responses of fungal community composition to long‐term

12
MicrobiologyOpen. 2018;e597. | 1 of 12 https://doi.org/10.1002/mbo3.597 www.MicrobiologyOpen.com Received: 8 September 2017 | Revised: 2 January 2018 | Accepted: 9 January 2018 DOI: 10.1002/mbo3.597 ORIGINAL RESEARCH Responses of fungal community composition to long-term chemical and organic fertilization strategies in Chinese Mollisols Mingchao Ma 1,2 | Xin Jiang 1,3 | Qingfeng Wang 1 | Marc Ongena 2 | Dan Wei 4 | Jianli Ding 1,3 | Dawei Guan 1,3 | Fengming Cao 1,3 | Baisuo Zhao 3 | Jun Li 1,3 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China 2 Microbial Processes and Interactions Research Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium 3 Laboratory of Quality & Safety Risk Assessment for Microbial Products, Ministry of Agriculture, Beijing, China 4 The Institute of Soil Fertility and Environmental Sources, Heilongjiang Academy of Agricultural Sciences, Harbin, China Correspondence Xin Jiang and Jun Li, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China. Emails: [email protected]; [email protected] Funding information National Natural Science Foundation of China, Grant/Award Number: 41573066 and 31200388; National Key Basic Research Program of China, Grant/Award Number: 2015CB150506; the Foundation for Safety of Agricultural Products by Ministry of Agriculture, China, Grant/Award Number: GJFP201801202; Fundamental Research Funds for Central Non-profit Scientific Institution, Grant/Award Number: 1610132017010 Abstract How fungi respond to long-term fertilization in Chinese Mollisols as sensitive indica- tors of soil fertility has received limited attention. To broaden our knowledge, we used high-throughput pyrosequencing and quantitative PCR to explore the response of soil fungal community to long-term chemical and organic fertilization strategies. Soils were collected in a 35-year field experiment with four treatments: no fertilizer, chemical phosphorus, and potassium fertilizer (PK), chemical phosphorus, potassium, and nitro- gen fertilizer (NPK), and chemical phosphorus and potassium fertilizer plus manure (MPK). All fertilization differently changed soil properties and fungal community. The MPK application benefited soil acidification alleviation and organic matter accumula- tion, as well as soybean yield. Moreover, the community richness indices (Chao1 and ACE) were higher under the MPK regimes, indicating the resilience of microbial diver- sity and stability. With regards to fungal community composition, the phylum Ascomycota was dominant in all samples, followed by Zygomycota, Basidiomycota, Chytridiomycota, and Glomeromycota. At each taxonomic level, the community com- position dramatically differed under different fertilization strategies, leading to differ- ent soil quality. The NPK application caused a loss of Leotiomycetes but an increase in Eurotiomycetes, which might reduce the plant–fungal symbioses and increase nitro- gen losses and greenhouse gas emissions. According to the linear discriminant analysis (LDA) coupled with effect size (LDA score > 3.0), the NPK application significantly in- creased the abundances of fungal taxa with known pathogenic traits, such as order Chaetothyriales, family Chaetothyriaceae and Pleosporaceae, and genera Corynespora, Bipolaris, and Cyphellophora. In contrast, these fungi were detected at low levels under the MPK regime. Soil organic matter and pH were the two most important contribu- tors to fungal community composition. KEYWORDS fungal community composition, illumina miseq sequencing, inorganic fertilizer, manure, soil degradation

Upload: others

Post on 04-Jun-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Responses of fungal community composition to long‐term

MicrobiologyOpen. 2018;e597.  | 1 of 12https://doi.org/10.1002/mbo3.597

www.MicrobiologyOpen.com

Received:8September2017  |  Revised:2January2018  |  Accepted:9January2018DOI: 10.1002/mbo3.597

O R I G I N A L R E S E A R C H

Responses of fungal community composition to long- term chemical and organic fertilization strategies in Chinese Mollisols

Mingchao Ma1,2  | Xin Jiang1,3 | Qingfeng Wang1 | Marc Ongena2 | Dan Wei4 |  Jianli Ding1,3 | Dawei Guan1,3 | Fengming Cao1,3 | Baisuo Zhao3 | Jun Li1,3

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2018TheAuthors.MicrobiologyOpenpublishedbyJohnWiley&SonsLtd.

1InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing,China2MicrobialProcessesandInteractionsResearchUnit,GemblouxAgro-BioTech,UniversityofLiège,Gembloux,Belgium3LaboratoryofQuality&SafetyRiskAssessmentforMicrobialProducts,MinistryofAgriculture,Beijing,China4TheInstituteofSoilFertilityandEnvironmentalSources,HeilongjiangAcademyofAgriculturalSciences,Harbin,China

CorrespondenceXinJiangandJunLi,InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing,China.Emails:[email protected];[email protected]

Funding informationNationalNaturalScienceFoundationofChina,Grant/AwardNumber:41573066and31200388;NationalKeyBasicResearchProgramofChina,Grant/AwardNumber:2015CB150506;theFoundationforSafetyofAgriculturalProductsbyMinistryofAgriculture,China,Grant/AwardNumber:GJFP201801202;FundamentalResearchFundsforCentralNon-profitScientificInstitution,Grant/AwardNumber:1610132017010

AbstractHowfungirespondtolong-termfertilizationinChineseMollisolsassensitiveindica-torsofsoilfertilityhasreceivedlimitedattention.Tobroadenourknowledge,weusedhigh-throughputpyrosequencingandquantitativePCRtoexploretheresponseofsoilfungalcommunitytolong-termchemicalandorganicfertilizationstrategies.Soilswerecollected ina35-year fieldexperimentwith four treatments:no fertilizer, chemicalphosphorus,andpotassiumfertilizer(PK),chemicalphosphorus,potassium,andnitro-gen fertilizer (NPK), andchemicalphosphorus andpotassium fertilizerplusmanure(MPK).Allfertilizationdifferentlychangedsoilpropertiesandfungalcommunity.TheMPKapplicationbenefitedsoilacidificationalleviationandorganicmatteraccumula-tion,aswellassoybeanyield.Moreover,thecommunityrichnessindices(Chao1andACE)werehigherundertheMPKregimes,indicatingtheresilienceofmicrobialdiver-sity and stability. With regards to fungal community composition, the phylumAscomycotawasdominant inall samples, followedbyZygomycota,Basidiomycota,Chytridiomycota,andGlomeromycota.Ateachtaxonomiclevel,thecommunitycom-positiondramaticallydifferedunderdifferentfertilizationstrategies,leadingtodiffer-entsoilquality.TheNPKapplicationcausedalossofLeotiomycetesbutanincreaseinEurotiomycetes,whichmightreducetheplant–fungalsymbiosesandincreasenitro-genlossesandgreenhousegasemissions.Accordingtothelineardiscriminantanalysis(LDA)coupledwitheffectsize(LDAscore>3.0),theNPKapplicationsignificantlyin-creasedtheabundancesoffungaltaxawithknownpathogenictraits,suchasorderChaetothyriales,familyChaetothyriaceaeandPleosporaceae,andgeneraCorynespora,Bipolaris,andCyphellophora.Incontrast,thesefungiweredetectedatlowlevelsundertheMPKregime.SoilorganicmatterandpHwerethetwomostimportantcontribu-torstofungalcommunitycomposition.

K E Y W O R D S

fungalcommunitycomposition,illuminamiseqsequencing,inorganicfertilizer,manure,soildegradation

Page 2: Responses of fungal community composition to long‐term

2 of 12  |     MA et Al.

1  | INTRODUCTION

Mollisols(blacksoilregions)arewidelydistributedinnortheastChinaandareconsideredhighlyfertilesoils.Consequently,theseblacksoilregions have become important agricultural areas for grain produc-tionandcultivation(Zhaoetal.,2015).However,severaldecadesofexcessivecultivationandintensivefertilizationhavecausedsubstan-tial loss of soil and soil productivity (Liu etal., 2015; Singh,Verma,Ansari,&Shukla,2014).Inappropriatechemicalfertilizerapplicationscauseserioussoildegradationandenvironmentalpollution(Yinetal.,2015), especially the overuse of nitrogen (N) fertilizers,which havea litanyof consequences, including climate change, greenhouse gasemission,marineandfreshwatereutrophication,soilacidificationandsoilmicrobialdiversity,activity,andbiomassreduction(Edwards,Zak,Kellner,Eisenlord,&Pregitzer,2011;Guoetal.,2010;Ramirez,Craine,&Fierer,2012;Zhouetal., 2015).Furthermore, excessiveuseofNfertilizercanalterthedynamicsofplantpopulations,causechangesinplantspeciescompositions,andincreasetheconcentrationsofel-ements likemanganese, iron,andaluminum,whichharmplantsatahighconcentration(Clarketal.,2007;Johnson,Wolf,&Koch,2003).

