s. f. son- energetic materials combustion laboratory (emcl)

8
S. F. Son School of Mechanical Engineering [email protected] http://web.ics.purdue.edu/~sson/ Energetic Materials Combustion Laboratory (EMCL)

Upload: alarmak

Post on 06-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 1/8

S. F. SonSchool of Mechanical

Engineering

[email protected]

http://web.ics.purdue.edu/~sson/

Energetic Materials

Combustion Laboratory (EMCL)

Page 2: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 2/8

Propellant Combustion• Research topics of interest:

 – Improved catalysts

 – Air breathing fuels

 – Microscale thrusters &actuators

 – Combustion instabilities

 – Erosive burning – Advanced propellants

• Example: Microthrusters – Current microthrusters do not

focus on propellant issues

 – High nitrogen materials canburn in small thrusters andare easily ignited at lowpressures

 – A. N. Ali, S. F. Son, M. A. Hiskey, D. L. Naud, “Novel HighNitrogen Propellant use in Solid Fuel Micropropulsion,” Journal of Propulsion and Power, 20(1), pp. 120-126 (2004).

Recent Publications:• B. C. Tappan, Ali, A. N., Son, S. F. and T. B. Brill, “Decomposition and

ignition of the high-nitrogen compound triaminoguanidiniumazotetrazolate (TAGzT),” Propellants, Explosives, Pyrotechnics v.31,no.3, p.163-168, 2006.

• A. N. Ali, M. M. Sandstrom, D. M. Oschwald, K. M. Moore, and S. F.Son, “Laser Ignition of DAAF, DHT, and DAATO3.5,” Propellants,

Explosives, and Pyrotechnics 30, No. 5, pp. 351-355 (2005).• D. E. Chavez, B. C. Tappan, M. A. Hiskey, S. F. Son, H. Harry, D.

Montoya, S. Hagelberg, “New high-nitrogen materials based onnitroguanyl-tetrazines: Explosive properties, thermal decompositionand combustion studies,” Propellants, Explosives, and Pyrotechnics,30(6), pp. 412-417 (2005).

• A. N. Ali, S. F. Son, B. W. Asay, and R. K. Sander, “Importance of thegas phase role to the prediction of energetic material behavior: Anexperimental study,” Journal of Applied Physics, 97(6), pp. 1-7(2005).

• A.N. Ali, S.F. Son, M.Q. Brewster, M.E. Decroix, and B.W. Asay, “HighIrradiance Laser Ignition of Explosives,” Combustion Science andTechnology, 175(8), pp. 1551-1571 (2003).

 

PropellantIgniter & Simple Nozzle

Page 3: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 3/8

Composite Energetic Materials

• Topics of interests: – Nanoscale energetic materials

(nanoenergetics)

 – Reactives such as Al-Teflon for application to structural energetics or reactive projectiles

 – Flame spread on nanoaluminum

 – Microscale combustion of nanoenergetics

• Example: Flame Spread onNanoaluminum – The combustion of nano-scale aluminum

poorly understood

 – Flame spread used as a means for characterizing the combustion of nano-

aluminum with gaseous oxidizers – J. Y. Malchi, R. A. Yetter, S. F. Son, and G. A. Risha, “Nano-

Aluminum Flame Spread with Fingering Combustion Instabilities,”Presented at the 31st International Symposium on Combustion ,2006.

Recent Publications:• V. I. Levitas, B. W. Asay, S. F. Son, and M. Pantoya, “A Mechanism

for Fast Reaction of Nanothermites Based on Dispersion of LiquidMetal,” Accepted in Applied Physics Letters, 2006.

• D. G. Tasker, B. W Asay , J. C. King, V. E. Sanders, and S. F. Son“Dynamic Measurements of Electrical Conductivity in MetastableIntermolecular Composites,” Journal of Applied Physics, Vol. 99, no.2, p.23705-1-7, 2006.

• B. Bockmon, M. L. Pantoya, S. F. Son, and B. W. Asay, “BurningRates and Propagation Mechanisms of Metastable Intermolecular Composites,” Journal of Applied Physics, 98(6), pp. 1-7 (2005).

• W. L. Perry, B. L. Smith, C. J. Bulian, J. R. Busse, C. S. Macomber, R.

C. Dye, and S. F. Son, “Nano-Scale Tungsten Oxides For MetastableIntermolecular Composites,” Propellants, Explosives, andPyrotechnics, 29(2), pp. 99-105 (2004).

• D. S. Moore, S. F. Son, and B. W. Asay, “The Time Resolved SpectralEmission from Deflagrating Metastable Interstitial CompositesComposed of Nano-Aluminum and Nano-MoO3 Powders”,Propellants, Explosives, and Pyrotechnics, 29(2), pp. 106-111 (2004).

• B. W. Asay, S. F. Son, J. R. Busse, and D. M. Oschwald, “IgnitionCharacteristics of Metastable Intermolecular Composites,”Propellants, Explosives, and Pyrotechnics, 29(4), pp. 216-219 (2004).

• M. L. Pantoya, S. F. Son, W. C. Danen, B. S. Jorgensen, B. W. Asay,and J. R. Busse, “Characterization of Metastable Intermolecular Composites (MICs),” (Book Chapter) Chapter 16 in DefenseApplications of Nanomaterials, A. W. Miziolek, et al. Eds., an ACS

Symposium Series Book, Vol. 3 (2004).

Page 4: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 4/8

Combustion Synthesis

• Using combustion synthesis,

beginning with a metal complex

we have made ultrahigh surface

area metal foams

 – There are many applications of 

these unique materials

Publications:• B. C. Tappan, M. H. Huynh, M. A. Hiskey, D. E. Chavez, and S. F.

