s2p4 lret coe at pnu-hydrodynamics

Upload: sattar-al-jabair

Post on 14-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    1/73

    at Pusan National UniversityProf. Jeom Kee Paik

    Pusan National University

    Jung Kwan Seo and Jeom Kee Paik

    The Llo ds Re ister Educational Trust LRET

    Marine & Offshore Research Workshop

    16-18 February, 2010 at Engineering Auditorium, NUS

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    2/73

    LRET Marine & Offshore Research Workshop16-18 February 2010, The National University of Singapore

    LRET Research Centre of ExcellenceLRET Research Centre of Excellenceatat PusanPusan National UniversityNational University

    Prof.Prof. JeomJeom KeeKee Paik, DirectorPaik, Director

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    3/73

    --

    PartPart 11:: PlenaryPlenary byby ProfProf.. JJ..KK.. PaikPaik (Director)(Director)

    .. .. ..

    PartPart 33:: StructuresStructures 11 byby DD..KK.. KimKim (Graduate(Graduate Student)Student)

    PartPart 44:: StructuresStructures 22 byby JJ..MM.. SohnSohn (Graduate(Graduate Student)Student)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    4/73

    arar verv ewverv ew

    StaffStaff LRETLRET ResearchResearch CentreCentre atat PNUPNU

    BackgroundBackground NonlinearNonlinear StructuralStructural MechanicsMechanics

    andand DesignDesign associatedassociated withwith LimitLimit StatesStates andand

    ss asease e o se o s

    OnOn-- oinoin ResearchResearch To icsTo ics

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    5/73

    aa esearc en re o xce ence,esearc en re o xce ence,

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    6/73

    ac esac es esearc en re o xce ence,esearc en re o xce ence,No. Equipment Name Specification Remark

    1 Universal Test Machine (UTM) 1,000kN

    , , .

    3Dynamic loading actuator

    500kN, Stroke 500mm, Max. speed 0.2m/s

    4 Impact loading actuator 1,000kN, Stroke 1,000mm, Max. speed 20m/s

    5 2,000kN, Stroke 500mm-

    6 5,000kN, Stroke 500mm

    7-192C ~ 200C,

    Max. model size 400 400 600mm (inside)

    8

    Low temperature chamber-170C ~ 100C,

    .

    9 High temperature chamber 20C ~ 700C,Max. model size 1000mm 2000mm 2000mm (inside)

    9 Cannon type, Max. speed 30m/s

    Dropped object

    10 Free fall type, Height 4.5m

    11 ANSYS Nonlinear finite element method (quasi-static)

    12 LS-DYNA Nonlinear finite element method (Dynamic/impact)

    14 MAESTRO Robust ship structural design

    15 ALPS Intelligent super-size finite element method

    16 Kameleon FireEx (KFX) CFD code for fire analysis

    17 FLACS CFD code for gas dispersion and explosion analysis

    18 USFOS Nonlinear structural consequence analysis under fire

    19 NEPTUNE Qualitative risk calculations

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    7/73

    ac grounac groun on near ruc ura ec an cs an es gnon near ruc ura ec an cs an es gn

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    8/73

    ac grounac groun on near ruc ura ec an cs an es gnon near ruc ura ec an cs an es gn

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    9/73

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    10/73

    International Journal EditorshipInternational Journal Editorship

    International Journals Role

    Shi s and Offshore Structures Ta lor & Francis UK 32 a ers Editor-in-Chief

    ummary o c v es ur ngummary o c v es ur ng

    Structural Longevity, Tech Science Press, USA (4 papers) Editor-in-Chief

    Ocean Engineering, Computer Modeling in Engineering and Sciences, International Journal

    of Impact Engineering, Journal of Marine Science and Technology, International Journal ofMaritime Engineering, Journal of Engineering for the Maritime Environment, Institute of Associate EditorEditorial Board ,

    Book Chapters (ComputerBook Chapters (Computer--Based Ship Structural Design: Theory and Practice, SNAME)Based Ship Structural Design: Theory and Practice, SNAME)

    Chapter Title Author

    Jeom Kee Paik

    10 Deformation and Strength Criteria for Stiffened Panels under Impact Pressure

    12 Elastic Buckling of Plates

    13 Large Deflection Behaviour and Ultimate Strength of Plates

    International Conferences OrganizedInternational Conferences Organized

    15 Large Deflection Behaviour and Ultimate Strength of Stiffened Panels

    16 Ultimate Strength of Ship Hulls

    n erna ona on erences o e

    International Conference on Computational and Experimental Engineering and Sciences(ICCES), 28 March -1 April 2010, Las Vegas, USA

