review 01x

Upload: nmulyono

Post on 04-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Review 01x

    1/26

    1

    Summary of the Class before Exam1

    Building a FEA Model Ingredients of a FEA software package

    Steps in building a FEA model

    Modeling considerations

    1D Spring/Truss Elements Single 1D spring/truss element

    Global stiffness matrix; properties

    Boundary conditions

    Shape functions and their properties

    2D and 3D truss elements; rotation matrix

    Beam elements 1D beam elements

    2D beam elements

    Distributed load

    Frames Beam elements with bending and axial loads

    3D beam elements with bending, axial loads, and torsion

  • 8/13/2019 Review 01x

    2/26

    2

    Building A FEA Model

    Six basic ingredients of a FEA software package

    1. Type of analysis

    2. Geometry (defined through nodes)

    3. Elements

    4. Material properties5. Boundary conditions

    6. Time functions

  • 8/13/2019 Review 01x

    3/26

    3

    Steps in building a FEA model

    1. Discretization of the geometry into an equivalent system of finite elements with

    associated nodes and choosing an appropriate element type to closely model the

    actual physical behavior.2. Selection of an appropriate displacement (interpolation) function within each

    element.

    3. Defining the strain/displacement and stress/ strain relationships for deriving the

    equations for each finite element

    4. Derivation of the element stiffness matrix and equations. The nodal forces arerelated to the nodal displacements using the direct equilibrium method, or energy

    methods or the weighted residual method.

    5. Assembling the global stiffness matrix from the element stiffness matrices

    6. The introduction of the boundary conditions.

    7. Solving for the unknown degrees of freedom (or the generalized displacements)8. Solving for the element stresses and strains

    9. Interpretation of the results for use in the design/analysis process

    Building A FEA Model

  • 8/13/2019 Review 01x

    4/26

    4

    Building An FEA Model

    Considerations in building a physical model

    1. The nature of real-world problem2. The cost of conducting FEA

    Considerations in building an FEA model

    1. The accuracy of the FEA model

    2. The cost of conducting FEA

    The differences between a physical model and an FEA modelDeveloping a physical model is a process that simplifies a real-world problem into a

    problem that is suitable for FEA.

    Factors that affect the cost:

    1. Degree of Freedoms (DOF): p

    2. Number of Nodes : N

    3. How the nodes are numbered

    4. Number of Integration Points in Each Elements

    5. Nonlinear Analysis

    How to estimate the size (the memory need) of an FEA model?

  • 8/13/2019 Review 01x

    5/26

    5

    Element Stiffness Matrix and Global Stiffness Matrix

    Shape funct ions, or interpolation functions:

    approximation of displacement field

    Nodal force-nodal displacement relationship

    Matrix form of above relationship

    Element stiffness matrix

    Coordinate Transformation

    [ ] ][][][ TKTK eTe =Global Stiffness Matrix

    Direct stiffness matrix method

    Write down global displacement vector

    Use this vector as an index for DOFs

    Airline tickets

    Boundary Conditions

    Coordinate rotation for skewed support

    Cross out some terms

    Solve global stif fness matrix

    Solve nodal reaction force (external force)

  • 8/13/2019 Review 01x

    6/26

    6

    Spring/Truss Elements

    1 2x

    xd1 xf1 xd2 xf2

    For the spring to be in equilibrium,

    xxx dkdkf 212 +=

    xxx dkdkf 211 =

    =

    x

    x

    x

    x

    dd

    kkkk

    ff

    2

    1

    2

    1

    [ ] xe

    x dkf = [ ]e

    k stiffness matrix

  • 8/13/2019 Review 01x

    7/26

    7

    Spring/Truss Elements

    1 2 x

    1 2

    x

    xd1 xd2

    T T

    dx

    du= ?=u

    xL

    dddu xxx

    121

    += xx d

    L

    xd

    L

    xu 21

    1 +

    =

    [ ]

