rf power amplifier · pdf filerf power amplifier design markus mayer & holger arthaber...

53
RF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology June 11, 2001

Upload: phungbao

Post on 06-Feb-2018

249 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

RF Power Amplifier Design

Markus Mayer & Holger ArthaberDepartment of Electrical Measurements and Circuit Design

Vienna University of Technology

June 11, 2001

Page 2: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

2

Contents

Basic Amplifier ConceptsClass A, B, C, F, hHCALinearity AspectsAmplifier Example

Enhanced Amplifier ConceptsFeedback, Feedforward, ...PredistortionLINC, Doherty, EER, ...

Page 3: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

3

Efficiency Definitions

Drain Efficiency:

Power Added Efficiency:

DC

OUTD P

P=η

−⋅=−=

GPPP

DDC

INOUTPA

11ηη

Page 4: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

4

Ideal FET Input and Output Characteristics

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

V =VGS P

V =0GS

Ohmic Saturation Breakdown

gm

DD

KDD

VVV −

Page 5: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

5

Maximum Output Power Match

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

V =VGS P

V =0GS

Ohmic Saturation Breakdown

gm

m

KDSOPT I

VVR −= max

Page 6: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

6

Class A

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

VGS VDS

2p

p

Q

IDS

Im

0 2pp Q

Page 7: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

7

Class A – Circuit

VDD

RLDGS

48%

dB) 14 (e.g.

50%

PA ⋅=

=

⋅=

κη

κη

A

D

GG

Page 8: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

8

Class B

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

VGS VDS

2p

p

Q

IDS

Im

0 2pp Q

Page 9: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

9

Class C

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

VGS VDS

2p

p

Q

IDS

Im

0 2pp Q

Page 10: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

10

Class B and C – Circuit

VDD

RLDGS

f0

Class B Class C

%65

dB) (8 6dB-

%78

PA ⋅=

=

⋅=

κη

κη

A

D

GG

%0

1

%100

PA →

η

η

G

D

Page 11: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

11

Influence of Conduction Angle

Page 12: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

12

Class F (HCA ... harmonic controlled amplifier)

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

VGS VDS

2p

p

Q

IDS

Im

0 2pp Q

Page 13: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

13

hHCA (half sinusoidally driven HCA)

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

VGS VDS

2p

p

Q

IDS

Im

0 2pp Q

Page 14: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

14

Class F and hHCA – Circuit

VDD

RLVDSID Ze(n)

0, n=eveninf, n=even

Zo(n)

0, n=1inf, n=odd

Class F hHCA

%87

dB) (9 5dB-

0%10

PA ⋅=

=

⋅=

κη

κη

A

D

GG

%96

dB) (15 1dB

0%10

PA ⋅=

+=

⋅=

κη

κη

A

D

GG

Page 15: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

15

hHCA – Third Harmonic Peaking

0 VGS

IDS

Im

2VP VP VDSmaxVDDVKVDS0

VGS VDS

2p

p

Q

IDS

Im

0 2pp Q

Page 16: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

16

Third Harmonic Peaking – Circuit

VDD

RLDGS

f03f0

%87

dB) (14.6 0.6dB

91%

PA ⋅=

+=

⋅=

κη

κη

A

D

GG

Page 17: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

17

Linearity Aspects

Page 18: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

18

Linearity Aspects

Class AB

Class C

Class A

Class B

Page 19: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

19

Linearity Aspects

Ideal strongly nonlinear model Strong-weak nonlinear model

Page 20: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

20

Amplifier Design – An Example Balanced Amplifier Configuration

Port 1Z=50 Ohm Port 2

Z=50 Ohm

Page 21: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

21

Amplifier Design – Simulation Gate & Drain Waveforms

0 500 1000 1300Time (ps)

Drain waveforms

-5

0

5

10

15

20

25

-1000

0

1000

2000

3000

4000

5000Inner Drain Voltage (L, V)Amp

Inner Drain Current (R, mA)Amp

0 500 1000 1300Time (ps)

Gate waveforms

-3

-2

-1

0

1

-1000

-500

0

500

1000

Inner Gate Voltage (L, V)Amp

Inner Gate Current (R, mA)Amp

Page 22: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

22

Amplifier Design – Simulation Dynamic Load Line & Power Sweep

0 3 6 9 12 15Voltage (V)

Dynamic load line

-2000

0

2000

4000

6000

8000IVCurve (mA)IV_Curve

Dynamic Load Line (mA)Amp

0 5 10 15 20 24Power (dBm)