    Paper presentations, Keynotespeaker Symposium organizer

    International Conference on Ocean, Offshore, and Arctic Engineering (OMAE), 6-7 June2010 Shan hai China

    Paper presentations, Keynotes eaker S m osium or anizer

    International Conference on Computational and Experimental Engineering and Sciences

    (ICCES), Special Symposium on Meshless and Other Novel Computational Methods, 17-21 August 2010, Busan, Korea

    Paper presentations, Keynotespeaker, Conference organizer

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    11/73

    --

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    12/73

    esearc op csesearc op cs11.. MechanicalMechanical PropertiesProperties ofof VariousVarious MaterialsMaterials inin BothBoth ColdCold andand

    ElevatedElevated TemperaturesTemperatures

    22.. NonlinearNonlinear FiniteFinite ElementElement AnalysisAnalysis

    3. Tank Sloshing Impact Design of Membrane-Type LNG Carriers

    4. Ice Class Ship Structural Design

    55.. FireFire RiskRisk AssessmentAssessment andand ManagementManagement ofof OffshoreOffshore InstallationsInstallations

    66.. GasGas ExplosionExplosion AssessmentAssessment andand ManagementManagement ofof OffshoreOffshore InstallationsInstallations

    .. rogress verogress ve a urea ure na ys sna ys s oror nt rent re pp tructurestructures

    88.. SandwichSandwich PlatePlate SystemSystem (SPS)(SPS) DesignDesign

    .. ua yua y ssurancessurance oo oo -- orm ngorm ng rocessrocess oo reeree-- mens ona ymens ona y

    CurvedCurved MetalMetal PlatesPlates usingusing ChangeableChangeable DieDie SystemSystem

    ..

    1111..

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    13/73

    1. Mechanical Pro erties1. Mechanical Pro erties

    of Various Materials in Both Coldof Various Materials in Both Cold

    and Elevated Tem eraturesand Elevated Tem eratures

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    14/73

    Mild / high tensile steel (with different grades), aluminum alloy, stainless steel,

    foam, elastomer

    Temperatures, , ,

    Quasistatic, dynamic / impact

    rate

    Database

    Mechanical properties (elastic modulus, yield stress, ultimate tensile stress,

    , ,

    Minimum Requirements

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    15/73

    Longitudinal edge

    edge

    Longitu

    Longitudinal edge

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    16/73

    Nonlinear FEA

    Extreme loads

    Large deformation / small strain-

    Accidental loads

    Large deformation / large strain-,

    Plasticity

    Fracture

    Plasticity

    Modeling Techniques Modeling Techniques

    Extent of anal sis Mesh size

    Mesh size

    Material model

    Initial imperfections

    True stresstrue strain relation

    Dynamic yield stress

    Dynamic fracture strain

    Boundary condition

    Loading condition

    Dynamic / impact load profile

    Applied Examples and Verifications

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    17/73

    1400

    160016C

    Abramowicz-Jones formula: 372.7kNTest: 404.5kN

    Mean crushing strength (Pmean)

    1000

    1200

    kN)

    FEA: 383.6kN

    600

    800

    For

    ce Test

    First fracture

    0

    200

    0 50 100 150 200 250 300 350 400

    Indentation(mm)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    18/73

    3. Tank Sloshing Impact Design3. Tank Sloshing Impact Design

    yz

    yz

    S mmetric conditionS mmetric condition

    xx Ux=0, Roty=0, Rotz=0

    Uy=0, Rotx=0, Rotz=0

    Ux=0, Roty=0, Rotz=0

    Uy=0, Rotx=0, Rotz=0

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    19/73

    an os ng es gn

    Design Loads Structural Failure Analysis

    Fracture of corrugated membrane

    Fracture of insulation system (foam)

    Modeling

    Extent of analysisSloshing

    Frequency

    Sloshing Scenarios

    Tank filling level

    Duration of tank motion

    Mesh size (corrugation, foam)