TheabovementionedproblemswillbedifficulttosolveaslongasexcessiveNfertilizationinputscontinue,thusreductionsinchemicalfertilizer application have been advocated (Williams, Börjesson, &Hedlund,2013).OrganicamendmentscansupplyNtocropsandarebeneficialforsoilquality,causingresidualNeffectstheyearaftertheirapplication(Schröder,Uenk,&Hilhorst,2007).Manure,asanimport-antsourceoforganicmatter(OM),isaneffectivesubstituteforchem-icalNinputsanditsusecouldsolvetheproblemswithoutdecreasingcropyields(Dingetal.,2017).However,weknowlessabouttheef-fectsofmanureapplicationonsoilmicroorganisms,whicharevaluableindicatorsofsoilqualityandare involved instabilizingsoilstructure(Chuetal.,2007;Romaniuk,Giuffré,Costantini,&Nannipieri,2011).Comparedwithbacteria,soilfungaldiversityismoresensitivetosoilfertility(He,Zheng,Chen,He,&Zhang,2008),duetotheirorganicNandphosphorus(P)acquisitioncapabilities(Behie&Bidochka,2014;Näsholm,Kielland,&Ganeteg,2009)andimportantrolesinnutrientcycling(Cairney,2011;Szuba,2015).Astableandappropriatefungalcommunity composition is alsobeneficial for soil biochemical cycle,and also leads to a healthy and stable surrounding ecosystem forplants (Sun,Liu,Yuan,&Lian,2016).Thus, it isofcrucial interesttoinvestigatesoilfungalcommunities.

In our previous studies, the impacts of long-term fertilizationson bacterial community composition have been examined (Zhouetal.,2015).Inorganicfertilizationledtoasignificantdecreaseinthebiodiversity and abundance of bacteria, and the influence of moreconcentrated fertilizer treatments was greater than that of lowerconcentrations. However, a comprehensive understanding of thefungal responses is still unclear, especiallywhen organicmanure issubstitutedforchemicalNfertilizer.Inthisstudy,soilswerecollectedduringa35-yearfieldexperimentintheChineseMollisols,andhigh-throughputpyrosequencingandquantitativePCR(qPCR)technologywere performed to analyze soil fungal community composition andabundance.Here,wehypothesize that: (1) thedifferences in fungal

communitycompositionandabundancearearesultoflong-termfer-tilizationstrategiesthatinduceschangesinsoilproperties;(2)manurehelpsshiftthesoilfungalcommunitytoagoodstatus,whereaschemi-calfertilizerapplicationsexhibittheoppositepattern;and(3)theshiftsoffungalcommunitymaymainlyresultfromchangesinthesoilpHandOM.Insummary,understandingtheresponsesoffungalcommunitycompositiontodifferentfertilizationstrategiesisnotonlyaneffectivewaytorevealtherelationshipbetweenintensivefertilizationandblacksoil degradation but is alsomeaningful for determining appropriatefertilizationapplicationstoimproveandmaintainsoilfertility.

2  | MATERIALS AND METHODS

2.1 | Field experiments and soil sampling

Thisstudyhasbeenperformedinanexperimentalfieldwithawheat–maize–soybeancroprotationsince1980inHarbinCity,HeilongjiangProvince,China (45°40′N, 126°35′E). The climate for this region ischaracterized as typical temperate monsoon, with an annual meanairtemperatureof3.5°C,evaporationof1,315mmandprecipitationof533mm.Thefieldexperimentwassetupasablockdesignwiththreereplicates,witheachblockcomprisedofadifferenttreatmentrandomized inplotsof9×4m.Chemical fertilizerswereappliedasurea(75kg/hm2),calciumsuperphosphateplusammoniumhydrogenphosphate(150kg/hm2),andpotassiumsulfate(75kg/hm2),respec-tively.Thehorsemanurewasusedatapproximately18,600kg/hm2. Moredetailson theexperimental fieldwere shown inourpreviousstudy(Weietal.,2008).

SoilswerecollectedamongplantrowsafterthesoybeanharvestinSeptember2014.Fourtreatmentswiththreereplicateswerechosen:nofertilizer (CK),chemicalPandpotassium(K)fertilizer (PK),chem-icalN,PandK fertilizer (NPK), andchemicalPandK fertilizerplusmanure (MPK). Foreach replicateplot inevery treatment, six coreswererandomlycollectedintheploghedsoillayer(5–20cm)afterre-movingplantresiduesandgravels.Coreswerecombinedandmixeduniformlytoobtainahomogeneousblendandsubsampledintothreeparts.Onepartwasreservedat−80°C,andtheothertwowereusedastwosubsamples.Atotalof24soilsubsampleswereobtained.Soilchemicalpropertiesandmolecularanalyseswereperformedforeachsubsample.

2.2 | Analyses of soil chemical properties and soybean yield

Soilchemicalproperties,includingsoilpH,OM,TotalN(TN),nitratenitrogen(NO3

−–N),ammoniumnitrogen(NH4+–N),TotalP(TP),avail-

ableP(AP),TotalK(TK),andavailableK(AK)wereanalyzedafterbeingairdriedatroomtemperatureandpassedthrougha2.0-mmsieve.SoilpHwasmeasuredwithapHmeterusinga1:1sample:waterextract.SoilOMwasassayedbyapplying theK2Cr2O7-capacitancemethod(Strickland & Sollins, 1987). TN was measured using the Kjeldahlmethod(Huangetal.,2007).NH4

+–NandNO3−–Nwereextractedby

2mol/LKClsolutionandsubjectedtoflowinjectionanalysisaccording

Page 3: Responses of fungal community composition to long‐term

     |  3 of 12MA et Al.

toHart, Stark,Davidson, and Firestone (1994).AmodifiedmethodofresinextractionwasusedfortheAPanalysis (Hedley&Stewart,1982),andTPwasdeterminedusingthecolorimetricmethod (Garg& Kaushik, 2005). TK andAKwere analyzed by atomic absorptionspectrometerand flamephotometry, respectively, as recommendedbyHelmkeandSparks (1996)andHabib, Javid,Saleem,Ehsan,andAhmad (2014). Soybean yields under different conditions were re-cordedafterharvest.

2.3 | Total DNA extraction

TotalDNAwas extracted from0.25g soil in each subsampleusingaMOBIOPowerSoilDNA IsolationKit (Carlsbad,CA,USA)accord-ing to themanufacturers’ protocol withmodifications (Fierer etal.,2012). Briefly, six successive replicate extractionswere taken fromeachsubsampleandfixedtogetherasoneDNAtemplatetoprovideenoughtotalDNA(Zhouetal.,2016).DNApurificationfollowed,andthen,DNAconcentrationandquality(A260/A280)oftheextractswereestimatedvisuallyusingaNanoDropND-1000UVevis spectropho-tometer(ThermoScientific,Rockwood,TN,USA).

2.4 | qPCR analysis

ThesoilfungalabundancelevelswerequantifiedusingtheqPCRde-tectionsystem(AppliedBiosystems7500,CA,USA).Theinternaltran-scribedspacer(ITS)primersITS4F(5′-TCCTCCGCTTATTGATATGC-3′)andITS5(5′-GGAAGTAAAAGTCGTAACAAGG-3′)wereusedtoamplifythefungalITSregionofribosomalRNAgeneasrec-ommendedbySchochetal.(2012).Thecomponentsofthereactionmixture (25μl) and the optimized conditions for amplificationwereaspreviouslyreported(Zhouetal.,2016).TheqPCRwascarriedoutwiththreereplicatesforeachsoilsubsample.Thestandardcurvewasgeneratedusing10-fold serial dilutionsof a plasmid containing theITSgeneinsert.Theabundancesofthebacterial16S rRNA gene cop-ieswerequantifiedusingthesamemethodasfortheITSgene,withprimers515Fand806R(Lauber,Ramirez,Aanderud,Lennon,&Fierer,2013),andpresentedinTableS1.Thevalueofthefungi/bacteriaratio(F/Bratio)wascalculatedbydividingtheITSgenecopynumberbythe16S rRNAgenecopynumber(Wurzbacher,Rösel,Rychła,&Grossart,2014).

2.5 | Illumina MiSeq sequencing

ThefungalITS1regionwasamplifiedusingtheprimersITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)andITS2(5′-GCTGCGTTCTTCATCGATGC-3′)aspreviouslydocumented(Bueeetal.,2009;Degnan&Ochman,2012;Dingetal.,2017).TheITS1F/ITS2primersarecon-sideredastheuniversalDNAbarcodemarkersforthemoleculariden-tificationoffungi(Blaalidetal.,2013;Schochetal.,2012).Barcodeswere connectedwithprimers andwereused to separate rawdata,allowingmultiplesamplestobepooledintoonerunofIlluminaMiSeqsequencing.TheconditionsofthePCRreactionwereasfollows:94°Cfor2min;32cyclesof94°Cfor30s,55°Cfor30sand72°Cfor30s;

and72°Cfor5min.PCRproductsweremixed(equimolarratio)afterpurification, creating aDNApool. Sequencing librarieswere gener-ated.Finally,thelibrariesweresequencedonIlluminaMiSeqplatformatPersonalBiotechnologyCo.,Ltd.(Shanghai,China).