Power Sweep 1 Tone

0

10

20

30

40

0

10

20

30

40

50

60

70

80Output Power (L, dBm)Amp

PAE (R)Amp

Page 23: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

23

Amplifier Design – MeasurementsSingle Tone & Two Tone

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

P in [dBm]

P ou

t [dB

m],

Gai

n [d

B]

0

10

20

30

40

50

60

70

80 PAE [%]

P outGainGamma InPAE

1dB CP

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

P in [dBm]

P ou

t [dB

m],

IMD

D [d

Bc]

, Gai

n [d

B]

0

10

20

30

40

50

60 PAE [%]

P outIMDDGainPAE

Page 24: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

24

Amplifier NonlinearityGain and Phase depends on Input Signal

3rd Order Gain-Nonlinearities:

Page 25: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

25

Amplifier NonlinearityHigher Output Level (close to Saturation) resultsin more Distortion/Nonlinearity

Page 26: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

26

Nonlinearity leads to?Generation of Harmonics

Intermodulation Distortion / Spectral Regrowth

SNR (NPR) Degradation

Constellation Deformation

Page 27: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

27

Intermodulation and Harmonics

Page 28: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

28

Spectral Regrowth

-15 -10 -5 0 5 10 15-60

-50

-40

-30

-20

-10

0

10

rela

tive

pow

er /

dB

relative frequency / MHz

ACPR1>60dBACPR2>60dB

ACPR1=16dBACPR2=43dB

Energy in adjacent ChannelsACPR (Adjacent Channel Leakage Power Ratio) increases

Page 29: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

29

Reduced NPR (Noise Power Ratio)

Output Signal of Nonlinear Amplifier

Input Signal

Degradation of Inband SNR„Noisy“ Constellation

Page 30: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

30

Constellation DeformationInput Signal Output Signal of

Nonlinear Amplifier(with Gain- and Phase-Distortion)

Page 31: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

31

Modeling of Nonlinearitieswith Memory-Effects

Volterra Series (=„Taylor Series with Memory“)

without Memory-EffectsSaleh ModelTaylor SeriesBlum and Jeruchim ModelAM/AM- and AM/PM-conversion

2

2

2 1)(

1)(

rrrg

rrrfa

a

Θ

Θ

+=

+=

βα

βα

bette

rpe

rfor

man

ce

Page 32: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

32

AM/AM- and AM/PM-ConversionGaAs-PA

Page 33: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

33

AM/AM- and AM/PM-ConversionLDMOS-PA

Page 34: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

34

How to preserve Linearity?Backed-Off Operation of PA

Simplest Way to achieve Linearity

Linearity improving ConceptsPredistortionFeedforward...

Page 35: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

35

How to preserve Efficiency?Efficiency improving Concepts

DohertyEnvelope Elimination and Restoration...

Linearity improving ConceptsHigher Linearity at constant Efficiency

Higher Efficiency at constant Linearity

Page 36: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

36

Direct (RF) Feedback

Classical MethodDecrease of Gain Low EfficiencyFeedback needs more Bandwidth than SignalStability Problems at high Bandwidths

Page 37: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

37

Distortion Feedback

Feedback of outband Products onlyHigher Gain than RF feedbackStability Problems due to Reverse Loop

Page 38: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

38

Feedforward

Overcomes Stability Problem by forward-only LoopsCritical to Gain/Phase-Imbalances0.5dB Gain Error -31dB Cancellation2.5° Phase Error -27dB CancellationWell suited for narrowband application

Page 39: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

39

Cartesian Feedback

-30 -20 -10 0 10 20 30-60

-50

-40

-30

-20

-10

0

10

rela

tive

pow

er /

dB

relative frequency / MHz

original signal predistorted signal

AM/AM- and AM/PM-correctionHigh Feedback-BandwidthStability Problems

I

Q

IQ

IQ

modulator

demodulator

OPAs

main amp.

localoscillator

RF-output

base

band

inpu

t

UMTS example:

Page 40: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

40

Digital PredistortionDigital Implementation of „Cartesian Feedback“Additional ADCs, DSP Power, Oversampling neededLoop can be opened no Stability Problems

Page 41: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

41

Analog Predistortion

Predistorter has inverse Function of AmplifierLeads to infinite Bandwidth (!)Hard to realize (accuracy)

Page 42: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

42

Analog PredistortionPossible Realizations:

Page 43: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

43

LINC (Linear Amplification by Nonlinear Components)

AM/AM- and AM/PM-correctionDigital separation required(accuracy!)High Bandwidth,oversampling necessaryStability guaranteed

signalseparation

s(t)

s (t)1 K

Ks (t)2

K(s (t)+1 s (t))=Ks(t)