    True stresstrue strain relation in cryogeniccondition

    Dynamic yield stress

    Rolling angle

    Sea Dynamic fracture strain

    Mastic

    Sloshing load profile

    mu a ons

    SloshingLoad Characteristics

    Trials

    os ng oa pro e w t t me

    Peak pressure

    Pressure impulseFirstFracture Based Structural

    Design Curve

    Design Sloshing Loads

    Probabilistic exceedance curve

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    20/73

    4. Ice Class Ship Structural Design4. Ice Class Ship Structural Design

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    21/73

    Initial scantling

    Internal Mechanics

    Initial scantling

    Initial scantling

    Internal Mechanics

    External mechanics

    Initial kinetic energy (Ei)

    Energy absorption of both ship and iceberg

    Collision Scenarios

    Iceberg size

    External mechanics

    Initial kinetic energy (Ei)

    Energy absorption of both ship and iceberg

    Collision Scenarios

    Iceberg size

    Iceberg draft

    Iceberg material (age)

    Ship type and size

    Ship draft

    Iceberg draft

    Iceberg material (age)

    Ship type and size

    Ship draft

    Collision location

    Collision angle

    Collision speed

    Collision location

    Collision angle

    Collision speed

    Structural Crashworthiness Analysis

    Reaction force indendation relation for

    iceber

    Structural Crashworthiness Analysis

    Reaction force indendation relation for

    shi structuresAA BB

    Structural Crashworthiness Analysis

    Reaction force indendation relation for

    iceber

    Structural Crashworthiness Analysis

    Reaction force indendation relation for

    shi structuresAA BB Absorbed energy ( ) Absorbed energy ( )

    E E + ENo

    Eas Eai Absorbed energy ( ) Absorbed energy ( )

    E E + ENo

    Eas Eai

    as a

    stop

    Yes

    as a

    stop

    Yes

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    22/73

    Modeling for Nonlinear FEA of Ship

    Mesh t e and size steel

    Engineering stressengineering strain relation

    True stresstrue strain relation

    Knockdown factor for true stresstrue strain relation

    Fracture strain used for nonlinear FEA

    Dynamic yield strain (strainrate effect)

    Dynamic fracture strain (strainrate effect)

    Extended true stresstrue strain relation

    Modeling for Nonlinear FEA of Iceberg

    B

    Mes type an s ze ( ce erg

    Engineering stressengineering strain relation (test database)

    True stresstrue strain relation (test database)

    ec o s ra nra e on ynam c y e s ress es a a ase

    Effect of strainrate on fracture strain (test database)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    23/73

    1600

    Abramowicz-Jones formula: 400.6kN

    -40C Mean crushing strength (Pmean

    )

    1000

    1200

    N)

    Test: 473.8kN

    FEA: 430.7kN

    600

    800

    Forc

    e(k FEA

    TestFirst fracture

    0

    200

    0 50 100 150 200 250 300 350 400

    Indentation(mm)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    24/73

    5. Quantitative Fire Risk Assessment and5. Quantitative Fire Risk Assessment and

    ManagementManagement

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    25/73

    uan a ve re s ssessmen an anagemen

    Fire Frequency

    = Leak frequency x ignition probability

    Fire Scenarios

    Wind direction (X1)

    Wind speed (X2) Leak rate X

    Leak duration (X4)

    Leak direction (X5)

    Leak position X (X6)

    Leak osition Y X

    Nonlinear Structural Consequence Analysis

    Leak position Z (X8)

    Risk = Fire frequency x consequence

    CFD simulations

    Fire Load Characteristics

    Fire load profile with time

    RiskALARP stop

    Yes

    No

    empera ure

    Heat doseRisk Control Option Design

    Fire wall

    Passive fire protection (PFP)

    Probabilistic exceedance curve Deluge / water spray

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    26/73

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    27/73

    6. Quantitative Gas Explosion Risk Assessment6. Quantitative Gas Explosion Risk Assessment

    and Managementand Management

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    28/73

    xp os on requency

    = Leak frequency x ignition probabilityExplosion Scenarios

    Wind direction (X1)

    Wind speed (X2)

    Leak rate (X3)

    Leak duration (X4)

    Leak direction (X5)

    Leak position X (X6)

    Leak position Y (X7)

    Gas Explosion Load Characteristics

    Explosion load profile with time

    Leak position Z (X8) ast pressure

    Pressure impulse

    Gas Dispersion AnalysisDesign Gas Explosion Loads

    Gas Cloud Characteristics

    Gas volume (Y1)

