l t s and recommendations a r e summarized i n Sec t ion I V .

11. A SIMPLE MODEL FOR GEOPRESSURED FLUIDS

With t h e except ion of a c o r r e c t i o n f a c t o r f o r methane s o l u b i l i t y i n N a C l s o l u t i o n s , I neglec ted t h e complicat ions posed by t h e presence of d i sso lved s o l i d s and considered a s y s t e m composed only of water and methane. This approach i s appropr i a t e f o r t h e e s t ima t ive purposes of t h e present work.

Page 3: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-86-

In t h i s model, t h e thermophysical p r o p e r t i e s of t he water- methane mixture are formulated i n terns of f i v e main v a r i a b l e s ; namely, p ressure P , abso lu t e temperature T , molar volume v , mole f r a c t i o n o f methane i n the - sys t em A , and volumetr ic gas s a t u r a t i o n S . The c o n t r i b u t i o n s of methane t o t h e l iqu id- and gas-phase molar volumes are es t imated from a c o r r e l a t i o n ( B r e l v i and O'Connell, 19721, and from t h e i d e a l gas l a w , r e s p e c t i v e l y . The corresponding q u a n t i t i e s f o r l i q u i d water and steam a r e es t imated from t h e IFC Formul a t ion".

Methane s o l u b i l i t y i s computed from an empir ica l c o r r e l a t i o n (Haas, 1978) , which assumes t h a t steam e x i s t s i n t h e gas phase a t i t s s a t u r a t e d pressure and d e f i n e s t h e mrathane p a r t i a l p ressure as t h e d i f f e r e n c e between P and t h e s a t u r a t i o n pressure of pure steam.

111. RESULTS AND DISCUSSION

i> Bottomhole Compositions

The geopressured b r i n e s of t h e Gulf Coast are be l ieved t o be s a t u r a t e d with d i s so lved methane. Methane s o l u b i l i t i e s i n water and i n N a C l s o l u t i o n s depend on t e m p e r a t u r e and pressure . Thus, given t h e ranges of p re s su res and temperatures found i n t h e geopressured formations, t h e probable range of methane conten t i n bottomhole f l u i d samples can be es t imated from known s o l u b i l i t i e s , as fol lows.

Bubble-point curves f o r t h e water-methane system were computed from Haas' c o r r e l a t i o n . These r e s u l t s a r e shown i n Figure 1. The shaded area r e p r e s e n t s , roughly, t h e P , T ranges spanned by t h e f l u i d s of t h e Gulf Coast ( e . g . , Dorfman and F i s h e r , 1979 and r e fe rences t h e r e i n ) . Assuming t h a t i n t h e unperturbed r e s e r v o i r t h e pore water i s s a t u r a t e d wi th methane, CH4-H20 r a t i o s can be es t imated from Figure 1 f o r g iven p res su res and temperatures . Mult iplying rhese r e s u l t s by t h e f a c t o r fNaCL, which has been p l o t t e d i n F igure 2 as a func t ion of t h e N a C l con ten t , c o r r e c t s t h e s e s o l u b i l i t i e s f o r s a l i n i t y (Haas, 1978).

From Figure 1, t h e maximum methane s o l u b i l i t y i n t h e shaded area ( f o r zero NaCl.) i s about 14,400 ppm a t 1400 a t m ( t h i s p re s su re corresponds approximately t o t h e bottom of t h e geopressured zone). This s o l u b i l i t y may dec rease t o about 5000 ppm, corresponding t o fNaC1 3 0.35 f o r 250,000 ppm of N a C l (F igure 2 ) . Taking 700 a t m (corresponding t o about 3000 m , t h e t o p of t h e geopressured zone, i f t h e l i t h o s t a t i c p re s su re g rad ien t i s adopted) , t h e minimum methane s o l u t i b i l i t y is about 4000 ppm f o r zero N a C l

" In t e rna t iona l Formulation Committee, 1967, "A Formulation o f t h e Thermodynamic P r o p e r t i e s of Ordinary Water Substance," IFC S e c r e t a r i a t , Verein Deutscher Ingenieure , Dusse ldor f , Prinz-Georg-Strasse 77/79.