    =

    x

    x

    d

    dNNu

    2

    121

    L

    x

    N

    11 = L

    x

    N

    2= Shape functions

  • 8/13/2019 Review 01x

    8/26

    8

    Beam Elements

    Mechanics of Beams

    2

    2

    xd

    dvEIm=

    EI

    m

    xd

    dv=

    2

    2

    Vxd

    dm=

    ( )xV

    xd

    dvEI

    3

    3

    =

    )(

    xwxd

    dV= ( )xw

    xd

    dvEI

    4

    4

    =

    If ( ) 0 =xw

    04

    4

    =xd

    dvEI

    m

    V

    +m

    VIn beam theory

    + m

    f

    +m

    f

    +

    In FEA

  • 8/13/2019 Review 01x

    9/26

    9

    Beam element

    yd1

    1

    yd2

    2

    Beam Elements

    Beam Elements ( )xVxddv

    EI 3

    3

    = In general, ( ) 0 xV

    432

    23

    1)( axaxaxaxv +++=

    ( ) 410 adxv y ===

    ( ) 310

    axxd

    dv===

    ( ) 322

    12 23

    aLaLaLxxd

    dv++===

    ( ) 432

    2

    3

    12 aLaLaLadLxv y +++===

    Boundary conditions

    Why we use a third order polynomial?

    Interpolation function for deflection.

  • 8/13/2019 Review 01x

    10/26

    10

    Beam Elements: displacement function

    ( ) ( )212213112

    ++= LddLa yy

    432

    23

    1)( axaxaxaxv +++=

    ( ) ( )212122 213

    += LddLa yy

    13 =a yda 13=

    [ ]{ }dNv= [ ] [ ]4321 NNNNN = { } [ ]Tyy ddd 2211 =In matrix form

    ( )32331 321 LLxxLN += ( )3223

    32 21

    LxLxLxLN +=

    ( )LxxL

    N23

    3332

    1+= ( )223

    34

    1LxLx

    LN =

    Note: ( ) 101 ==xN ( ) 01 ==LxN ( ) 102 ==x

    xddN ( ) 0

    2 ==Lx

    xddN

    Beam Elements

  • 8/13/2019 Review 01x

    11/26

    11

    Beam Elements: Stress and Strain

    ( )2

    2

    xd

    dvEIxm =

    ( )3

    3

    xd

    dvEIxV =

    Beam Elements

    [ ]

    =

    2

    2

    1

    1

    2

    2

    1

    1

    y

    y

    e

    y

    y

    d

    d

    K

    m

    fm

    f

    [ ]