    Gas concentration (Y2)

    Nonlinear Structural Consequence Analysis

    =

    Gas cloud position X (Y3)

    Gas cloud position Y (Y4)

    Gas cloud position Z (Y5)

    Gas cloud size X (Y6)

    RiskALARP stopNo

    Gas c ou s ze Y Y7 Gas cloud size Z (Y

    8)

    Risk Control Option Design Blast wall

    Yes

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    29/73

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    30/73

    Coarse meshglobal NLFEA 0.6

    0.7

    0.2

    0.3

    0.4

    0.5

    PR

    ESSURE

    [N/mm2]

    Medium mesh

    0 20 40 60 80 1000

    0.1

    DISPLACEMENT [mm]

    Experiment Analysis

    Laboratory experiments wit h

    subassemblymodel

    Out-of modelcomponent checkusing fine mesh

    NLFEA

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    31/73

    PressurePressure

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    32/73

    of Entire Ship Structuresof Entire Ship Structures

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    33/73

    rogress ve a ure na ys s or n re p ruc ures

    New Algorithm

    Intelligent Supersize Finite Element

    Method (ISFEM)

    Experiment

    Intelligent Supersize Finite ElementsModel Tests

    Beancolumn element

    Plate element

    3dimensional algorithm

    Stiffened panels (stiffened box) Hulls (box girders)

    Large scale ship sturcture models uc ng an co apse

    Plasticity

    Crushing / folding

    Strainrate sensitivity

    Finite Element

    Method

    Applied Examples and Validations

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    34/73

    Under vertical bending

    rogress ve o apse na ys s o p u srogress ve o apse na ys s o p u s

    t(GNm)

    5.0

    10.0

    15.0

    Muhog_CSR

    =11.049GNm

    Muhog_FEA(CSR)

    =9.654GNm

    Muhog_HULL(Pre-CSR)

    =8.557GNm

    Muhog_HULL(CSR

    =9.465GNm)

    -

    14

    16 CSR design

    seline(m)

    Hogging

    Net

    Ve

    rticalbendingmomen

    -5.0

    0.0Hog

    Sag

    Musag_HULL(Pre-CSR)= 7.694GNm

    Musag_req.7.686GNm

    Muhog_req.=5.768GNm

    -5.0

    0.0

    Musag_HULL(Pre-CSR)= -

    =-

    .

    8

    10

    12

    to

    neutralaxisfromb

    50%

    As-built

    As-built

    -4.0 -2.0 0.0 2.0 4.0

    -15.0

    -10.0

    Musag_CSR

    =-8.540GNm

    usag_HULL(CSR= -8.329GNm

    Musag_FEA(CSR)

    = 8.107GNm

    Nonlinear FEA (ANSYS)

    : CSR design deducting 50% corrosion additions

    ALPS/HULL

    : CSR design deducting 50% corrosion additions

    : Pre-CSR design deducting 100% corrosion additions

    - -

    -15.0

    -10.0

    =-

    M )

    )= -

    Nonlinear FEA (ANSYS):

    - CSR design deducting 50% corrosion additions

    ALPS/HULL:

    - CSR design deducting 50% corrosion additions

    -Pre --CSR design deducting 100% corrosion additions

    -40 0.5 1.0 1.5 2.0 2.5 3.0

    4

    6

    ULS

    Curvature10 (1/m)

    Height

    SaggingNet

    3333 Ultimate Strength (lll.1)

    Change of neutral axis posit ion

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    35/73

    Under combined hull girder actions

    rogress ve o apse na ys s o p u srogress ve o apse na ys s o p u s

    z

    MH

    Between Trans. frames

    yFH

    FV

    MV

    xMT

    p

    3434 Ultimate Strength (lll.1)

    e ween rans. u ea s

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    36/73

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    37/73

    SPS Design

    Governing Differential

    Equations

    Model Test

    Tensile test of material

    Modeling Techniques

    Mesh size

    na y ca e o on near xper men

    Buckling strength formula

    Ultimate strength formula

    Buckling strength test

    Ultimate strength test

    Material modeling

    Boundary condition Loading condition

    Comparison

    Guidance and Rule Requirements

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    38/73

    . ua ty ssurance o o. ua ty ssurance o o -- orm ng rocessorm ng rocess

    of 3D Curved Metal Platesof 3D Curved Metal Platesus ng angea e e ystemus ng angea e e ystem