Page 4: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-87-

(F igure 1) which conver t s t o about 1400 ppm f o r 250,000 ppm of N a C 1 .

Two cases were considered i n d e t a i l : a deep w e l l ( Z B = 6000 m) r ep resen t ing an approximate upper l i m i t t o t h e pressures expected, and a "shallow" ( Z B = 3600 m) w e l l sunk t o near t o the top o f t h e geopressured formations. The corresponding bottomhole p re s su res were es t imated from t h e l i t h o s t a t i c g rad ien t . Bottomhole temperatures were then picked from Figure 1, and methane s o l u b i l i t i e s i n pure water computed from inve r s ion of P(X,T) as def ined by Haas. These r e s u l t s are presented i n Table 1.

i i ) Wellhead

It i s appropr i a t e t o cons ider he re t h e quest ion of whether and under what cond i t ions does t h e fllvid co l l ec t ed a t wellhead from a flowing w e l l provide a r e p r e s e n t a t i v e sample of t h e bottomhole f l u i d composition.

Since u n t i l t he present t ime no geopressured r e s e r v o i r has been under s i g n i f i c a n t product ion, t h e scope of t h i s paper i s l imi t ed t o unperturbed r e s e r v o i r s . In these condi t ions t h e pore f l u i d s are be l ieved t o c o n s i s t of a s i n g l e , l i q u i d phase s a t u r a t e d with methane. Wellbores pene t r a t ing geopressured r e s e r v o i r s are f i l l e d with formation f l u i d due t o t h e high pore pressures . Along t h e wel lbore pressure decreases wi:h decreas ing depth causing gas (mostly methane but a l s o some steam) exso lu t ion . Buoyancy then t ends t o sepa ra t e t h e gas bubbles from t h e parent l i q u i d . This e f f e c t may cause t h e f l u i d composition a t wellhead t o d i f f e r s i g n i f i c a n t l y from t h e bottomhole composition.

To estimate t h e wellhead o v e r a l l composition, s l i ppage between t h e gas and t h e l i q u i d phase must be considered. The t y p i c a l s l i ppage l eng th , A Z , a t wellhead car, be der ived from Z B and t h e r a t i o of t h e bubble- l iquid r e l a t i v e v e l o c i t y , v r t o t h e flow v e l o c i t y v f ,

= ZB (Vr/Vf)

The extremely high bottomhole p re s su res imply nea r sonic flow v e l o c i t i e s when f r i c t i o n l o s s e s a r e considered (C. Miller, p r i v a t e communication). Sound v e l o c i t i e s may range from approximately 1000 m t o perhaps 100 m s-l , depending on gas s a t u r a t i o n ; a t y p i c a l va lue for vr i s 0.5 m ( e .g . , Haberman and Morton, 1953). Thus A 2 may range up t o a few hundred meters f o r geopressured w e l l s . One can t h e r e f o r e neg lec t s l ippage and t ake Xw = AB i n t h e s e f a s t f lowing wel l s . small bubble regime has been t a c i t l y assumed f o r t h e wel lbore flow. Due t o the r e l a t i v e l y small temperature g rad ien t s and high p res su res involved, t h i s i s a very reasonable assumption; t h i s assumption i s supported by t h e small gas s a t u r a t i o n s found l a t e r i n t h i s paper.

In t h i s argument,

Page 5: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-88-

To i n v e s t i g a t e the d i f f e r e n t i a l s t resses exer ted on t h e sampler at su r f ace l e v e l , es t imates of wellhead pressures and temperatures are needed. For s i m p l i c i t y I considered s t eady- s t a t e , f a s t f lowing w e l l s f o r t he two w e l l depth cases descr ibed above.

