roach - alf.math.uni-rostock.de

4
Application of the FE-Approach Fig. 9: FE-grid and solution to elliptic pde K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 34 / 51 Indian lake India’s largest lake, the WULAR LAKE, is situated in the state of Jammu & Kashmir at co-ordinates 34.3388583,74.5648655. Fig. 10: India’s largest lake K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 35 / 51 Equation and conditions We restrict the demonstration to the homogeneous Dirichlet problem for the Poisson equation -Δu(x , y )= r (x , y ) . The unknown u is interpreted as streamfunction, the sets u(x , y )= c are streamlines of a flow in the water body. The vectors v (x , y )=(y u(x , y ), -x u(x , y )) T are the velocities of the mass flow. K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 36 / 51 Domain definition Fig. 11: Boundary K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 37 / 51

Upload: others

Post on 31-Dec-2021

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: roach - alf.math.uni-rostock.de

Application of the FE-Approach

Fig. 9: FE-grid and solution to elliptic pde

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 34 / 51

Indian lake

India’s largest lake, the WULAR LAKE, is situated in the state of Jammu& Kashmir at co-ordinates 34.3388583,74.5648655.

Fig. 10: India’s largest lake

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 35 / 51

Equation and conditions

We restrict the demonstration to the homogeneous Dirichlet problem forthe Poisson equation

−∆u(x , y) = r(x , y) .

The unknown u is interpreted as streamfunction, the sets

u(x , y) = c

are streamlines of a flow in the water body.The vectors

~v(x , y) = (∂yu(x , y),−∂xu(x , y))T

are the velocities of the mass flow.

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 36 / 51

Domain definition

Fig. 11: Boundary

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 37 / 51

Page 2: roach - alf.math.uni-rostock.de

Nodes of numerical grid

Fig. 12: Nodes

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 38 / 51

Domain triangularisation

Fig. 13: Mesh

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 39 / 51

Data structure

Fig. 14: Data structuresK. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 40 / 51

Assembly of the stiffness matrix

Fig. 15: A neighborhoodK. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 41 / 51

Page 3: roach - alf.math.uni-rostock.de

Example

Node no. 555 has the direct neighbors 130, 924, 165, 838, 926, 836.We need to consider 6 triangles, all have node 555 and two of the list ascorners.For each we take the stiffnesses of the master-element and multiply by theJacobian (using the area of the triangle, i.e. a determinant).

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 42 / 51

Procedure

find all direct neighbors

map the master (unit) element to world triangles

scale by determinant of transformation matrix

add element stiffnesses to global stiffness matrix

We proceed in an analogous way with the load vector (right-hand side),using the basis of piecewise linear functions to interpolate the values ofr(x , y) at the nodes.

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 43 / 51

Solution by FEM

Fig. 16: FEM-solution

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 44 / 51

Velocity field

Fig. 17: Velocities

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 45 / 51

Page 4: roach - alf.math.uni-rostock.de

Coveats

Remark

A realistic hydrodynamical model is much more complex, it involves thedepth profile, in- and out-fluxes, wind forces, Coriolis forces, temperatureand salinity . . .

This requires to solve a 3d problem for a system of PDEs.

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 46 / 51

A 3d problem

Fig. 18: A 3d problem (by ComSol)

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 47 / 51

Further Problems

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 48 / 51

PDEs of interest

telegraph equation

KdV equation

Bernoulli-Euler equation

bi-Laplace equation

Lame equations

Navier-Stokes equations

Stokes equations

Hamilton-Jacobi

Schrodinger’s equation

Maxwell equations

K. Frischmuth (IfM UR) Analysis and Numerics of PDEs Summer 2021 49 / 51