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    39/73

    Quality Assurance of Cold forming Process

    of 3D Curved Metal Plates using Changeable Die System

    New Algorithm

    Springback calculation algorithm

    Experiments

    Changeable die system developmentusing nonlinear structural mechanics (Prototype)

    Pressing punch strength tests

    Cold-forming tests

    Analysis of Spring-back Behavior(Nonlinear FEA)

    Material tests (plates)

    Material properties

    Pressing punch geometry

    Applied Examples and

    Validations

    CAM System

    Quality Assurance Recommendations

    Pressing punch control

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    40/73

    10. Condition Assessment of A ed Structures10. Condition Assessment of A ed Structures

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    41/73

    Condition Assessment of Aged Structures

    Timevariant Fatigue Cracking ModelTimevariant Fatigue Cracking ModelTimevariant Corrosion ModelTimevariant Corrosion Model

    Ultimate Strength Model Experiment

    (Residual Strength)

    Analytical model

    Numerical model

    Buckling

    Plastic collapse

    Reliabilitybased Assessmentand Management

    Guidance and RecommendationsGuidance and Recommendations

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    42/73

    Fire and ExplosionFire and Explosion

    LRET Research Centre of Excellence

    at Pusan National University

    HydrodynamicsLRET Marine & Offshore Research WorkshopLRET Marine & Offshore Research Workshop

    1616--18 February, 201018 February, 2010

    Jung KwanJung Kwan SeoSeo andand JeomJeom KeeKee PaikPaik

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    43/73

    z Validation and verification of CFD Simulations

    z Fire Load Characteristics

    z Thermal Diffusion Analysis

    Overview

    I.I. BackgroundsBackgrounds

    II.II. Aims and ScopeAims and Scope

    III.III. Fire EngineeringFire Engineering

    IV.IV. Explosion EngineeringExplosion Engineering

    V.V. OnOn--going Studiesgoing Studies

    z CFD Simulations

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    44/73

    BackgroundsBackgrounds

    {{ Piper alpha(1998),Piper alpha(1998), EnchovaEnchova central offshore(1998)central offshore(1998)

    {{ Fire and explosion caused by gas and oil leakageFire and explosion caused by gas and oil leakage

    {{ API(AmericanAPI(American Petroleum Institute), DOE (Department of Energy),Petroleum Institute), DOE (Department of Energy),

    NPD(NorwegianNPD(Norwegian PetroleumPetroleum DirektorareDirektorare), Lloyds rules), Lloyds rules

    Piper alpha accidentPiper alpha accident EnchovaEnchova central offshore accidentcentral offshore accident

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    45/73

    Aims and ScopeAims and Scope

    zz DevelopingDeveloping Quantitative Fire & Explosion Risk AssessmentsQuantitative Fire & Explosion Risk Assessments

    procedureprocedure

    zz Establishing a procedure for defining design actions based onEstablishing a procedure for defining design actions based on

    CFD simulations forCFD simulations for FPSOsFPSOs

    zz Developing deterministic and probabilistic methodologies forDeveloping deterministic and probabilistic methodologies for

    the analysis of fire and gas explosion actions using modern CFDthe analysis of fire and gas explosion actions using modern CFD

    codescodes

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    46/73

    Phase I: Fire EngineeringPhase I: Fire EngineeringCFD SimulationsCFD Simulations

    Validation and Verification of CFD Codes

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    47/73

    Difference

    Application

    areas

    Element

    Program

    All kind of fires

    Fire impact

    Mitigation

    Combustion

    Multiphase

    Heat transfer

    Radiation

    Combustion

    CFD Fire simulation toolMultipurpose simulation tool

    GridTetrahedra, Prism

    ANSYS-CFX Kameleon FireEx

    The Discrete Transfer modelThe Discrete Transfer model(DTM)(DTM)

    P1 modelP1 modelRadiationRadiation

    ConductivityConductivityAdiabatic, Temperature andAdiabatic, Temperature and

    Heat transfer coefficientHeat transfer coefficientWall heat transferWall heat transfer