Neglect ing drawdown and f r i c t i o n e f f e c t s a s soc ia t ed with f i n i t e flow v e l o c i t y , t h e wellhead pressure PW w a s approximated as t h e bottomhole p re s su re minus the h y d r o s t a t i c head. The assumed s t eady- s t a t e flow cond i t ions imply wellhead temperatures TW not f a r from Tg. Thus, f o r convenience I assumed a l i n e a r temperature p r o f i l e f o r t h e wel lbore , with TW ranging from TB t o (Tg - 5 O O C ) . These temperatures r e s u l t i n small gas s a t u r a t i o n s i n t h e we l l , which a r e n e g l i g i b l e i n terms of mass. Neglect ing the con t r ibu t ions of t h e gas phase and of t h e small amounts of d i sso lved methane t o t h e t o t a l d e n s i t y , I approximated P 1 Z P k ( P , T ) . computed f o r t h e two wel l depths considered A r e shown i n Table 1. Note t h e small d i f f e r e n c e s i n Pw a r i s i n g from t h e temperature dependence of t h e dens i ty .

Resul t s so

From Pw, Tw, and lw, which completely spec i fy the thermo- dynamic s t a t e of t h e system, o t h e r wellhead v a r i a b l e s of i n t e r e s t such as S , x, y and r were computed using the "equation of s t a t e . " The corresponding results are summarized in T a b l e 1.

In add i t ion t o y i e ld ing t h e wellhead cond i t ions sought , t hese r e s u l t s provide seniquant i t a t i v e informat ion o f i n t e r e s t f o r planning a c t u a l product ion. This information can be summarized as fol lows: i f a t bottomhole cond i t ions t h e b r i n e i s sa tu ra t ed with methane, gas w i l l f i r s t evolve wi th in t h e wellbore e a r l y i n t h e product ion h i s t o r y , but t h e concomitant drawdown w i l l even tua l ly r e s u l t i n phase sepa ra t ion wi th in t h e formation. The volume f r a c t i o n corresponding t o t h e gas phase anywhere along t h e wel lbore i s smal l , most l i k e l y less than about 4 % . Therefore , t h e flow i s expected t o be i n t h e s m a l l bubble regime. A s u b s t a n t i a l f r a c t i o n of t h e t o t a l methane remains i n s o l u t i o n a t wellhead: about 50% i f thermal l o s s e s along t h e wel lbore are s i g n i f i c a n t , and s u b s t a n t i a l l y more other- w i s e f o r t h e cases considered (Table 1 ) . However, t h e computed va lues of r a r e upper l i m i t s because t h e a c t u a l wellhead p res su res w i l l be smaller than shown i n Table 1 due t o neglec ted f r i c t i o n lo s ses and drawdown, and consequent ly thc-re w i l l be g r e a t e r methane exso lu t ion . Note t h a t t hese r e s u l t s apply t o t h e e a r l y s t ages of product ion; i . e . , be fo re a gas phase develops i n t h e r e s e r v o i r . Af t e r s epa ra t ion of t h e f l u i d i n t h e r e s e r v o i r s l i ppage may become non-negl igible .

w

i i i ) Sampler

This subsec t ion focuses on thermodynamic changes ( p r e s s u r e s , phase t r a n s i t i o n s , e t c . ) t ak ing p lace i n t h e f l u i d sample over t h e expected range o f temperatures .

Page 6: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-89-

Neglecting l eaks and thermal expansion e f f e c t s , t h e s a m p l e r can be regarded as a c losed , i sochor i c s y s t e m . On t h i s b a s i s , f l u i d v a r i a b l e s of i n t e r e s t were computed as func t ions of temperature as the f l u i d i s cooled from TB t o 25OC. The necessary i n i t i a l cond i t ions ( P B , TB, A B ) were taken from Table 1.

Gaseous methane and steam evolve i n the process . The corre- sponding gas s a t u r a t i o n va lues range from zero a t bottomhole temperatures t o less than 10% a t 2 5 O C , and increase ( i . e . , c o r r e l a t e , v i a t h e m u l t i p l e c o r r e l a t i o n l i nk ing depths , tempera- t u r e s and p res su res of geopressured f l u i d s ) with wel l depth (F igure 3 ) . Methane i s computed (F igure 4 ) t o c o n s t i t u t e i n excess of 98 mole % of the gas phase over the range of temperatures considered; however, our model probably underest imates the gas phase steam mole f r a c t i o n . The f r a c t i o n of t o t a l methane remaining i n s o l u t i o n c o r r e l a t e s nega t ive ly with wel l depth; r decreases a s cool ing proceeds, u n t i l a minimum, whose p o s i t i o n i s i n s e n s i t i v e t o wel l depth , i s reached near T = 50°C (Figure 4 ) . The minimum value of r ranges upward of 20% ind ica t ing t h a t cons iderable methane exso lu t ion w i l l t ake place upon depres su r i za t ion f o r s a m p l e t r a n s f e r , even a t near ambient temperatures .