2.6 | Data processing and statistical analyses

Barcode sequences were removed according to the methods ofEdgar,Haas,Clemente,Quince,andKnight(2011).TherawsequencereadswereprocessedusingQIIME(version1.7.0,http://qiime.org/)(Caporaso etal., 2010) and referring to the default parameters toobtain valid tags (Bokulich etal., 2013). Singletons, non-bacterialandnon-fungalOTUswere removed, and theOTUabundance lev-elswerenormalizedbasedon the samplewith the leastnumberofsequences.Toperforma faircomparisonbetweensamples,all sub-sequentanalyseswereperformedaccording to thenormalizeddata(Zhouetal.,2016).Then,operationaltaxonomicunitsdefinedbyclus-teringat the97%similarity levelweregeneratedandtaxonomicallyclassified using a BLAST algorithm against theUNITE database re-lease5.0(Koljalgetal.,2014)withaminimal80%confidenceestimate(Bokulich&Mills,2013).TheUNITEandINSDCfungalITSdatabaseswere used as references for classification (Abarenkov etal., 2010).ThesequenceswereuploadedanddepositedintheNationalCenterforBiotechnologyInformation (NCBI)SequenceReadArchive (SRA)undertheaccessionnumberSRP092759.

Thefungalα-diversityindex(includingShannon,Simpson,Chao1,andACE)wasanalyzedusingMothursoftware(version1.31.2,http://www.mothur.org/)(Schochetal.,2012).TheunweightedFastUniFracmetric was calculated to construct distance matrices using QIIME(Caporasoetal.,2010).Aprincipalcoordinateanalysis (PCoA)basedon theunweightedFastUniFracmetricwascarriedout tocomparebetween-samplevariationsinfungalcommunitycomposition(Marsh,OSullivan,Hill,Ross,&Cotter,2013).A lineardiscriminantanalysiscoupledwitheffectsize(LEfSe)wasperformedtodistinguishsignifi-cantly different fungal taxa betweenMPKandNPK regimes to thegenusorhighertaxonomylevel(Segataetal.,2011).ThesoftwareofCANOCO5.0wasusedforribosomaldatabaseproject(RDP)analysiswithaminimal60%threshold toexplorepossible linkagesbetweenfungalcommunityandsoilproperty,followedthemethodofBraakandSmilauer(2012).Ananalysisofvariancewasperformedonallexperi-mentaldatausingSPSS(v.19).Inalltests,ap-value<.05wasconsid-eredstatisticallysignificant.

3  | RESULTS

3.1 | Soil properties and soybean yields under different fertilization regimes

SoilpropertiesunderdifferentfertilizationregimesareshowninTable1.PKandNPKapplicationssignificantlydecreasedsoilpH,whereastheMPKapplicationalleviatedsoilacidification.TheMPKapplicationalsohad an accumulative effect on soilOM.Comparedwith theCK, thethreefertilizationstrategiessignificantly increasedtheconcentrations

Page 4: Responses of fungal community composition to long‐term

4 of 12  |     MA et Al.

ofAKandTK,aswellasAPandTP.TheNPKapplicationsignificantlyin-creasedtheTNconcentration,whereastheconcentrationsofNO3

−–NandNH4

+–NwerelowerthanundertheMPKregime.Inaddition,soy-beanyieldsweresignificantlyhigherunderthefertilizationregimes,withtheMPKapplicationbeingthemosteffectivestrategy(2702kg·ha−1).

3.2 | Fungal ITS gene copy number under different fertilization regimes

ThevaluesofthefungalITScopynumberrangedfrom1.62×106 to 6.67×106 g−1soilwithsignificantdifferences(Figure1a).Comparedwith theCK,PK,andNPKapplications increasedthe ITS gene cop-ies,resultinginasignificant increaseintheF/Bratio,whereasMPKapplications exhibited the opposite pattern (Figure1b). In addition,therewere significant positive correlations between ITS gene copy numberandTP(r=.613,p<.01)andAP(r=.435,p<.05),referringtoPearson’scorrelations(TableS2).Moreover,theF/Bratioshowedsignificantly negative correlations with soil pH (r=−.912, p<.01)andOM (r=−.572, p<.01), but was positively correlatedwith TN(r=.795,p<.01)andTP(r=.523,p<.01).

3.3 | Fungal diversity analysis under different fertilization regimes

A total of 1,399,128 raw sequence reads were obtained from theIlluminaMiSeqplatformanalysisof24soilsubsamples,and1,179,936effectivesequenceswereproducedafterprocessing.Thehigh-qualitypercentagewasmorethan82%,withameanreadlengthof280bp.MorestatisticaldataofsequencingindifferentsamplesaredetailedinTableS3.Rarefactionanalysis (FigureS1)displayedsimilartrendswherebythegreatestOTUoccurredundertheMPKregime,andthelowest value occurred in theNPK treatment. TheGood’s coveragevalues(0.991–0.992)indicatedthatthereweresufficientreadstoob-tainthefungaldiversity.Withregardstofungalcommunityrichnessindices(Table2),PKandNPKapplicationsreducedChao1andACEin-dices,whereastheMPKapplicationledtothegreatestindices.Inad-dition,Pearson’scorrelations(TableS2)showedthattheChao1indexwassignificantlypositivelycorrelatedwithOM(r=.564,p<.01).

APCoAwasperformedtoanalyzetheimpactsoffertilizationstrat-egiesonfungalcommunitystructure(Figure2).Thetwoaxes,PC1andPC2,explained32.78%and19.84%ofthetotalvariation,respectively.TheNPKplotslocatedinthelowerrightcornerandwerefarfromtheCK;whereasPKandMPKplotswereclusteredtogetherandlocatedinthemiddle.ComparedwiththeCK,long-termfertilizationstrategiesclearlychangedthefungalcommunitycompositionduetotheeffectsofchemicalNinputs.

3.4 | Fungal community compositions and relative abundance under different fertilization regimes

Phyla Ascomycota, representing 70.83%–76.16% of the total se-quences,wasdominant,followedbyZygomycota(15.56%–19.22%),Basidiomycota (6.14%–10.72%), Chytridiomycota (0.94%–3.37%),T

ABLE 1 Soilpropertiesandsoybeanyieldunderdifferentfertilizationregimes

Fert

iliza

tion

regi

mes

pHO

M (g

·kg−1

)A

K (g

·kg−1

)TK

(g·k

g−1)

NH

4+ (mg·

kg−1

)N

O3− (m

g·kg

−1)

TN (g

·kg−1

)A

P (g

·kg−1

)TP

(g·k

g−1)

Soyb

ean

yiel

d (k

g·ha

−1)

CK6.43±0.08c

24.39±0.37a

0.17±0.03a

6.30±0.89a

35.01±1.16a

2.45±0.88a

1.20±0.05a

0.02±0.01a

0.44±0.03a

1812.67±141.99a

PK6.18±0.04b

25.51±0.30c

0.24±0.01b

28.57±2.25b

37.80±2.95a

3.62±0.57b

1.26±0.03a

0.89±0.04c

0.73±0.02c

2377.33±118.85bc

NPK

5.54±0.04a

24.88±0.25b

0.23±0.03b

30.36±1.02b

37.30±6.29a

4.53±0.91bc

1.43±0.08b

0.94±0.06d

0.70±0.02bc

2241.33±186.11b

MPK

6.38±0.05c

27.47±0.41d

0.23±0.03b

28.43±3.93b

39.36±6.95a

5.17±0.67c

1.20±0.03a

0.66±0.01b

0.61±0.05b

2702.67±169.39c

Valuesaremeans±standarddeviations(n=6).Valueswithinthesamecolumnfollowedbydifferentlettersindicatesignificantdifferences(p<.05)accordingtoTukey’smultiplecomparison.

Fertilizationregimes:CK,nofertilizer;PK,chemicalphosphorusandpotassiumfertilizer;NPK,chemicalphosphorus,potassium,andnitrogenfertilizer;MPK,chemicalphosphorusandpotassiumfertilizerplus

manure.

Soilproperties:AP,availablephosphorus;AK,availablepotassium;NH

4+ ,ammoniumnitrogen;NO

3− ,nitratenitrogen;TK,totalpotassium;TP,totalphosphorus;TN,totalnitrogen;OM,organicmatter.

Page 5: Responses of fungal community composition to long‐term

     |  5 of 12MA et Al.

andGlomeromycota(0.28%–0.83%)(Figure3).ComparedwiththeCK,theMPKapplicationsignificantly increasedtherelativeabun-danceof thephylaAscomycota,whichdecreasedunder theNPKregime.Sordariomyceteswasdominantatclass level, followedbyIncertae_sedis_Zygomycota,Leotiomycetes,andDothideomycetes(shown in Figure4, at least one groupwith a relative abundance>0.1%). NPK and MPK applications significantly increased therelative abundance of Sordariomycetes, but decreased those ofLeotiomycetes and Dothideomycetes. The abundances of theclasses Eurotiomycetes and Tremellomycetes were significantlyhigherundertheNPKregimethanundertheothers.All theferti-lization treatments hadpositive effects on thePezizomycetes.Atthegenuslevel(Figure5),allthefertilizationstrategiessignificantlydecreasedtherelativeabundancesofMortierella,Chaetomium,andEpicoccum, butPenicilliumwas increased.Periconia and Ilyonectria were lower under the NPK and MPK regimes. In particular, thechemical N fertilizer significantly increased the abundances ofChaetomidiumandCorynespora.