    PorosityPorosityTetrahedraTetrahedraSub grid geometrySub grid geometry

    The Eddy Dissipation ConceptThe Eddy Dissipation Concept

    (EDC) model(EDC) model

    NoneNoneSootSoot

    Kameleon FireEx methodANSYS CFX methodModeling

    CFD SimulationsCFD Simulations

    ANSYS-CFX and Kameleon FireEx (KFX)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    48/73

    Temperaturesensor

    Propane gas (CHPropane gas (CH33CHCH22CHCH33) jet fire test) jet fire test

    [Source: HSE 1995][Source: HSE 1995]

    Nozzle

    Propane gas

    Fuel release rate: 0.33 kg/s

    A

    B

    C

    D

    Air condition: O2 (21%),N2 (79%)

    Thermally insulated plate

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    Nozzle

    Propane gas

    Fuel release rate: 0.33kg/s

    A

    B

    C

    D Opening(ventilation)

    Air condition: O2 (21%),N2 (79%)

    Thermally insulated plate

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    HSE Laboratory Test (Jet Fire)HSE Laboratory Test (Jet Fire)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    49/73

    Heat transfer conditions of the wallHeat transfer conditions of the wall

    0 2 4 6 8 10 12 14 16 18 20 22

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    0 2 4 6 8 10 12 14 16 18 20 22

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    2200

    Time (s)

    Temperatu

    re(K)

    AdiabaticWall heat transferwith heat transfercoefficient (30W/m2K)

    Wall heat transfer withambient temperature of281K

    A

    B

    C

    D

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    1.7m

    1.7m

    1.7m

    A

    B

    C

    D

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    1.7m

    1.7m

    1.7m

    A

    B

    C

    D

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    1.7m

    1.7m

    1.7m

    Nozzle Opening

    0.33Mass flow rate

    (kg/s)

    P1 modelRadiation

    ThermalenergyHeat transfer

    1.7Height (m)

    Experiment

    C-D (Height: 1.7m)

    CFD Simulations (1/3)CFD Simulations (1/3)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    50/73

    0 1 2 3 4

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    CFXExperimentKFX (Conduct 1e-6W/m2K)

    Height (m)

    Temperat

    ure

    (K)

    A-B

    Results of CFX versusResults of CFX versus KFXKFX

    CFD Simulations (2/3)CFD Simulations (2/3)

    0 1 2 3 4

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    Height (m)

    Temperature

    (K)

    CFXExperimentKFX (Conduct 1e-6W/m2K)

    C-D

    A

    B

    C

    D

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    1.7m

    1.7m

    1.7m

    A

    B

    C

    D

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    1.7m

    1.7m

    1.7m

    A

    B

    C

    D

    9.80m

    2.00m

    2.50m

    3.54m

    3.91m

    1.7m

    1.7m

    1.7m

    Nozzle Opening

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    51/73

    The result of CFD simulationsThe result of CFD simulations

    ANSYS CFX (CFD) simulationANSYS CFX (CFD) simulation KameleonKameleon FireExFireEx simulationsimulation

    CFD Simulations (3/3)CFD Simulations (3/3)

    Kameleon FireEx tends to have more accuracy and less

    computing time than ANSYS CFX

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    52/73

    Phase II: Fire EngineeringPhase II: Fire EngineeringFire Load CharacteristicsFire Load Characteristics

    Concrete and steel tubular member

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    53/73

    Jet fire test with concrete tubular member

    Concrete

    Temperature(K)

    Temperature(K)

    Temperature(K)

    Time (s) Time (s) Time (s)

    Steel

    Temperature(K)

    Temperature(K)

    Temperature(K)

    Time (s) Time (s) Time (s)

    Jet fire test with steel tubular member

    Fire Load Characteristics (1/5)Fire Load Characteristics (1/5)

    Convection=

    +Radiation

    +Conduction

    Convection=+

    Radiation

    +Conduction

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    54/73

    Gas component: CH4: 100%, volume late: 20L/min

    CH4 10L/min CH4 15L/min CH4 20L/min

    C3 H8: 61.6%

    N2: 30.2%

    C4 H10: 8.2%

    CH4: 88.9%

    C2 H6: 8.9%

    C3 H8: 1.3%

    LPGLNG

    Working pressure: 4bar, volume rate: 20L/min

    CH4 100%Fuel fraction

    300.2Ambient temperature

    (K)

    8Leak diameter (mm)

    0.857Leak rate (g/sec)

    V mPV

    t RTt

    =

    Fire Load Characteristics (2/5)Fire Load Characteristics (2/5)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    55/73