A s expected, t h e sampler 's f l u i d pressure c o r r e l a t e s with wel l depth. Cooling e f f e c t i v e l y decreases the s a m p l e r ' s f l u i d p re s su res from bottomhole va lues of up t o about 1400 atm a t 2OO0C t o a maximum value of about 300 atm a t 2 5 O C , where c a l c u l a t i o n s were terminated (F igure 3 ) . These r e s u l t s imply t h a t formation of a methane hydra t e , t h a t t akes p lace a t p ressures i n excess of 4 6 3 atm a t 25OC (Kobayashi and Katz, 1 9 4 9 ) , w i l l not c o n s t i t u t e a problem i f t h e s a m p l e r i s cooled t o t h a t temperature . However, t h e p o s s i b i l i t y of methane hydra te for- mation i n and nea r t r a n s f e r va lves e x i s t s because of poss ib l e l o c a l overcool ing due t o dep res su r i za t ion , i f t r a n s f e r i s attempted a t near ambient temperatures . This problem should be e a s i l y c o n t r o l l a b l e by use of l o c a l hea t ing ( e . g . , e l e c t r i c wires) o f t h e a f f e c t e d zone.

i v > D i f f e r e n t i a l P res su re

In t h i s s e c t i o n we cons ider t h e d i f f e r e n t i a l p ressure on the s a m p l e r , which i s def ined as

P = P (sampler f l u i d ) - P (surrounding f l u i d ) .

Page 7: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

- 90-

A s shown above, t h e i n t e r n a l p re s su re of t h e sampler i s c o n t r o l l e d by t h e temperature, sample volume and composition being cons t an t . On t h e o t h e r hand, t h e wellbore f l u i d p re s su re i s mainly c o n t r o l l e d by t h e h y d r o s t a t i c head. The t y p i c a l t i m e taken t o b r ing t h e sampler back t o t h e su r face ( a few hours ) cons iderably exceeds t h e thermal e q u i l i b r a t i o n t i m e between t h e f l u i d contained i n t h e m e t a l l i c sampler and t h e surrounding f l u i d . Thus, i n t h e journey t o t h e su r face t h e f l u i d sample temperature follows t h e temperature p r o f i l e of t h e wel l . Therefore , t h e i n t e r n a l and e x t e r n a l p re s su res along t h e wellbore must be compared a t t h e wellbore temperature.

Assuming, f o r t h e sake of t h e argument, approximately l i n e a r p r o f i l e s f o r P and T, t h e wellbore p re s su re a t a given depth i s p ropor t iona l t o t h e corresponding temperature. This l i n e a r r e l a t i o n s h i p , i f superimposed on t h e P-T diagrams of F igures 3 or 7 , would appear as s t r a i g h t l i n e s (one f o r each well depth) running between (Pg, TB) and (Pw, Tw), t h e p o i n t s corresponding t o bottomhole and wellhead cond i t ions r e s p e c t i v e l y . For given bottomhole cond i t ions t h e s e s t r a i g h t l i n e s would p ivot around (PB, TB) i f P, or Tw are v a r i e d . head. t h e s t r a i g h t l i n e s r ep resen t ing t h e wellbore f l u i d p re s su re i n t h e P-T diagram. The s lope decreases wi th decreas ing va lues of T,. A t a given temperature t h e d i f f e r e n c e between t h e curve r ep resen t ing t h e f l u i d sample p res su re and t h e s t r a i g h t l i n e r ep resen t ing t h e wellbore f l u i d p re s su re f o r each well depth i s AP, t h e d i f f e r e n t i a l p ressure . For T, s u f f i c i e n t l y l a r g e , t h e s t r a i g h t l i n e l i e s below t h e f l u i d sample p re s su re , and AP i s p o s i t i v e . But decreas ing T, causes the s t r a i g h t l i n e t o p ivot around (PB, TB) towards h igh pressures, and e v e n t u a l l y AP becomes negat ive i n t h e wellbore. I n a c t u a l w e l l s t h e r e l a t i o n s h i p between wellbore f l u i d and temperature g e n e r a l l y shows some cu rva tu re . But t h e argument made above s t i l l a p p l i e s q u a l i t a t i v e l y . Thus, i n "hot" ("cold") w e l l s , AP t ends t o be p o s i t i v e (nega t ive ) .