3.5 | Significantly different fungal taxa occurred under the NPK and MPK regimes

TheLEfSeanalysisdistinguishedthepresenceofsignificantlydifferentfungaltaxaundertheNPKandMPKregimes(averagerelativeabun-dance>0.01; Figure6). The linear discriminant analysis score was

greater than3.0.TheMPK-treated sampleshad significantlyhigherabundanceofthephylumAscomycota,andgeneraMycothermusandPericonia, whereas the phyla Basidiomycota and Chytridiomycota,the order Chaetothyriales,thefamiliesChaetomiaceae,Pleosporaceae, and Chaetothyriaceae, and genera Chaetomidium, Bipolaris, andCyphellophorawereoverrepresentedundertheNPKregime.

3.6 | Correlation between fungal community composition and soil properties

Basedontheredundancyanalysis(Figure7),alltheselectedsoilprop-ertiesaccountedfor56.8%oftheexplanatoryvariablesinthefungalcommunity composition among the samples. The primary contribu-torsinshiftingthefungalcommunityweresoilOM(F=4.5,p =.002)andpH(F=4.1,p=.002),whichindividuallyaccountedfor14.9%and15.7%ofthevariation,respectively.Theothersoilpropertiesaffectedfungalcommunitycompositioninthefollowingorder:AK>AP>TN>TP>NO3

−–N=NH4+–N>TK.Inaddition,theplotsofCK,PK,NPK

andMPKwerewellgroupedandseparatedfromtheNPKplot.Pearson’scorrelations(TableS4)showedthatAscomycotawaspos-

itivelycorrelatedwithOM(r=.709,p<.01)andpH(r=.508,p<.05),whereasZygomycotawasnegativelycorrelatedwithAP,AK,OM,TK,TP,andNO3

−–N(p<.01).SoilpHhadnegativeimpactsonBasidiomycota;however,theeffectofTNwaspositive.BothAPandTPwerepositivelycorrelated(p<.01)withChytridiomycotaandGlomeromycota.

F IGURE  1 ResultsofthequantitativePCR.(a)TheabundanceoffungiasindicatedbythenumberofITScopies;(b)Fungi/Bacteriaratiosunderdifferentfertilizationregimes.Samelettersabovecolumnsindicatenosignificantdifference(p <.05,Tukey’stest)

TABLE  2 Estimatednumbersofobservedoperationaltaxonomicunits(97%similarity)anddiversityofsoilindifferentfertilizationregimes

Fertilization regimes Observed species Chao1 Ace Simpson Shannon Goods coverage

CK 895.83±59.44a 1050.1±46.2a 1084.1±80.8ab 0.979±0.016a 7.22±0.27ab 0.992±0.0015a

PK 877.33±97.73a 1028.6±37.9a 1040.9±57.8a 0.987±0.002a 7.46±0.21b 0.992±0.0019a

NPK 812.00±40.87a 1034.1±54.5a 1049.0±41.9a 0.985±0.003a 7.19±0.14a 0.992±0.0020a

MPK 914.17±167.33a 1140.2±101.7b 1164.8±101.6b 0.986±0.004a 7.40±0.14ab 0.991±0.0038a

Valueswithinthesamecolumnfollowedbydifferentlettersindicatesignificantdifferences(p<.05)accordingtoTukey’smultiplecomparison.

Page 6: Responses of fungal community composition to long‐term

6 of 12  |     MA et Al.

4  | DISCUSSION

4.1 | Improvements in soil acidification, OM accumulation, and soybean yield

Long-termchemicalfertilizerapplications,especiallytheNPKapplica-tion,significantlyincreasedsoilacidification;however,manurecouldeffectively alleviate soil acidification, perhaps due to the bufferingfunctionsoforganicacids,carbonates,andbicarbonates (García-Gil,Ceppi, Velasco, Polo, & Senesi, 2004; Whalen, Chang, Clayton, &Carefoot,2000).Furthermore,manurehadmacronutrientstatus,con-tributingtothesignificantaccumulationofsoilOM(Xieetal.,2014).Inturn,thehighproductivityresultingfromorganicmanureincreasestheamountsofOMinthesoil,intheformofrootexudates,decayingrootsandabovegroundresidues,whicharebeneficialforsoilOMac-cumulation(Geisseler&Scow,2014).Inaddition,soybeanyieldsweresignificantlyhigherunderthefertilizationregimes,withtheMPKap-plication being themost effective fertilization strategy. The resultsagreedwellwithotherfindings(Zhaoetal.,2014).

4.2 | Changes in the ITS gene’s abundance and F/B ratio

ComparedwiththeCK,ITSgenecopieswereincreasedunderbothPKandNPKregimes,whichconfirmedthepositivestimulatoryeffectsofchemicalfertilizeronfungalpopulations(Zhouetal.,2016).Moreover,Pearson’s correlations showedpositive correlationsbetween fungalabundanceandAP(r=.435,p<.05)andTP(r=.613,p<.01),whichwerequitesimilartootherfindings(Kuramaeetal.,2012).

Inaddition, theF/B ratiowasconsideredan indicatorofeco-systemprocesses,asthechangesinratiowerelikelytoberelatedtodecomposition,nutrientcycling,C-sequestrationpotential,andecosystemself-regulation(Strickland&Rousk,2010).Inthisstudy,the F/BratiosunderCKandMPKregimeswerelowerthanthoseofPKandNPK,probablydue to theacidificationof soil inducedby chemical inputs.As documented by Joergensen andWichern(2008) and Rousk, Brookes, and Bååth (2009), fungi have beenfoundtobemoreacidtolerantthanbacterialeadingtoincreasedfungaldominanceinacidicsoils.Moreover,theF/Bratiowashigh-est under thePK regimeprobably due to thebetter adaptabilityoffungalspeciestoNlimitationcomparedwithbacteria(Rousk&Frey,2015).TheF/BratioundertheMPKregimewassignificantlylowerthanothers,indicatingahigherturnoverrateofeasilyavail-able substrates (Rousk, Brookes, & Bååth, 2010) and highly pro-ductivecropsoils(Strickland&Rousk,2010).Additionally,theF/B ratio was significantly positive correlatedwith soil pH (r=.648,p<.01), thismightbedue to thedifferent responsesofbacteriaand fungi to lower pH levels, namely the significant suppressiveeffectofbacteriaandwelltoleranceoffungi(Coyne,1999;Rousk,Bååth,etal.,2010).

4.3 | Effects on fungal α- diversity

Microbialdiversity insoilwasclosely relatedtosoilqualityandthenutrient cycling rate (Nevarezetal.,2009).The richer thebiodiver-sity,themorestablethesoil(Chaer,Fernandes,Myrold,&Bottomley,2009).Thelowerbiodiversityoffungialsocausedunsustainablecropproduction and an unstable ecosystem (Maček etal., 2011). In this

F IGURE  2 PCoAofthepyrosequencingreadsbasedontheunweightedFastUniFracmetric

Page 7: Responses of fungal community composition to long‐term

     |  7 of 12MA et Al.

study,PKandNPKapplicationsreducedthefungalcommunityrich-ness indices (Chao1andACE),whereastheMPKapplicationsignifi-cantlyincreasedthem.Thismightbeexplainedbythecomplexorganiccompounds present inmanure requiring variousmicroorganisms todegrade.Theresultsconfirmedpreviousfindingsthatahighmicrobialdiversitywasalwaysfoundunderorganicamendmentregimesrather

than chemical regimes (Esperschütz, Gattinger, Mäder, Schloter, &Fließbach,2007).Comparedwithsoilnutrients,theChao1indexwaspositivelycorrelatedwithsoilOM(r=.564,p<.01),whichprobablyprovidedmacronutrient for fungi and stimulated themicrobial bio-massanddiversity(Peacocketal.,2001).Inconclusion,thesubstitu-tionofchemicalNfertilizerwithorganicmanure,whichisbeneficial

F IGURE  3 Relativeabundanceofphylogeneticphylaunderdifferentfertilizationregimes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CK PK MPK NPKre

lativ

e ab

unda

nce

treatments

Others

Glomeromycota

Chytridiomycota

Basidiomycota

Zygomycota

Ascomycota

F IGURE  4 Relativeabundanceofphylogeneticclassesunderdifferentfertilizationregimes.Atleastonegroup’srelativeabundanceismorethan0.1%ofthetotalsequences

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CK PK MPK NPK

rela

tive

abun

danc

e

Treatments

other

Incertae_sedis_Ascomycota

Chytridiomycetes

Pezizomycetes

Agaricomycetes

Eurotiomycetes

Tremellomycetes

Dothideomycetes

Leotiomycetes

Incertae_sedis_Zygomycota

Sordariomycetes

F IGURE  5 Relativeabundanceofphylogeneticgeneraunderdifferentfertilizationregimes.Atleastonegroup’srelativeabundanceismorethan1%ofthetotalsequences

0%

2%

4%

6%

8%

10%

12%

14%

CK PK MPK NPK

rela

tive

abun

danc

e

Treatments

Chaetomium

Periconia

Epicoccum

Ilyonectria

Bipolaris

Chaetomidium

Corynespora

Penicillium

Mor�erella

Page 8: Responses of fungal community composition to long‐term

8 of 12  |     MA et Al.

for the resilienceofmicrobialdiversity (Naeem&Li,1997)andsoilproductivity(Sapp,Harrison,Hany,Charlton,&Thwaites,2015),wasagoodwaytoreduceanthropogenicNinputs.