2

Ks (t)1

Ks (t)2

-30 -20 -10 0 10 20 30-60

-50

-40

-30

-20

-10

0

10

rela

tive

pow

er /

dB

relative frequency / MHz

ACPR1>60dBACPR2>60dB

ACPR1=18dBACPR2=29dB

s(t) s1(t)

UMTS example:

Page 44: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

44

Doherty AmplifierAuxiliary amplifier supports main amplifier during saturationPAE can be kept high over a 6dB range

Page 45: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

45

Doherty AmplifierGain vs. Input Power

No improvement of AM/AM- and AM/PM-distortionBehavior of auxiliary amplifier very hard (impossible) to realizeStability guaranteed

Efficiency vs. Input Power

main amp. (A1)

aux. amp. (A2)

PIN

POUT

dohe

rty co

nfigu

ration

(A1+

A2)

Page 46: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

46

EER (Envelope Elimination and Restoration)

Separating phase and magnitude informationElimination of AM/AM-distortionApplication of high-efficient amplifiers(independent of amplitude distortion)Stability guaranteed

signalseparation

amplitude information

phase information

RF input

RF output

high efficiencypower amplifier

Page 47: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

47

EER (Envelope Elimination and Restoration)

Analog realizationLimiter hard to buildAccuracy problemsFeedback necessary

Digital realizationOversampling + high D/A-conversion rates requiredHigh power consumptionof DSP and D/A-convertersPossible feedbackeliminationCompensation of AM/PM-distortion possible

peak detectorsupply voltage

amplifier

limiter

high efficiencypower amplifier

RF output

peak detector

RF input

DA

DA

DA

amplitude information

phase information

modulatorRF output

high efficiencypower amplifier

digitalsignal

processor

local oscillator

supply voltage amplifier

I

Q IQ

digi

tal b

aseb

and

inpu

t

Page 48: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

48

EER (Envelope Elimination and Restoration)

Five times (!) oversamplingnecessary to achieve standard requirements

Bandwidth of Magnitude- and phase-signal have higher than transmit signal

-30 -20 -10 0 10 20 30-60

-50

-40

-30

-20

-10

0

10

rela

tive

pow

er /

dB

re lative frequency / MHz

MagnitudePhase

-30 -20 -10 0 10 20 30-60

-50

-40

-30

-20

-10

0

10

rela

tive

pow

er /

dB

relative frequency / MHz

ACPR1>60dBACPR2>60dB

ACPR1=33dBACPR2=40dB

ACPR1=51dBACPR2=36dB

ACPR1=53dBACPR2=49dB

full bandwidth 3⋅B0 bandwidth5⋅B0 bandwidth7⋅B0 bandwidth

UMTS example:UMTS example:

Page 49: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

49

Adaptive BiasVarying/Switching of Bias-Voltage depending on Input Power LevelSelection of Operating Point with high PAEApplicably for nearly each type of Amplifier

RF input

peak detector

biascontrol

RF output

high efficiencypower amplifier

Page 50: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

50

Adaptive Bias

32 33 34 35 36 37 38 39 4020

30

40

50

60

70

80

90

output power / dBm

pow

er a

dded

effi

cien

cy /

%

VD=3.5VVD=4.5VVD=6.5V

Single tone PAE for switched VDD with VG kept constant

Simply to implement ConceptStability guaranteedPossible problems:

DC-DC converter with high efficiency necessaryPossible Linearity Change (can increase and decrease)especially for HCAs

Page 51: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

51

SummaryDigital Realization required to achieve Accuracy

Problem of Stability for high Bandwidth Application

Higher Bandwidths (Oversampling) necessary,depending on Order of IMD cancellation

Predistortion gives best Results while keeping Efficiency high (valid for high Output Levels > 40dBm)

Page 52: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

52

Figure ReferencesF. Zavosh et al,“Digital Predistortion Techniques for RF Power Amplifiers with CDMA Applications”,Microwave Journal, Oct. 1999

Peter B. Kenington, “High-Linearity RF Amplifier Design”,Artech House, 2000

Steve C. Cripps,“RF Power Amplifiers for Wireless Communications”,Artech House, 1999

Page 53: RF Power Amplifier  · PDF fileRF Power Amplifier Design Markus Mayer & Holger Arthaber Department of Electrical Measurements and Circuit Design Vienna University of Technology

53

Contact Information

DI Markus Mayer

+43-1-58801-35425

[email protected]

DI Holger Arthaber

+43-1-58801-35420

[email protected]