As d i scussed , P, i s determined mainly by t h e h y d r o s t a t i c Therefore T, i s t h e main v a r i a b l e c o n t r o l l i n g t h e s lope of

A t wellhead, t h e sampler i s enclosed i n t h e l u b r i c a t o r . The f l u i d i n t h e l u b r i c a t o r i s i s o l a t e d from t h e wellbore f l u i d by means of va lves . In t h i s cond i t ion t h e f l u i d i n t h e l u b r i c a t o r is a t cons tan t volume and composition, n e g l e c t i n g l e a k s and thermal expansion. Thus, t h e l u b r i c a t o r f l u i d p re s su re i s c o n t r o l l e d by t h e temperature, given t h e i n i t i a 1 , v a l u e s of t h e composition A,, pressure P, and temperature Tw.

Using A,, P,, and T, from Table 1 as i n i t i a l cond i t ions , I computed temperature dependent l u b r i c a t o r f l u i d q u a n t i t i e s from t h e "equation of s t a t e " , a t cons tan t molar volume v and composition A , f o r both well depths cons idered . Two curves r e s u l t e d f o r each q u a n t i t y (F igu res 5 through 7 ) because f o r each w e l l , two d i f f e r e n t wellhead cond i t ions ( i . e . , A,, P,, T,) were considered. R e s u l t s c l o s e l y resemble those obtained f o r t he sampler.

Page 8: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-91 -

I n Figure 7 t h e f l u i d sample p re s su res a r e compared with t h e p re s su res of t h e surrounding f l u i d i n t h e l u b r i c a t o r a t t h e common equ i l ib r ium tempera tures . This F igure i n d i c a t e s t h a t i n t h e l u b r i c a t o r AP may be p o s i t i v e or negat ive . This comparison i s v a l i d f o r cases i n which the wellhead parameters dur ing sampling a r e comparable t o t h e wellhead parameters of f a s t flowing w e l l s , as def ined above. Negative va lues of AP are favored when (TB - Tw) t e n s of degrees C .

-several

These r e s u l t s a r e u s e f u l t o a s s e s s t h e performance of c e r t a i n samplers i n which t h e va lves are kept c losed by t h e combined p res su res of a sp r ing and of t h e i n t e r n a l ( o r e x t e r n a l ) f l u i d . Since t h e p re s su re exe r t ed by t h e s p r i n g s i s n e g l i g i b l e with r e spec t t o t h e f l u i d p re s su res involved, t h e s e samplers w i l l l e ak when AP i s nega t ive ( p o s i t i v e ) .

v ) Sampler Recovery

High (up t o about 840 atm) i n t e r n a l pressures are expected f o r t h e l u b r i c a t o r a t s t eady s ta te wellhead temperatures. Even h igher i n t e r n a l p re s su res , up t o e s s e n t i a l l y PB, are a l s o ind ica t ed f o r t h e sampler. These high p res su res a r e accompanied by high tempera- t u r e s i n a s a l i n e ambient which may inc lude s u l f u r (and o t h e r ) compounds, r e s u l t i n g i n e s p e c i a l l y favorable cond i t ions f o r micro- c rack development t h a t may r e s u l t i n c a t a s t r o p h i c m a t e r i a l f a i l u r e s . Rot, high p res su re l eaks through j o i n t s and va lves c o n s t i t u t e another unpleasant p o s s i b i l i t y . These circumstances bear not only on t h e m a t e r i a l a s p e c t s of sampling geopressued f l u i d s , but a l s o on t h e r i s k l e v e l faced by t h e crew i n charge of sampler recovery.