4.4 | Impact on fungal community composition

The phylum Ascomycota was dominant in all the fertilization re-gimes. Similar results have been observed in other studies (Xiongetal., 2014; Li, Ding, Zhang, & Wang, 2014). The abundance ofAscomycotaundertheNPKregimewaslowerthanunderthePKandMPKregimes,whichcontrastedwithotherfindingsthatAscomycotawas enhanced by relatively high N inputs (Nemergut etal., 2008;Paungfoo-Lonhienneetal.,2015).ThiscouldbeexplainedbythefactthatmembersoftheAscomycotaareadaptedtotheappropriateNcontent(Klaubaufetal.,2010)butwerevulnerabletoexcessNlevels(Wangetal.,2015).

Attheclasslevel,Sordariomyceteswasthemostdominantmem-ber,inlinewithotherfindings(Zhouetal.,2016).ComparedwiththeCKandPKapplication,therelativeabundancesofSordariomycetesweresignificantlyhigherundertheNPKandMPKregimes,proba-blyduetosufficientnutrients insoil (Dingetal.,2017).However,Dothideomycetesshowedtheoppositepattern,namely,theyweresignificantlylowerundertheNPKandMPKregimes,indicatingpos-itiveeffectsonsoilquality,asmanyofthetaxaappearedtobeplantpathogens(Lyons,Newell,Buchan,&Moran,2003).LeotiomycetesdominancewaslowestundertheNPKregime,indicatinganegative

F IGURE  6 HistogramofthelineardiscriminantanalysisscorescomputedforfeaturesdifferentiallyabundantbetweenNPKandMPKsamplesidentifiedbyLEfSe(LDAscore>3)

F IGURE  7 Redundancyanalysisofsoilbacterialcommunitiesandsoilcharacteristicsforindividualsamples.Soilfactorsindicatedinredtextincludeavailablephosphorus(AP),availablepotassium(AK),pH,soilconcentrationofNH4

+(NH4+),soilconcentrationofNO3

− (NO3

−),totalnitrogen(TN),totalpotassium(TK),totalphosphorus(TP),andorganicmatter(OM)

Page 9: Responses of fungal community composition to long‐term

     |  9 of 12MA et Al.

correlation with the chemical N input (Freedman, Romanowicz,Upchurch, & Zak, 2015; Zhou etal., 2016). The decline ofLeotiomycetesunderNPKregimeprobablycausedalossofplant–fungalsymbiosesunderhighNinputconditions(Deanetal.,2014).Additionally,theNPKapplicationproducedahigherabundanceofTremellomycetes,whichprobablybenefitedinorganicmatterdecay(Freedmanetal.,2015).TheabundanceofEurotiomyceteswasalsohigher under theNPK regime, probably causingN loss in the soiland greenhouse gas emissions due to its N2O-producing activity(Jasrotiaetal.,2014;Mothapo,Chen,Cubeta,Grossman,&Fuller,2015). The abundances of Pezizomycetes were significantly highunderall the fertilization regimes,whichmaybe the resultof soilOMaccumulationduetodecayingwood,dung,leaflitter,andtwigs(Stajich,2015).

Athoroughinvestigationatthegenusorhighertaxonomiclevelshowed differences among the treatments. More harmful fun-gal taxa with known pathogenic traits were also overrepresentedunder theNPK regime, suchas theorderChaetothyriales, familiesChaetothyriaceae, Pleosporaceae, and Chaetomiaceae, and generaCorynespora, Bipolaris, and Cyphellophora Chaetomidium. The order Chaetothyriales, familyPleosporaceae and genusChaetomidium arewell-known for their animal and human opportunistic pathogens(Arzanlou, Khodaei, & Saadati Bezdi, 2012; Sajeewa etal., 2015;Winka,Eriksson,&Bång,1998).AndfamilyChaetomiaceaeincludesnumeroussoil-born,saprotrophic,endophytic,andpathogenicfungi(Zámockyetal.,2016),andalso,severalCyphellophoraspecieshavealso been associated with potential pathogens (Decock, Delgado-Rodríguez, Buchet,& Seng, 2003).Moreover, some isolateswithinCorynesporaarepathogenictoawiderangeofhosts(Dixon,Schlub,Pernezny, & Datnoff, 2009) and Bipolaris causes significant yieldlosses as a foliar disease constraint (Road, 2002).Obviously, long-termNPKapplicationsmayinducetheincidenceratesoffungaldis-eases.Incontrast,thesefungiweredetectedatlowlevelsundertheMPK regime.Meanwhile, the genusMycothermuswas also signifi-cantlymoredominantundertheMPKregime,whichbenefitsthede-compositionofcellulosebecauseofitsappreciabletitersofcellulasesandhemicellulases(Basotra,Kaur,DiFalco,Tsang,&Chadha,2016).Thus,manurehelpsshiftthesoilfungalcommunitytoagoodstatus,whereaschemicalfertilizerapplicationsexhibittheoppositepattern.

4.5 | Soil properties effects on fungal community composition

Inlinewithpreviousfindings(Liuetal.,2015;Dingetal.,2017),weconcludedthatsoilOMandpHwerethemostimportantcontributorstothevariation inthefungalcommunitycomposition,basedontheredundancyanalysis.AsdocumentedbyBroeckling,Broz,Bergelson,Manter,andVivanco (2008), themajorityof fungiareheterotrophsanddependonexogenousC forgrowth, thus labileOMhasapro-foundinfluenceontheirabundance.Moreover,soilpHalsoplayedakeyroleinshapingfungalcommunitycomposition(Dingetal.,2017;Kimetal.,2015).ThiscouldbeexplainedbythemoresensitivityoffungitoapHchange(Liuetal.,2015).Additionally,soilpHmayaffect

fungalcommunitycompositionbyrespondingtoothervariablesandmayprovideanintegratedindexofsoilconditions.Hydrogenioncon-centration varies bymanyorders ofmagnitude across various soilsand, as numerous soil properties are related to soil pH, these fac-torsmayhavedriventheobservedshiftsincommunitycomposition(Rousk,Bååth,etal.,2010;Shenetal.,2013;Xiongetal.,2012).Thus,soilmicroorganismscouldrapidlyrespondtothechangesintheenvi-ronmental conditions (Eilers,Debenport,Anderson,&Fierer,2012),suchassoilchemicalorphysicalpropertiesinducedbyfertilization.Inturn,shiftsinmicroorganismcompositioncouldinfluencesoilqualityandplantgrowth.

Inaddition,long-termdifferentfertilizationstrategieshadsignifi-canteffectsonbacterialβ-diversityandshapedvariantmicrobialcom-positionsinthesoil(Zhouetal.,2017).Inthisstudy,aPCoArevealedtherelationshipbetweensoilfertilizationandthefungalcommunity.TheNPKplot,locatedinthelowerrightcorner,wasfarfromtheCKplot,indicatingastrongeffectofchemicalfertilizer;however,thePKandMPKplotswereclusteredtogetherandneartheCKplot,suggest-ing theeffective resilienceoforganicmanureon fungal communitystructure,inlinewithDingetal.(2017).

5  | CONCLUSION

Ourfindingsdeterminedtheresponsesofsoilfungalcommunitycom-positiontolong-termfertilizationstrategiesinblacksoil.SuchshiftsmaymainlybederivedfromchangesinthesoilpHandOM.Comparedwithchemicalfertilization,manureapplicationsalleviatedsoilacidifi-cation,accumulatedsoilOM, increasedsoilnutrients, improvedsoilfungalcommunitycomposition,andrestoredsoilmicrobialalterations,leadingtoimprovementsofsoilqualityandsoybeanyield.Theresultshighlightedthepotentialoforganicmanureasasubstituteforchemi-calNfertilizersinthesustainabledevelopmentofChineseMollisols.

ACKNOWLEDGMENTS

ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(No.41573066andNo.31200388),theNationalKeyBasicResearch Program of China (973 Program: 2015CB150506), theFoundationforSafetyofAgriculturalProductsbyMinistryofAgriculture,China (GJFP201801202), and the Fundamental Research Funds forCentral Non-profit Scientific Institution (No. 1610132017010). WethanktheUniversityofLiège-GemblouxAgro-BioTechandmorespe-cificallytheresearchplatformAgricultureIsLifeforthefundingofthescientificstayinBelgiumthatmadethispaperpossible.

CONFLICT OF INTEREST

Noconflictofinterestisdeclared.

ORCID

Mingchao Ma http://orcid.org/0000-0003-2609-321X

Page 10: Responses of fungal community composition to long‐term

10 of 12  |     MA et Al.