    Fire Load Characteristics (3/5)Fire Load Characteristics (3/5)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    56/73

    12

    3

    5

    4 6

    7

    8

    12

    3

    5

    4 6

    7

    8

    Measurement points

    AABB BB CCCC

    200mm x 4200mm x 4

    FireFire

    directiondirection

    1140mm1140mm

    0 20 40 60 80 100

    200

    400

    600

    800

    1000

    1200

    1400

    Time(s)

    Temperatu

    re(K)

    Section A1Section A1 Test(Concrete)Test(Steel)

    Leak rate= 0.000857516kg/sec, Methane= 100%

    Fire Load Characteristics (4/5)Fire Load Characteristics (4/5)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    57/73

    Results at section A (average for 90~100s)

    A-5

    A-6

    A-7

    A-8

    A-1

    A-2

    A-3

    A-4

    0 300 600 900 1200 Temperature(K)

    CFD (KFX)CFD (CFX)Test(Concrete)Test(Steel outside)Test(Steel inside)

    CFDCFDTestTestTest

    12

    3

    5

    4 6

    7

    8

    12

    3

    5

    4 6

    7

    8

    Measurement points

    AABB BB CCCC

    200mm x 4200mm x 4

    FireFire

    directiondirection

    1140mm1140mm

    Fire Load Characteristics (5/5)Fire Load Characteristics (5/5)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    58/73

    Phase III: Explosion EngineeringPhase III: Explosion EngineeringThermal Diffusion CharacteristicsThermal Diffusion Characteristics

    To examine the effect of wind velocity and directionTo examine the effect of wind velocity and direction

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    59/73

    h l Diff i Ch i i (2 6)Th l Diff i Ch i i (2/6)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    60/73

    Heat source

    position

    Wind

    direction

    Wind speed

    (m/s)

    Case1 A Rear1.5

    2.0

    Case2 A Side1.5

    2.0

    Case3 A Front1.5

    2.0

    Case4 B Front

    1.5

    2.0

    Test CasesTest Cases

    B AB A

    Thermal Diffusion Characteristics (2/6)Thermal Diffusion Characteristics (2/6)

    Side

    Front

    Rear

    1 2 3

    Th l Diff i Ch t i ti (3/6)Th l Diff i Ch t i ti (3/6)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    61/73

    A-R1 A-R2

    1.5m/s 306.4 302.0

    2.0m/s 303.4 301.1

    SpeedSpeedPointsPoints

    Temperature(KTemperature(K) (at t= 771 ~ 800s)) (at t= 771 ~ 800s)

    A-R1

    A-R2

    0 200 400 600 800

    Time(s)

    296

    298

    300

    302

    304

    306

    308

    Temperature(K)

    Wind direction: Rear

    Wind speed: 1.5m/s

    A-R1

    A-R2

    0 200 400 600 800

    Time(s)

    296

    298

    300

    302

    304

    306

    308

    Temperature(K)

    Wind direction: Rear

    Wind speed: 2.0m/s

    A-R1

    A-R2

    Wind speed: 1.5m/s vs. 2.0m/sWind speed: 1.5m/s vs. 2.0m/s

    Thermal Diffusion Characteristics (3/6)Thermal Diffusion Characteristics (3/6)

    Th l Diff i Ch t i ti (4/6)Th l Diff i Ch t i ti (4/6)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    62/73

    0 100 200 300 400 500 600 700

    294

    314

    334

    354

    374

    394

    414

    434

    T

    emperature(K)

    Test(1.5m/s)

    Test(2.0m/s)

    A-S2

    A-S3

    A-S4

    CFX(1.5m/s)

    CFX(2.0m/s)

    A-S2

    A-S3

    A-S4

    A-S2

    A-S3

    A-S4

    A-S2

    A-S3

    A-S4

    1.5m/s1.5m/s

    2.0m/s2.0m/s

    Thermal diffusion characteristics (at t= 800s)Thermal diffusion characteristics (at t= 800s)

    Distance from the center of heat source(mm)

    Thermal Diffusion Characteristics (4/6)Thermal Diffusion Characteristics (4/6)

    Th l Diff i Ch t i ti (5/6)Thermal Diffusion Characteristics (5/6)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    63/73

    Thermal diffusion characteristics (at t= 800s)Thermal diffusion characteristics (at t= 800s)