A simple procedure, which would s i g n i f i c a n t l y l e s s e n t h e m a t e r i a l and personal r i s k s concomitant with sampler recovery, i s suggested by t h e r e s u l t s of t h i s s e c t i o n . 'Itiis procedure c o n s i s t s of two s t e p s . F i r s t , t h e l u b r i c a t o r i s i s o l a t e d from t h e f l u i d flow by c l o s i n g appropr i a t e v a l v e s , t o minimize thermal con tac t . Then the l u b r i c a t o r i s e x t e r n a l l y cooled down t o near ambient temperatures. The second s t e p would s u b s t a n t i a l l y decrease t h e i n t e r n a l pressures of both t h e l u b r i c a t o r and t h e sampler (F igure 7). Thermal shocks on the sampler would be minimized t h i s way. This procedure has the added advantage of minimizing t h e d i f f e r e n t i a l p ressure f e l t by t h e sampler wal ls . For example, i n t h e extreme cond i t ions r.orresponding t o t h e deep w e l l case AP may reach (F igure 7 ) a maximum va lue of 554 a t m , as compared t o 1400 a t m i f no cool ing were performed; t h e va lue of AP would be reduced t o e s s e n t i a l l y t h e i n t e r n a l sampler p re s su re of 310 atm, a t recovery, i f t h e l u b r i c a t o r were brought t o 25% befo re p re s su re r e l e a s e .

A s imple model f o r t h e "equation of s t a t e " of t h e H20 - CH4 system has been used t o p r e d i c t f l u i d behavior during sampling ope ra t ions of unexploited geopressured r e s e r v o i r s of t h e United S t a t e s Gulf Coast. The main r e su l t s are as follows.

Page 9: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-92-

The methane conten t of t h e f l u i d samples may vary widely, from about 1400 ppm t o about 14400 pm. The former f i g u r e corresponds t o hypo the t i ca l , h igh ly s a l i n e (250,000 ppm NaC1) samples from near t h e t o p of t h e geopressured zone; t h e l a t e r f i g u r e corresponds t o hypo the t i ca l , ve ry low s a l i n i t y samples from near t h e bottom of t h e geopressured zone. Sample methane conten t tends t o inc rease r ap id ly with inc reas ing bottomhole temperatures and p res su res , and t o decrease with inc reas ing s a l i n i t y .

When a geopressured w e l l i s i n i t i a l l y t e s t e d , t h e o v e r a l l ( l i q u i d and gas phases included) concent ra t ion of methane a t wellhead d i f f e r s n e g l i g i b l y from t h a t of t h e r e s e r v o i r f l u i d , i f l a r g e f lowra tes ( v e l o c i t i e s 2 100 m s - l ) occur . an approximate check on r e s u l t s obtained with samplers.

This provides

A t su r f ace temperatures (assumed t o range approximately from 25OC t o nea r ly 2OO0C), and before dep res su r i za t ion , t h e f l u i d samples c o n s i s t of a two-phase mixture ( l i q u i d and g a s ) , but gas s a t u r a t i o n s are s m a l l (5 10% by volume) and s i g n i f i c a n t f r a c t i o n s (2 20%) o f CH4 remain i n s o l u t i o n , i n d i c a t i n g cons iderable methane exso lu t ion upon depres su r i za t ion f o r sample t r a n s f e r . This informa- t i o n i s u se fu l i n planning procedures and hardware f o r f l u i d sample trans f e r .

Cooling r ap id ly decreases sample p re s su res , e .g . f rom bottomhole va lues of up t o about 1400 a t m a t 2OO0C t o a maximum value o f about 300 a t m a t 25OC. Therefore , formation of a methane hydra t e , t h a t t akes p lace a t p re s su res i n excess o f 463 a t m at 2 5 O C , i s not normally expected i n t h e sampler before t r a n s f e r . However, l o c a l overcool ing due t o d e p r e s s u r i z a t i o n concomitant with sample t r a n s f e r might cause methane hydra te formation i n and near t r a n s f e r va lves .