REFERENCES

Abarenkov, K., Henrik Nilsson, R., Larsson, K. H., Alexander, I. J.,Eberhardt, U., Erland, S., … Sen, R. (2010). The UNITE databasefor molecular identification of fungi–recent updates and fu-ture perspectives. New Phytologist, 186(2), 281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x

Arzanlou, M., Khodaei, S., & Saadati Bezdi, M. (2012). Occurrence ofChaetomidium arxii on sunn pest in Iran.Mycosphere, 3, 234–239.https://doi.org/10.5943/mycosphere/

Basotra, N., Kaur, B., Di Falco, M., Tsang, A., & Chadha, B. S. (2016).Mycothermus thermophilus (Syn. Scytalidium thermophilum):Repertoireofadiversearrayofefficientcellulasesandhemicellulasesin the secretome revealed. Bioresource Technology, 222, 413–421.https://doi.org/10.1016/j.biortech.2016.10.018

Behie,S.W.,&Bidochka,M.J.(2014).Nutrienttransferinplant-fungalsym-bioses. Trends in Plant Science,19,734–740.https://doi.org/10.1016/j.tplants.2014.06.007

Blaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., &Kauserud, H. (2013). ITS1 versus ITS2 as DNA metabarcodesfor fungi. Molecular Ecology Resources, 13, 218–224. https://doi.org/10.1111/1755-0998.12065

Bokulich, N. A., & Mills, D. A. (2013). Improved selection of internaltranscribed spacer-specific primers enables quantitative, ultra-high-throughputprofilingof fungalcommunities.Applied and Environment Microbiology,79,2519–2526.https://doi.org/10.1128/AEM.03870-12

Bokulich,N.A.,Subramanian,S.,Faith,J.J.,Gevers,D.,Gordon,J.I.,Knight,R.,…Caporaso,J.G.(2013).Quality-filteringvastlyimprovesdiversityestimates from Illumina amplicon sequencing. Nature Methods, 10,57–59.

Braak,C.J.F.,&Smilauer,P.(2012).Canocoreferencemanualanduser’sguide:softwareforordination,version5.0.IthacaUSAMicrocomput.Power.

Broeckling,C.D.,Broz,A.K.,Bergelson,J.,Manter,D.K.,&Vivanco,J.M.(2008).Rootexudatesregulatesoilfungalcommunitycompositionanddiversity. Applied and Environment Microbiology,74,738–744.https://doi.org/10.1128/AEM.02188-07

Buee,M.,Reich,M.,Murat,C.,Morin,E.,Nilsson,R.H.,Uroz,S.,&Martin,F.(2009).454Pyrosequencinganalysesofforestsoilsrevealanunex-pectedlyhighfungaldiversity.New Phytologist,184,449–456.https://doi.org/10.1111/j.1469-8137.2009.03003.x

Cairney,J.W.G.(2011).Ectomycorrhizalfungi:Thesymbioticroutetotherootforphosphorusinforestsoils.Plant and Soil,344,51–71.https://doi.org/10.1007/s11104-011-0731-0

Caporaso,J.G.,Kuczynski,J.,Stombaugh,J.,Bittinger,K.,Bushman,F.D.,Costello,E.K.,…Huttley,G.A.(2010).QIIMEallowsanalysisofhigh-throughput community sequencingdata.Nature Methods,7(5), 335–336.https://doi.org/10.1038/nmeth.f.303

Chaer,G.,Fernandes,M.,Myrold,D.,&Bottomley,P.(2009).Comparativeresistanceandresilienceofsoilmicrobialcommunitiesandenzymeac-tivitiesinadjacentnativeforestandagriculturalsoils.Microbial Ecology,58,414–424.https://doi.org/10.1007/s00248-009-9508-x

Chu,H.,Lin,X.,Fujii,T.,Morimoto,S.,Yagi,K.,Hu,J.,&Zhang,J.(2007).Soil microbial biomass, dehydrogenase activity, bacterial commu-nity structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39, 2971–2976. https://doi.org/10.1016/j.soilbio.2007.05.031

Clark,C.M.,Cleland,E.E.,Collins,S.L.,Fargione,J.E.,Gough,L.,Gross,K.L.,…Grace,J.B.(2007).Environmentalandplantcommunitydetermi-nantsofspecieslossfollowingnitrogenenrichment.Ecology Letters,10,596–607.https://doi.org/10.1111/j.1461-0248.2007.01053.x

Coyne,M.S. (1999).Soil microbiology: An exploratory approach.NY,USA:DelmarNewYork.

Dean, S. L., Farrer, E.C.,Taylor,D. L., Porras-Alfaro,A., Suding,K.N.,&Sinsabaugh, R. L. (2014). Nitrogen deposition alters plant–fungal

relationships: Linking belowground dynamics to aboveground veg-etation change. Molecular Ecology, 23, 1364–1378. https://doi.org/10.1111/mec.12541

Decock,C.,Delgado-Rodríguez,G.,Buchet,S.,&Seng,J.M.(2003).AnewspeciesandthreenewcombinationsinCyphellophora,withanoteonthetaxonomicaffinitiesofthegenus,anditsrelationtoKumbhamayaandPseudomicrodochium.Antonie van Leeuwenhoek,84(3),209–216.https://doi.org/10.1023/A:1026015031851

Degnan, P. H., & Ochman, H. (2012). Illumina-based analysis of micro-bial community diversity. ISME Journal, 6, 183–194. https://doi.org/10.1038/ismej.2011.74

Ding, J., Jiang, X., Guan, D., Zhao, B.,Ma,M., Zhou, B., … Li, J. (2017).Influenceofinorganicfertilizerandorganicmanureapplicationonfun-galcommunitiesinalong-termfieldexperimentofChineseMollisols.Applied Soil Ecology, 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003

Dixon,L.J.,Schlub,R.L.,Pernezny,K.,&Datnoff,L.E.(2009).Hostspecializa-tionandphylogeneticdiversityofCorynesporacassiicola.Phytopathology,99,1015–1027.https://doi.org/10.1094/PHYTO-99-9-1015

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R.(2011). UCHIME improves sensitivity and speed of chimera de-tection. Bioinformatics, 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381

Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D., & Pregitzer, K. S.(2011).SimulatedatmosphericNdepositionaltersfungalcommunitycompositionandsuppressesligninolyticgeneexpressioninaNorthernHardwoodforest.PLoS ONE,6,1–10.https://doi.org/10.1371/journal.pone.0020421

Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Diggingdeeper to find unique microbial communities: The strong effect ofdepthonthestructureofbacterialandarchaealcommunities insoil.Soil Biology & Biochemistry, 50, 58–65. https://doi.org/10.1016/j.soilbio.2012.03.011

Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., & Fließbach, A.(2007). Response of soil microbial biomass and community struc-tures to conventional and organic farming systems under identicalcrop rotations. FEMS Microbiology Ecology, 61, 26–37. https://doi.org/10.1111/j.1574-6941.2007.00318.x

Fierer,N.,Leff,J.W.,Adams,B.J.,Nielsen,U.N.,Bates,S.T.,Lauber,C.L., … Caporaso, J. G. (2012). Cross-biomemetagenomic analyses ofsoilmicrobialcommunitiesandtheirfunctionalattributes.Proceedings of the National Academy of Sciences,109, 21390–21395. https://doi.org/10.1073/pnas.1215210110

Freedman,Z.B.,Romanowicz,K.J.,Upchurch,R.A.,&Zak,D.R.(2015).Differentialresponsesoftotalandactivesoilmicrobialcommunitiestolong-termexperimentalNdeposition.Soil Biology & Biochemistry,90,275–282.https://doi.org/10.1016/j.soilbio.2015.08.014

García-Gil,J.C.,Ceppi,S.B.,Velasco,M.I.,Polo,A.,&Senesi,N. (2004).Long-termeffectsofamendmentwithmunicipalsolidwastecomposton the elemental and acidic functional group composition and pH-buffercapacityofsoilhumicacids.Geoderma,121,135–142.https://doi.org/10.1016/j.geoderma.2003.11.004

Garg,V.K.,&Kaushik,P. (2005).Vermistabilizationof textilemill sludgespikedwithpoultrydroppingsbyanepigeicearthwormEiseniafoetida.Bioresource Technology, 96, 1063–1071. https://doi.org/10.1016/j.biortech.2004.09.003

Geisseler,D.,&Scow,K.M.(2014).Long-termeffectsofmineralfertiliz-ersonsoilmicroorganisms–Areview.Soil Biology & Biochemistry,75,54–63.https://doi.org/10.1016/j.soilbio.2014.03.023

Guo,J.H.,Liu,X.J.,Zhang,Y.,Shen,J.L.,Han,W.X.,Zhang,W.F.,…Zhang,F.S.(2010).SignificantacidificationinmajorChinesecroplands.Science,327(5968),1008–1010.https://doi.org/10.1126/science.1182570

Habib,F.,Javid,S.,Saleem,I.,Ehsan,S.,&Ahmad,Z.A.(2014).Potassiumdynamicsinsoilunderlongtermregimesoforganicandinorganicfer-tilizerapplication.Soil Environment,33(2),110–115.