    0 100 200 300 400 500 600 700 800

    294

    314

    334

    354

    374

    394

    T

    emperature(K)

    A-R2 A-R3 A-R4

    Test(1.5m/s)

    Test(2.0m/s)

    CFX(1.5m/s)

    CFX(2.0m/s)

    A-R2A-R3A-R4

    A-R2A-R3A-R4

    A-R2A-R3A-R4

    1.5m/s1.5m/s

    2.0m/s2.0m/sDistance from the center of heat source

    (mm)

    Thermal Diffusion Characteristics (5/6)Thermal Diffusion Characteristics (5/6)

    Thermal Diffusion Characteristics (6/6)Thermal Diffusion Characteristics (6/6)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    64/73

    Temperature distributionTemperature distribution Velocity distributionVelocity distribution

    {{ Wind direction: RearWind direction: Rear

    {{ Wind speed: 1.5m/sWind speed: 1.5m/s

    {{ Location of heat source: ALocation of heat source: A

    A-R2A-R3A-R4

    Thermal Diffusion Characteristics (6/6)Thermal Diffusion Characteristics (6/6)

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    65/73

    Phase IV: OnPhase IV: On--going Studiesgoing StudiesFPSOsFPSOs TopsideTopside

    Fire Load CharacteristicsFire Load Characteristics

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    66/73

    KFX simulation

    Wind direction:

    +Y (5m/s)

    y x

    z

    Fire Load CharacteristicsFire Load Characteristics

    Fire Load CharacteristicsFire Load Characteristics

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    67/73

    2525 FWDFWD

    2424

    2323

    2222

    Elevation view Plan view at elevation A

    Fire Load CharacteristicsFire Load Characteristics

    Temperature distribution of elevation A

    Total number of grids: 500,000, Leak rate: 48kg/sec

    0.1 (s)0.1 (s) 1.0 (s)1.0 (s) 5.0 (s)5.0 (s) 10.0 (s)10.0 (s)

    IP

    57m

    60m

    AIP

    64m

    Elevation B

    Elevation A

    Gas Dispersion StudiesGas Dispersion Studies

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    68/73

    Totally 50 dispersion simulations were carried out.

    The following parameters defined each leak scenario:

    - wind direction

    - wind speed

    - leak direction

    - leak rate- leak duration

    - leak position X

    - leak position Y

    - leak position Z

    Gas Dispersion StudiesGas Dispersion Studies

    Gas Dispersion StudiesGas Dispersion Studies

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    69/73

    Shape of the big gas cloud (Leak rate: 50kg/s)

    top viewfront view

    Gas Dispersion StudiesGas Dispersion Studies

    Gas Dispersion StudiesGas Dispersion Studies

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    70/73

    The model represents:

    - main structural members of all modules

    - bigger equipment items

    - main pipelines

    Geometry is supplemented by extra piping to achieve a

    realistic congestion.

    The FLACS model of the entire topside

    Presence of surrounding topside structures

    affects:

    - wind flow pattern

    - gas cloud build-up

    - magnitude of explosion loads

    Gas Dispersion StudiesGas Dispersion Studies

    Gas Cloud Characteristics StudiesGas Cloud Characteristics Studies

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    71/73

    Dispersion scenarios Cloud Position

    Many of the gas clouds build up in adjacent modules.

    Position of a gas cloud is determined mostly by the wind direction and to amuch smaller degree by leak direction.

    Gas Cloud Characteristics StudiesGas Cloud Characteristics Studies

    - Gas Volume, Gas Concentration

    - Gas Cloud Position (X, Y, Z)

    - Gas Cloud Size (X, Y, Z)

    Design Gas Explosion LoadsDesign Gas Explosion Loads

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    72/73

    Design Gas Explosion LoadsDesign Gas Explosion Loads

    Explosion load characteristics: peak over pressure (PMAX) versusduration (T+) based on CFD simulations.

    Nonlinear Structural Consequence AnalysisNonlinear Structural Consequence Analysis

  • 7/27/2019 S2P4 LRET CoE at PNU-Hydrodynamics

    73/73

    Structural response in case of fire

    Required PFP

    Mitigate Consequences (Nonlinear Structural Mechanics)

    FireFire

    Nonlinear Structural Consequence AnalysisNo l ea St uctu al Co seque ce alys s