The d i f f e r e n t i a l p re s su res exer ted on the sampler may be p o s i t i v e o r nega t ive , depending on t h e wel lbore temperature p r o f i l e . Subs tan t i a l temperature g r a d i e n t s along t h e wel lbore (TB - Tw degrees C) favor s i t u a t i o n s where t h e e x t e r n a l f l u i d p re s su res exceed t h e i n t e r n a l pressure . This i n d i c a t e s t h a t samplers r e l y i n g on a combination of sp r ing and i n t e r n a l ( e x t e r n a l ) f l u i d pressure t o keep t h e va lve ( s ) c losed w i l l l e ak when used i n "cold", non-preheated (Ithot", preheated) we l l s .

s eve ra l t e n s of

F i n a l l y , a s i m p l e procedure t o reduce personal and m a t e r i a l r i s k s a s soc ia t ed with sampler recovery i s suggested. It c o n s i s t s of e x t e r n a l l y cool ing t h e c losed l u b r i c a t o r conta in ing t h e sampler t o near ambient temperatures . This would s u b s t a n t i a l l y decrease the i n t e r n a l pressures of both t h e l u b r i c a t o r and t h e sampler, and a l s o t h e d i f f e r e n t i a l p ressure exe r t ed on t h e sampler.

Page 10: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

- . . . . . . . . . . . . . . . . . . . .. . . . . . . .

-93-

ACKNOWLEDGMENTS

Th i s work w a s supported by t h e A s s i s t a n t Sec re t a ry €or Resource App l i ca t ions , Of f i ce of I n d u s t r i a l & U t i l i t y Appl ica t ions & Opera t ions , Div is ion of Geothermal Energy of t h e U.S. Department of Efiergy under Cont rac t No. W-7405-ENG-48. The au thor wishes t o acknowledge u s e f u l d i s c u s s i o n s wi th D r . C . M i l l e r of LBL.

REFERENCES

B r e l v i , S.W., and O'Connell, J.P., 1972, AIChE J., 18, 1239, "Corresponding S t a t e s C o r r e l a t i o n s f o r Liquid Compress ib i l i t y and P a r t i a l Molal Volumes of Gases a t I n f i n i t e Di lu t ion in Liquids."

Culberson , O.L., and McKetta, J. J., 1951, Petroleum Transac t ions AIME, 192, 223, "Phase E q u i l i b r i a in Hydrocarbon-Water Systems I11 - The S o l u b i l i t y of Methane in Water a t Pressures t o 10,000 ps ia . "

Dorfman, M.H., and F i s h e r , W.L., e d i t o r s , 1979. Proceedings of t h e Fourth United S t a t e s Gulf Coast Geopressured-Geothermal Werqy Conference: Research and Deve lopen t . Center f o r h e r q y S t u d i e s , t h e Un ive r s i ty of Texas a t Austin.

Haas, J . L . , 1978, USGS Open F i l e Report No. 78-1004 , "An Empirical Equation with Tables of Smoothed S o l u b i l i t e s of Methane in Water and Aqueous Sodium Chloride So lu t ions up t o 25 Weight Pe rcen t , 36OoC and 138 MPa."

Haberman, W.L., and Morton, R.K., 1953, David W. Taylor Model Basin Report 802.

I g l e s i a s , E.R., 1980. Samplhu Geopressured F lu ids : from Bottomhole t o Wellhead and Beyond. LBL-11310 Report.

Kobayas i , R. , and K a t z , D.L. , 1949 (March) , Trans. A I M E , T.P. 2579.

NOMENCLATURE Variables

fNaC-: Correction f a c t o r for CH4 s o l u b i l i t y in NaCl s o l u t i o n s n : mole number P: pressure

I= n / ( n L + n 2 ) :

S: volume f r a c t i o n corresponding t o t h e gas phase T :

L G 2 2

temper a t u r e

f r a c t i o n of t o t a l methane i n t he l i q u i d phase

Page 11: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

W

W

m

m

0

0

0

0

03

00

0

0

0

0

P

P

wl

cn

0

0

P

P

0

cn

0

0

0

0

4

4

0

0

F.

c-

" m

m

" h,

N

Q

W

4

c-

c-

UI

m

F.