Page 11: Responses of fungal community composition to long‐term

     |  11 of 12MA et Al.

Hart,S.C.,Stark,J.M.,Davidson,E.A.,&Firestone,M.K.(1994).Nitrogenmineralization,immobilization,andnitrification.Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties,42,985–1018.

He,J.Z.,Zheng,Y.,Chen,C.R.,He,Y.Q.,&Zhang,L.M.(2008).Microbialcompositionanddiversityofanuplandredsoilunder long-termfer-tilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments,8, 349–358.https://doi.org/10.1007/s11368-008-0025-1

Hedley,M. J., & Stewart, J.W.B. (1982).Method tomeasuremicrobialphosphateinsoils.Soil Biology & Biochemistry,14,377–385.https://doi.org/10.1016/0038-0717(82)90009-8

Helmke,P.A.,&Sparks,D.L. (1996).Lithium,sodium,potassium, rubid-ium,andcesium.Methods of Soil Analysis Part 3—Chemical Methods,19,551–574.

Huang, B., Sun,W., Zhao,Y., Zhu, J., Yang, R., Zou, Z., … Su, J. (2007).Temporalandspatialvariabilityofsoilorganicmatterandtotalnitrogeninanagriculturalecosystemasaffectedbyfarmingpractices.Geoderma,139,336–345.https://doi.org/10.1016/j.geoderma.2007.02.012

Jasrotia,P.,Green,S.J.,Canion,A.,Overholt,W.A.,Prakash,O.,Wafula,D.,…Kostka,J.E. (2014).Watershed-scalefungalcommunitycharacter-izationalongapHgradient in a subsurfaceenvironment cocontami-natedwithuraniumandnitrate.Applied and Environment Microbiology,80(6),1810–1820.https://doi.org/10.1128/AEM.03423-13

Joergensen,R.G.,&Wichern,F. (2008).Quantitativeassessmentof thefungalcontributiontomicrobialtissueinsoil.Soil Biology & Biochemistry,40,2977–2991.https://doi.org/doi:10.1016/j.soilbio.2008.08.017

Johnson,N.C.,Wolf,J.,&Koch,G.W.(2003).Interactionsamongmycorrhizae,atmosphericCO2andsoilNimpactplantcommunitycomposition.Ecology Letters,6,532–540.https://doi.org/10.1046/j.1461-0248.2003.00460.x

Kim,Y.C.,Gao,C.,Zheng,Y.,He,X.H.,Yang,W.,Chen,L.,…Guo,L.D.(2015).Arbuscularmycorrhizalfungalcommunityresponsetowarmingandnitrogenadditioninasemiaridsteppeecosystem.Mycorrhiza,25,267–276.https://doi.org/10.1007/s00572-014-0608-1

Klaubauf, S., Inselsbacher, E., Zechmeister-Boltenstern, S., Wanek, W.,Gottsberger, R., Strauss, J., &Gorfer,M. (2010).Molecular diversityoffungalcommunitiesinagriculturalsoilsfromLowerAustria.Fungal Diversity,44,65–75.https://doi.org/10.1007/s13225-010-0053-1

Koljalg,U.,Nilsson, R.H.,Abarenkov, K.,Tedersoo, L.,Taylor,A. F. S., &Bahram,M. (2014).Towards a unified paradigm for sequence-basedidentificationoffungi.Molecular Ecology,22,5271–5277.https://doi.org/10.1111/mec.12481

Kuramae, E. E., Yergeau, E., Wong, L. C., Pijl, A. S., Van Veen, J. A., &Kowalchuk,G.A.(2012).Soilcharacteristicsmorestronglyinfluencesoilbacterialcommunitiesthanland-usetype.FEMS Microbiology Ecology,79,12–24.https://doi.org/10.1111/j.1574-6941.2011.01192.x

Lauber,C.L.,Ramirez,K.S.,Aanderud,Z.,Lennon,J.,&Fierer,N.(2013).Temporalvariabilityinsoilmicrobialcommunitiesacrossland-usetypes.ISME Journal,7,1641–1650.https://doi.org/10.1038/ismej.2013.50

Li,X.G.,Ding,C.F.,Zhang,T.L.,&Wang,X.X.(2014).Fungalpathogenac-cumulationattheexpenseofplant-beneficialfungiasaconsequenceofconsecutivepeanutmonoculturing.Soil Biology and Biochemistry,72,11–18https://doi.org/10.1016/j.soilbio.2014.01.019

Liu,J.,Sui,Y.,Yu,Z.,Shi,Y.,Chu,H.,Jin,J.,…Wang,G.(2015).SoilcarboncontentdrivesthebiogeographicaldistributionoffungalcommunitiesintheblacksoilzoneofnortheastChina.Soil Biology & Biochemistry,83,29–39.https://doi.org/doi:10.1016/j.soilbio.2015.01.009

Lyons, J. I., Newell, S. Y., Buchan, A., &Moran, M. A. (2003). Diversityof ascomycete laccase gene sequences in a southeastern US saltmarsh. Microbial Ecology, 45, 270–281. https://doi.org/10.1007/s00248-002-1055-7

Maček,I.,Dumbrell,A.J.,Nelson,M.,Fitter,A.H.,Vodnik,D.,&Helgason,T.(2011).LocaladaptationtosoilhypoxiadeterminesthestructureofanarbuscularmycorrhizalfungalcommunityinrootsfromnaturalCO2springs. Applied and Environment Microbiology,77,4770–4777.https://doi.org/10.1128/AEM.00139-11

Marsh, A. J., O Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2013).Sequencing-based analysis of the bacterial and fungal compositionofkefirgrainsandmilksfrommultiplesources.PLoS ONE,8,e69371.https://doi.org/10.1371/journal.pone.0069371

Mothapo,N.,Chen,H.,Cubeta,M.A.,Grossman,J.M.,&Fuller,F.(2015).Phylogenetic,taxonomicandfunctionaldiversityoffungaldenitrifiersandassociatedN2Oproductionefficacy.Soil Biology and Biochemistry,83,160–175https://doi.org/10.1016/j.soilbio.2015.02.001

Naeem, S., & Li, S. (1997). Biodiversity enhances ecosystem reliability.Nature,390,507–509.https://doi.org/10.1038/37348

Näsholm,T.,Kielland,K.,&Ganeteg,U.(2009).Tansleyreview.New Phytologist,182(1),31–48.https://doi.org/10.1111/j.1469-8137.2006.01864.x

Nemergut,D.R.,Townsend,A.R.,Sattin,S.R.,Freeman,K.R.,Fierer,N.,Neff, J. C., … Schmidt, S. K. (2008). The effects of chronic nitrogenfertilizationonalpinetundrasoilmicrobialcommunities: Implicationsforcarbonandnitrogencycling.Environmental Microbiology,10,3093–3105.https://doi.org/10.1111/j.1462-2920.2008.01735.x

Nevarez,L.,Vasseur,V.,LeMadec,A.,LeBras,M.A.,Coroller,L.,Leguérinel,I.,&Barbier,G.(2009).PhysiologicaltraitsofPenicilliumglabrumstrainLCP08.5568,a filamentousfungus isolatedfrombottledaromatisedmineralwater.International Journal of Food Microbiology,130,166–171.https://doi.org/10.1016/j.ijfoodmicro.2009.01.013

Paungfoo-Lonhienne,C.,Yeoh,Y.K.,Kasinadhuni,N.R.P.,Lonhienne,T.G.A.,Robinson,N.,Hugenholtz,P.,…Schmidt,S.(2015).Nitrogenfertil-izerdosealtersfungalcommunitiesinsugarcanesoilandrhizosphere.Scientific Reports,5,8678.https://doi.org/10.1038/srep08678

Peacock,A.G.,Mullen,M.D.,Ringelberg,D.B.,Tyler,D.D.,Hedrick,D.B., Gale, P.M., &White,D. C. (2001). Soilmicrobial community re-sponses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry,33(7),1011–1019.https://doi.org/10.1016/S0038-0717(01)00004-9

Ramirez,K.S.,Craine,J.M.,&Fierer,N.(2012).Consistenteffectsofni-trogen amendments on soil microbial communities and processesacross biomes. Global Change Biology, 18, 1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x

Road,A.(2002).PathogenprofileBipolarissorokiniana,acerealpathogenofglobalconcern :Cytologicalandmolecularapproachestowardsbet-ter control. Molecular Plant Pathology,3,185–195.

