s. n. “ cavities for super b-factory” 1 of 38 sasha novokhatski slac, stanford university...

38
1 of 38 S. N. “ Cavities for Super B-Factory” Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super B- factory

Upload: alicia-chase

Post on 16-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

1 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

Sasha NovokhatskiSLAC, Stanford

University

Accelerator Session April 20, 2005

Low R/Q Cavitiesfor Super B-

factory

Page 2: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

2 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Why Low R/Q Cavities for

Super B?

Because we need high currents to achieve super high luminosity

Page 3: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

3 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Low R/Q cavities are:

• To damp multi-bunch instability• To avoid single-bunch instability• To decrease HOM power

Page 4: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

4 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”How we can make low

R/Q?• By decreasing cavity gap

– in this case HOM power goes down – but surface fields go up and bring limit

very soon

• By increasing beam pipe radius– smaller R/Q -

- closer to cut-off frequency

Page 5: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

5 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Varying cavity gap length

cavity gap cavity gap

35.5 Ohm R/Q 24.3 Ohm

0.39 V/pC HOM loss factor 0.24 V/pC

12.77 MV/m Max surface electric field* 31.12 MV/m

30.16 A/m Max surface magnetic field* 58.78 A/m

*for 1 MeV energy gain, f=952 MHz, bore radius 70 mm

Page 6: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

6 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Varying beam pipe radius

“Wakefield” calculations

Page 7: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

7 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Wakefield spectrum

“Wakefield” calculations

Page 8: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

8 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Electric Field Distribution

Rb=110mm

Rb=90mm

Rb=70mm

“SUPERFISH” calculations

Page 9: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

9 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Surface fields distribution**1 MeV energy gain. Electric field – Green. Magnetic field - pink

“SUPERFISH” calculations

Page 10: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

10 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Cavity parameters

Page 11: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

11 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”R/Q and HOM Power

Page 12: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

12 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Transient time factor and stored

Energy

Page 13: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

13 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Maximum surface fields

magnetic

electric

Page 14: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

14 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

Periodic Structure. Main mode coupling

Distance between cavities 787.5 mm (5)

Zero mode

mode

Coupling: 0.55/952=5.8E-04

TM01

Cut-off

1.04276 GHz

Rb=110mm

Page 15: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

15 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Trapped TM11 modes

Zero mode

mode

TM11

Cut-off

1.6621 GHz

“MAFIA” calculations

Page 16: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

16 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Trapped TE11 modes

Zero mode

mode

TE11

Cut-off

798.55 MHz

“MAFIA” calculations

Page 17: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

17 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Checking single–bunch

stabilityWe need to know:

• Wake potentials

• Number of cavities

• Total voltage

• Momentum compaction

Page 18: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

18 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Cavity wake Potential

Bunch shortening ?

Page 19: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

19 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Yes, cavity wake produces shorter

bunches

Bunch Current 3.300 mA Bunch Charge 24.21 nC Zero bunchlength 1.80 mm Moment. compact. 9.400E-04 Ring Energy 3500.0 MeV Energy Spread 2.400 MeV SR Energy loss 0.970 MeV per turn RF Voltage: 52.50 MV Number of cavities 42 Phase Angle 1.059 degree (0.926 mm) Harmonic Number 6984 Rev. frequency 136.2707 kHz Synchrotron freq. 17.045 kHz (7.995 Turns) Damping turns 4100.000

1.8 mm 1.75 mm

1.25MV/cav

Page 20: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

20 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Resistive-Wall Wake (bunch lengthening)

PowerSS: 39.44 MW Al: 7.88 MWCu: 6.06 MW

SR: 22.3 MW

Page 21: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

21 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”IP wake (large additional

part)PowerIP HOMs: 4.0 MW

Page 22: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

22 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”All wakes included

Bunch Current 3.300 mA Bunch Charge 24.21 nC Zero bunchlength 1.80 mm Moment. compact. 9.400E-04 Ring Energy 3500.0 MeV Energy Spread 2.400 MeV SR Energy loss 0.970 MeV per turn RF Voltage: 52.50 MV Number of cavities 42 Phase Angle 1.059 degree (0.926 mm) Harmonic Number 6984 Rev. frequency 136.2707 kHz Synchrotron freq. 17.045 kHz (7.995 Turns) Damping turns 4100.000

1.83 mm

Page 23: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

23 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Bunch length in the ring

IP

cavities

1

3 2

Page 24: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

24 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

IP

1.83 mm

Page 25: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

25 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

2.00 mm

Before cavities

Page 26: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

26 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

2.00 mm

after cavities

Page 27: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

27 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

IP

1.83 mm

IP

Cavities

Page 28: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

28 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”More Voltage

• 1.5 MV/cavity * 42 = 63 MV

• Momentum compaction goes to 1.128E-03 to have the same bunchlength

Page 29: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

29 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

IP

1.77 mm

Page 30: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

30 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

2.02 mm

Before cavities

Page 31: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

31 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

2.02 mm

after cavities

Page 32: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

32 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

IP

1.77 mm

IP

Cavities

Page 33: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

33 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”More focusing

• We can increase momentum compaction more to bring bunch length to 1.8mm at IP

Page 34: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

34 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

IP

1.816 mm

Page 35: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

35 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

2.085 mm

Before cavities

Page 36: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

36 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

2.085 mm

after cavities

Page 37: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

37 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

IP

1.816 mm

IP

Cavities

Page 38: S. N. “ Cavities for Super B-Factory” 1 of 38 Sasha Novokhatski SLAC, Stanford University Accelerator Session April 20, 2005 Low R/Q Cavities for Super

38 of 38

S.

N.

“ C

avit

ies

for

Su

per

B-

Fact

ory

”Conclusions

• Low R/Q cavities are needed for super high luminosity factories. These cavities are superconducting cavities.

• Low R/Q is achieved by using large beam pipe. Cut-off frequency is very closer to the working frequency.

• Trapped transverse modes must be damped using external loads.

• High voltage and correspondent momentum compaction give additional bunch shortening at interaction point.