0

N

P

c-

VI

0

P

0

0

w

cn

4

P

W

W

W

03

4

W

03

03

cn

4

N

N

0

W

-94-

m

0

0

0

P

c-

0

0

N

0

0

ro

0

0

P

ln

cn

cn

F

c-

0

N

W - 0

3

c-

m

P

m

c-

i-

P

W

W

03

P

\D

4

m

0

w

0

R

R 0 5- 0 f

Page 12: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-95-

NOMENCLATURE Var iab les (cont inued)

v : molar volume x: CH4 mole f r a c t i o n in t h e l i q u i d phase y : CH4 mole f r a c t i o n i n t h e gas phase z: w e l l depth

A: = (n2L + n2G)/[(n2L + n2G) + (nlL + n lG>I : mole f r a c t i o n of methane i n t h e system

SuDer- and sub-indexes

B: bottomhole cond i t ions G : gas phase L: l i q u i d phase W: wellhead cond i t ions

1: H 2 0 2 : CHb

Page 13: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-96-

-

- -

-

-

- -

-

7

TEMPERATURE ('f)

IOG

991

99.1

991

B9.1

99.1

98.1

1200

- BGC -

w D m rn W

0

a

a

400

0

-

I I I I I I J 5c I5C 25C

TEMPERATURE ('C)

Fig. 1. Solubi l i ty curve. for the Rz- sywtm. ( p p ) r t h m e concentration. are indicated. Ihe ohadd area represento. a p p r o x b t e l y . the range of pressure ad tarpsrsture covered by the fo ru t i cm fluid. of the Gulf mast i n the United States.

Moot - DEEP WELL uDOt --- SHALLOW WELL

1000 I + 4 - = l o o = m m W

600

400

ZOO

0

/

I I I 1 I I 50 100 150 200

TEMPERATURE (TI

Fig. 2. sa l in i ty e o m c t i o n f x t o r . me aolubilitiew of CII,, in I(S1 brine. may be estimated by the product of fwd1 times the oolubi l i ty of methane in pure water at the s m prewwure md tmmperature.

- DEEP WELL --- SHALLOW WELL

I I

I I I I

I I I 1 I I I ] 50 IO0 I50 2QO

TEMPERATURE ('C)

Fig. 4. Rution of t o t a l mthwne in solution ad gas phame r t h m e wle fraction rsspcawes t o a r p l e r cooling for tw r l l dopthw.

Fig. 3 Rewsure wnd (volImatric) 9.8 waturacion reapcase0 of the ompler'o f luid t o cooling for tw -11 depth#: 6000 P (-1 and 3600 P (-).

Page 14: Sampling Geopressured Fluids: Some Contributions from the ...€¦ · high (up to 1400 atm do000 psi) pressures, and moderately high (up to 20OoC) temperatures (e.g., Dorfman and

-97 -

I ' I I I I I I I

- DEEP WELL --- SHALLOW WELL - DEEP WELL --- SHALLOW WELL

.

I I I I 01 ' 50 I00 I5 I 206

TEMPERATURE ('C)

Pig. 5. Cas sa tu ra t ims vs. t ape racu re fo r the (closed) Lubricator. u s l w d v a l w s f o r the s t e d p s t a t e wel lhad r ape ra tu re . u e shoun fo r aach n l l depth.

hn curves, corresponding to c w different

DEEP WELL I

--- SHALLOW FELL I

- /

I f

f / /

I . I I 1 - 50 IO 0 15C xc

TEMPERATURE ('C) Fig. 6. Rcc im of t o t a l r t h m e in solution vs. t ape racu re

for the (closed) lubricator. to tm different u s m d values for the steady-mtate n1lh.d t s p r a t u r e . u s sham for each w e l l depth.

hn curves. corresponding

I I 1 I I

; - DEEP WELL

I I I I I 1 50 100 150 202

TEMPERATURE ('C) Fig. 7. Fluid pressure vs. t a p e r a t u r e fo r the (clomd)

lubricator. u s d r a l w s for the steady-state a l l h e d tRaperature. are shorp tor a u h r l l dapth. For c m p u i m n , the F-T CIPI.. comaapoading t o the srp lar f luid for each r l l &pth are also s h a a .

Ica curves. corraspondily to CUO different