Son, “Ultralow-density nanostructured metal foams: Combustionsynthesis, morphology, and composition,” Journal of the AmericanChemical Society, v.128, no.20, p.6589-6594, 2006.

• B. C. Tappan, M. H. Huynh, M. A. Hiskey, D. E. Chavez, E. Luther, D.L. Naud, J. T. Mang, and S. F. Son, ” Energetic decomposition of high-nitrogen metal complexes and the formation of low-density nano-structured metal monoliths,” Material Research Society Fall Meeting,Materials Research Society Symposium Proceedings, v.896, p.15-24,

2006.

Page 5: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 5/8

Microscale combustion

• Energetic materials and gaseous

combustion – Applications include

microthrusters, microscaleactuation, and power generation

• Example: Combustion of Nanoscale Thermites in

microchannels – Microscale combustion is of 

interest in small-volume energy-demanding systems, such aspower supplies, actuation,ignition, and propulsion

 – Dependence of propagation rate

with tube diameter obtained – S. F. Son, B. W. Asay, T. J. Foley, R. A. Yetter, M. H. Wu, and G.

A. Risha, “Combustion of Nanoscale Al/MoO3 Thermite inMicrochannels,” Submitted to J. Propulsion, 2006.

Publications:• A. N. Ali, S. F. Son, M. A. Hiskey, D. L. Naud, “Novel High Nitrogen

Propellant use in Solid Fuel Micropropulsion,” Journal of Propulsionand Power, 20(1), pp. 120-126 (2004).

• M. H. Wu, M. P. Burke, S. F. Son, R. A. Yetter, “Flame Accelerationand the Transition to Detonation of Stoichiometric Ethylene/Oxygen inMicroscale Tubes,” Presented at the 31st International Symposium on

Combustion , 2006.

700

800

900

1000

1100

1200

0 500 1000 1500 2000 2500

V = 1090.3 - 0.1508/d R= 0.99351

   P  r

  o  p  a  g  a   t   i  o  n   V  e   l  o  c   i   t  y   (  m   /  s   )

1/Diameter (m-1

)

Page 6: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 6/8

Explosives safety

• Topics of interest

 – Deflagration to detonation transition(DDT)

 – Thermal explosion (cook-off)

 – Flame spread

 – Convective burning

 – Combustion in cracks

 – Insensitive munitions• Example: Flame Spread on PBX 9501

 – There is little flame spread data for homogeneous energetic materialsand no data for nitramines

 – The flame spread rate is of thesame order of magnitude as normaldeflagration and varies nearly as

the square root of pressure, as our simple analysis predicts

 – S. F. Son, B. W. Asay, E. M. Whitney, and H. L. Berghout,”Flame Spread Across Surfaces of PBX 9501,” Presentedat the 31st International Symposium on Combustion ,2006.

Recent Publications:

• H. L. Berghout, S. F. Son, L. G. Hill, and B. W. Asay, “Flame spreadthrough cracks of PBX 9501 (a composite octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosive),” Journal of Applied Physics,vol.99, no.11, p.114901-1-7, 2006.

• B. W. Asay, S. F. Son, P. M. Dickson, L. B. Smilowitz, and B. F.Henson, “An investigation of the dynamic response of thermocouplesin inert and reacting condensed phase energetic materials,”Propellants, Explosives, and Pyrotechnics, 30(3), pp. 199-208 (2005).

• H. L. Berghout, S. F. Son, C. B. Skidmore, D. J. Idar, B. W. Asay,“Combustion of Damaged PBX 9501 Explosive,” Thermochimica Acta,384, pp. 261-277 (2002).

• H. L. Berghout, S. F. Son, and B. W. Asay, “Convective Burning inGaps of PBX 9501,” Proceedings of the Combustion Institute, 28, pp.911-917 (2000).

10 mm

Flame

Front

Regressing

Surface

Flame SpreadDirection

Unburned Flame

Inhibitor 

Page 7: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 7/8

Multiphase Combustion:

Coal Combustion• An oxygen blown, or oxy-fuel or O2/CO2) system increases theconcentration of CO2 by using pureoxygen instead of air for combustionin PC power plants

• By using pure oxygen for combustion

the concentration of CO2 can beincreased from 13-15% (wet basis) to80-90 percent (Dry Basis)

• However, few combustion studieshave focused on oxy-fuelcombustion, especially at pressures

• We are designing a dust cloudexperiments using pulverized coal ina chamber of O2 (diluted with CO2),igniting the mixture, and studying theflame propagation dynamics as wellas measuring the products

• We are designing a dust cloud

experiments using pulverized coal in

a chamber of O2 (diluted with CO2),

igniting the mixture, and studying the

flame propagation dynamics as well

as measuring the products

Page 8: S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

8/3/2019 S. F. Son- Energetic Materials Combustion Laboratory (EMCL)

http://slidepdf.com/reader/full/s-f-son-energetic-materials-combustion-laboratory-emcl 8/8

Storage and release of 

chemically stored hydrogen• Storage and release of chemically

stored hydrogen

 – Combustion of nanoaluminum and liquidwater 

 – Decomposition of ammonia borane andhydrides

• Example: Combustion of nanoaluminumand liquid water  – Composite systems have been studied

for H2 production for fuel cells. – New nano-materials (such as nAl, nB,

nFe2O3) and new chemicals (such ashigh nitrogen-high hydrogen compoundsTAGzT and DAATO3.5) may now be used

to control the production rate and H2 gastemperature.

 – G. A. Risha, S. F. Son, B. C. Tappan, R. A. Yetter, and V. Yang,“Combustion of Nano-Aluminum and Liquid Water,” Presented at the 31stInternational Symposium on Combustion , 2006.

 

PT

Exh aust

Nichrome

Wire  

ArgonInlet  

Propellan t

Booster 

Quartz

Tube  nAl-H2O

Mixture