    =

    22

    22

    3

    4626612612

    2646

    612612

    LLLL

    LL

    LLLL

    LL

    L

    EIK

    e

  • 8/13/2019 Review 01x

    12/26

    12

    Torsion in FEA

    Consider torsion only

    1 2

    xm

    1

    xm

    2

    x1 x2

    L

    JL

    dGM

    =

    ( )xxxxL

    GJmm 1221

    ==

    =

    x

    x

    x

    x

    L

    GJmm

    2

    1

    2

    1

    1111

    x

    Frames

  • 8/13/2019 Review 01x

    13/26

    13

    Consider shear, bending, and torsion

    1 2

    xm1 xm2

    x1 x2

    L

    xzm1 z1zm2 z2

    yf1

    yd1 y

    f2

    yd2

    =

    x

    x

    x

    x

    L

    GJ

    m

    m

    2

    1

    2

    1

    11

    11

    =

    z

    y

    z

    y

    z

    y

    z

    y

    d

    d

    LLLLLL

    LLLL

    LL

    L

    EI

    m

    f

    m

    f

    2

    2

    1

    1

    22

    22

    3

    2

    2

    1

    1

    4626612612

    2646

    612612

    Frames

  • 8/13/2019 Review 01x

    14/26

    14

    Beam In 3D Space

    Start from Local Coordinate

    x

    Consider bending in y zand , and torsion in x

    Consider shear in y zand , and axial inx

    yy

    df22

    ,

    zz df 22,

    xx df 22 ,

    zzm 22,

    xxm 22,

    yym 22,

    Frames

  • 8/13/2019 Review 01x

    15/26

    15

    Frames

    =

    z

    y

    x

    z

    y

    x

    z

    y

    x

    z

    y

    x

    z

    y

    yy

    zz

    zzz

    yyy

    yyyy

    zzzz

    z

    y

    x

    z

    y

    x

    z

    y

    x

    z

    y

    x

    d

    d

    d

    d

    d

    d

    L

    EIL

    EIL

    GJL

    EI

    L

    EIL

    EI

    L

    EIL

    AEL

    EI

    L

    EI

    L

    EIL

    EI

    L

    EI

    L

    EIL

    GJ

    L

    GJL

    EI

    L

    EI

    L

    EI

    L

    EIL

    EI

    L

    EI

    L

    EI

    L

    EIL

    AE

    L

    AE

    m

    m

    m

    f

    f

    f

    m

    m

    m

    f

    f

    f

    2

    2

    2

    2

    2

    2

    1

    1

    1

    1

    1

    1

    23

    23

    2

    2

    2323

    2323

    2

    2

    2

    2

    2

    2

    1

    1

    1

    1

    1

    1

    4

    04

    00

    06

    012

    6000

    12

    00000

    2

    000

    6

    0

    4

    02

    06

    004

    0000000

    0

    6

    0

    12

    000

    6

    0

    12

    6000

    120

    6000

    12

    0000000000

    Beam In 3D Space, Local Coordinate

  • 8/13/2019 Review 01x

    16/26

    16

    Shape Functions

    Shape functions describe the shape of displacement field and are one of

    the determinant factors in governing the efficiency and accuracy of FEA.

    A shape function takes the value of ONE at the node associated with it,

    and takes the value of ZERO at other nodes.

    The choice of shape functions depends on:

    The number of nodes in the element.

    The function should be able to describe rigid body motion, and

    constant strain.

    L

    xN

    11 =

    L

    xN

    2=Two nodes truss:

    ( )32331

    321

    LLxxL

    N += ( )322332 21

    LxLxLxL

    N +=

    ( )LxxL

    N23

    3332

    1+= ( )223

    34

    1LxLx

    L

    N =

    Two nodes

    beam bending:

  • 8/13/2019 Review 01x

    17/26

    17

    Coordinate Transformation

    Rotation Matrix

    =

    y

    x

    y

    x

    f

    f

    f

    f

    1

    1

    1

    1

    cossin

    sincos

    or

    =

    =

    y

    x

    y

    x

    y

    x

    f

    f

    f

    f

    f

    f

    1

    1

    1

    1

    1

    1

    cossin

    sincos

    cossin

    sincos

    [ ]{ }fTf = { } [ ] fTf 1=

    [ ] [ ]TTT =1

    x

    y

    x

    xf1

    yf1

    xf1

    yf1

    y

    Measured from tocounterclockwisex x

    Measured from tocounterclockwise

    xx

  • 8/13/2019 Review 01x

    18/26

    18

    =

    y

    x

    y

    x

    y

    x

    y

    x

    f

    f

    ff

    CS

    SC

    CSSC

    f

    f

    ff

    2

    2

    1

    1

    2

    2

    1

    1

    00

    00

    0000

    =

    y

    x

    y

    x

    y

    x

    y

    x

    d

    d

    dd

    CS

    SC

    CSSC

    d

    d

    dd

    2

    2

    1

    1

    2

    2

    1

    1

    00

    00

    0000

    xyzzyx

    =

    y

    x

    y

    x

    y

    x

    y

    x

    f

    f

    f

    f

    CS

    SC

    CS

    SC

    f

    f

    f

    f

    2

    2

    1

    1

    2

    2

    1

    1

    00

    00

    00

    00

    =

    y

    x

    y

    x

    y

    x

    y

    x

    d

    d

    d

    d

    CS

    SC

    CS

    SC

    d

    d

    d

    d

    2

    2

    1

    1

    2

    2

    1

    1

    00

    00

    00

    00

    zyxxyz

    Rotation Matrix

    Coordinate Transformation

  • 8/13/2019 Review 01x

    19/26

    19

    Coordinate transformation matrix

    x

    y

    z

    xy

    z

    =

    x

    y

    x

    x

    y

    x

    ff

    f

    ff

    f

    1

    1

    1

    1

    1

    1

    x

    y

    x y z

    z

    ( )xx,cos ( )yx,cos ( )zx,cos

    ( )xy,cos ( )yy,cos ( )zy,cos( )xz,cos ( )yz,cos ( )zz,cos

    Coordinate Transformation

  • 8/13/2019 Review 01x

    20/26

    20

    2D and 3D elements: Element stiffness matrix in global coordinate

    { } [ ] { }dTKTfe

    T ][][=

    [ ] ][][][ TKTK eT=

    Coordinate Transformation

  • 8/13/2019 Review 01x

    21/26

    21

    Spring Elements

    Global Stiffness matrix: direct stiffness matrix method

    i j

    Element I

    )()(

    )()(

    Ijj

    Iij

    IijIii

    kk

    kk

    [ ]

    =K

    1 i j N

    1

    i

    j

    N

    )(I

    ijk

    )(Iijk

    )(Iiik

    )(I

    jjk

    N by N matrix

  • 8/13/2019 Review 01x

    22/26

    22

    Global Stiffness Matrix

    Global Stiffness matrix: Properties

    1. It is symmetric jiij KK =

    2. The element on the diagonal of the matrix is always positive. 0>

    iiK

    3. The product of the i-th row of the global stiffness matrix and the

    global displacement matrix gives the external force on the i-th DOF

    of the system.

    4. Kij is equal to the reaction force on the i-th DOF due to a unit displacement

    on thej-th DOF whereas all the other DOFs are fixed.

    5. The global stiffness matrix is singular.

  • 8/13/2019 Review 01x

    23/26

    23

    Boundary Conditions

    Boundary Conditions

    1 3 x

    01 =xd

    xF1

    xd3

    2

    xd2

    2

    1k 2k

    3P 2P

    +

    =

    x

    x

    x

    x

    x

    d

    d

    kkkk

    kk

    kk

    F

    F

    F

    3

    2

    2121

    22

    11

    3

    2

    1

    0

    0

    0

    +

    =

    x

    x

    x

    d

    d

    kkkk

    kk

    kk

    P

    P

    F

    3

    2

    2121

    22

    11

    3

    2

    1

    0

    0

    0X X X

    X

    X

    How to find ?xF1 This method is applicable to other elements.

    Why we need BC?

  • 8/13/2019 Review 01x

    24/26

    24

    Inclined or Skewed Supports

    Sometimes, a boundary condition can be more conveniently applied in a local

    coordinate.

    In the local coordinate system: 03 =yd

    In the global coordinate system:

    x

    y

    x

    y

    1

    2 3

    =

    y

    x

    y

    x

    dd

    dd

    3

    3

    3

    3

    cossinsincos

  • 8/13/2019 Review 01x

    25/26

    25

    [ ] [ ][ ] [ ] [ ] [ ]

    [ ][ ] [ ][ ] [ ]

    =

    3

    2

    1

    3333233

    3232212

    1211

    3

    2

    1

    d

    d

    d

    TKTKT

    TKKK

    KK

    F

    F

    F

    T

    T

    Frames Inclined or Skewed Supports

    =

    3

    3

    3

    2

    2

    2

    1

    1

    1

    3

    3

    3

    2

    2

    2

    1

    1

    1

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    d

    d

    d

    d

    d

    d

    XXXXXX

    XXXXXX

    XXXXXXXXXXXXXXX

    XXXXXXXXX

    XXXXXXXXXXXXXXX

    XXXXXX

    XXXXXX

    M

    F

    FM

    F

    FM

    F

    F

    =0

  • 8/13/2019 Review 01x

    26/26

    26

    ( ) ( )= L

    ddistribute xdxvxwW0

    Beam Elements

    Distributed loads: Work Equivalence Method

    22221111 mdfmdfW yyyydiscrete +++=

    ( )= L

    xdNxwm0

    21( )=

    L

    y xdNxwf0

    11

    ( )= L

    y xdNxwf0

    32 ( )=

    L xdNxwm0

    42

    Note, x refers to local coordinate, it takes values between 0 and L.