Romaniuk,R.,Giuffré,L.,Costantini,A.,&Nannipieri,P.(2011).Assessmentofsoilmicrobialdiversitymeasurementsasindicatorsofsoilfunctioninginorganicandconventionalhorticulturesystems.Ecological Indicators,11,1345–1353.https://doi.org/10.1016/j.ecolind.2011.02.008

Rousk,J.,Bååth,E.,Brookes,P.C.,Lauber,C.L.,Lozupone,C.,Caporaso,J.G.,…Fierer,N.(2010).SoilbacterialandfungalcommunitiesacrossapHgradientinanarablesoil.ISME Journal,4,1340–1351.https://doi.org/10.1038/ismej.2010.58

Rousk,J.,Brookes,P.C.,&Bååth,E.(2009).ContrastingsoilpHeffectsonfungalandbacterialgrowthsuggestfunctionalredundancyincarbonmineralization.Applied and Environment Microbiology,75,1589–1596.https://doi.org/10.1128/AEM.02775-08

Rousk,J.,Brookes,P.C.,&Bååth,E.(2010).ThemicrobialPLFAcomposi-tionasaffectedbypHinanarablesoil.Soil Biology & Biochemistry,42,516–520.https://doi.org/10.1016/j.soilbio.2009.11.026

Rousk, J., & Frey, S.D. (2015). Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic mat-ter and nutrients. Ecological Monographs, 85, 457–472. https://doi.org/10.1890/14-1796.1

Sajeewa, S., Maharachchikumbura, N., Hyde, K. D., Jones, G., Eric, H.,Mckenzie,C.,…Hongsanan,S.(2015).TowardsanaturalclassificationandbackbonetreeforSordariomycetes.Fungal Diversity,72,199.

Sapp,M.,Harrison,M.,Hany,U.,Charlton,A.,&Thwaites,R.(2015).Comparingtheeffectofdigestateandchemicalfertiliseronsoilbacteria.Applied Soil Ecology,86,1–9.https://doi.org/10.1016/j.apsoil.2014.10.004

Schoch,C.L.,Seifert,K.A.,Huhndorf,S.,Robert,V.,Spouge,J.L.,Levesque,C.A., …Miller,A. N. (2012). Nuclear ribosomal internal transcribed

Page 12: Responses of fungal community composition to long‐term

12 of 12  |     MA et Al.

spacer (ITS) region as a universal DNA barcode marker for Fungi.Proceedings of the National Academy of Sciences, 109, 6241–6246.https://doi.org/10.1073/pnas.1117018109

Schröder,J.J.,Uenk,D.,&Hilhorst,G.J.(2007).Long-termnitrogenfertil-izerreplacementvalueofcattlemanuresappliedtocutgrassland.Plant and Soil,299,83–99.https://doi.org/10.1007/s11104-007-9365-7

Segata, N., Izard, J.,Waldron, L., Gevers, D.,Miropolsky, L., Garrett,W.S., & Huttenhower, C. (2011). Metagenomic biomarker discoveryand explanation. Genome Biology, 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60

Shen,C.,Xiong,J.,Zhang,H.,Feng,Y.,Lin,X.,Li,X.,…Chu,H.(2013).SoilpHdrivesthespatialdistributionofbacterialcommunitiesalongeleva-tiononChangbaiMountain.Soil Biology & Biochemistry,57,204–211.https://doi.org/10.1016/j.soilbio.2012.07.013

Singh,H.,Verma,A.,Ansari,M.W.,&Shukla,A. (2014).Physiologicalre-sponseofrice(Oryza sativaL.)genotypestoelevatednitrogenappliedunder fieldconditions.Plant Signaling & Behavior,9, e29015.https://doi.org/10.4161/psb.29015

Stajich, J. E. (2015). Phylogenomics enabling genome-based mycol-ogy, the mycota: A comprehensive treatise on fungi as experimen-tal systems for basic and applied research: VII systematics and evo-lution Part B(2nd ed.). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-46011-5_11

Strickland,M. S.,&Rousk, J. (2010). Considering fungal: Bacterial dom-inance in soils –methods, controls, andecosystem implications.Soil Biology & Biochemistry,42,1385–1395.https://doi.org/doi:10.1016/j.soilbio.2010.05.007

Strickland,T.C.,&Sollins,P.(1987).Improvedmethodforseparatinglight-and heavy-fraction organicmaterial from soil. Soil Science Society of America Journal,51,1390–1393.https://doi.org/10.2136/sssaj1987.03615995005100050056x

Sun,Q., Liu,Y.,Yuan,H.,& Lian,B. (2016).Theeffect of environmentalcontamination on the community structure and fructification of ec-tomycorrhizal fungi.Microbiologyopen, 1–8, https://doi.org/10.1002/mbo3.396

Szuba, A. (2015). Ectomycorrhiza of Populus. Forest Ecology and Management, 347, 156–169. https://doi.org/10.1016/j.foreco.2015.03.012

Wang,J.T.,Zheng,Y.M.,Hu,H.W.,Zhang,L.M.,Li,J.,&He,J.Z.(2015).Soil pHdetermines the alpha diversity but not beta diversity of soilfungalcommunityalongaltitudeinatypicalTibetanforestecosystem.Journal of Soils and Sediments,15,1224–1232.https://doi.org/10.1007/s11368-015-1070-1

Wei,D.,Yang,Q.,Zhang,J.-Z.,Wang,S.,Chen,X.-L.,Zhang,X.-L.,&Li,W.-Q.(2008).Bacterialcommunitystructureanddiversityinablacksoilasaffectedby long-termfertilization*1*1ProjectsupportedbytheHeilongjiangProvincialNaturalScienceFundsforDistinguishedYoung Scholars, China (No. JC200622), the HeilongjiangProvinci. Pedosphere, 18, 582–592. https://doi.org/doi: 10.1016/S1002-0160(08)60052-1

Whalen,J.K.,Chang,C.,Clayton,G.W.,&Carefoot,J.P. (2000).Cattlemanure amendments can increase the pH of acid soils. Soil Science Society of America Journal, 64, 962–966. https://doi.org/10.2136/sssaj2000.643962x

Williams,A.,Börjesson,G.,&Hedlund,K.(2013).Theeffectsof55yearsofdifferentinorganicfertiliserregimesonsoilpropertiesandmicrobialcommunitycomposition.Soil Biology & Biochemistry,67,41–46.https://doi.org/10.1016/j.soilbio.2013.08.008

Winka,K.,Eriksson,O.E.,&Bång,Å.(1998).Molecularevidenceforrec-ognizing the Chaetothyriales. Mycologia, 1, 822–830. https://doi.org/10.2307/3761324

Wurzbacher,C.,Rösel,S.,Rychła,A.,&Grossart,H.-P.(2014).Importanceofsaprotrophicfreshwaterfungiforpollendegradation.PLoS ONE,9,e94643.https://doi.org/10.1371/journal.pone.0094643

Xie, H., Li, J., Zhu, P., Peng, C.,Wang, J., He, H., & Zhang, X. (2014).Long-term manure amendments enhance neutral sugar accumu-lation in bulk soil and particulate organicmatter in aMollisol.Soil Biology & Biochemistry, 78, 45–53. https://doi.org/10.1016/j.soilbio.2014.07.009

Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., … Chu, H.(2012). Geographic distance and pH drive bacterial distri-bution in alkaline lake sediments across Tibetan Plateau.Environmental Microbiology, 14, 2457–2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x

Xiong,W.,Zhao,Q.,Zhao,J.,Xun,W.,Li,R.,Zhang,R.,…Shen,Q.(2014).Differentcontinuouscroppingspanssignificantlyaffectmicrobialcom-munitymembershipandstructure inavanilla-grownsoilas revealedbydeeppyrosequencing.Microbial Ecology,70,209–218.https://doi.org/10.1007/s00248-014-0516-0

Yin,C., Fan,F., Song,A.,Cui,P., Li,T.,&Liang,Y. (2015).Denitrificationpotential under different fertilization regimes is closely cou-pled with changes in the denitrifying community in a black soil.Applied Microbiology and Biotechnology, 99, 5719–5729. https://doi.org/10.1007/s00253-015-6461-0

Zámocky, M., Tafer, H., Chovanová, K., Lopandic, K., Kamlárová, A., &Obinger,C. (2016).GenomesequenceofthefilamentoussoilfungusChaetomium cochliodes reveals abundance of genes for heme en-zymesfromallperoxidaseandcatalasesuperfamilies.BMC Genomics,17,763.https://doi.org/10.1186/s12864-016-3111-6

Zhao, J., Ni, T., Li,Y., Xiong,W., Ran,W., Shen, B., … Zhang, R. (2014).Responses of bacterial communities in arable soils in a rice-wheatcroppingsystemtodifferentfertilizerregimesandsamplingtimes.PLoS ONE,9,https://doi.org/10.1371/journal.pone.0085301

Zhao, Y., Xu, X., Hai, N., Huang, B., Zheng, H., & Deng, W. (2015).Uncertainty assessment for mapping changes in soil organic matterusingsparselegacysoildataanddensenew-measureddatainatypicalblacksoilregionofChina.Environmental Earth Sciences,73,197–207.https://doi.org/10.1007/s12665-014-3411-6

Zhou, J., Guan,D., Zhou, B., Zhao, B.,Ma,M.,Qin, J., … Li, J. (2015).Influence of 34-years of fertilization on bacterial communitiesin an intensively cultivated black soil in northeast China. Soil Biology & Biochemistry, 90, 42–51. https://doi.org/10.1016/j.soilbio.2015.07.005

Zhou, J., Jiang, X.,Wei, D., Zhao, B., Ma, M., Chen, S., … Li, J. (2017).Consistenteffectsofnitrogenfertilizationonsoilbacterialcommuni-ties inblacksoilsfortwocropseasons inChina.Scientific Reports,7,3267.

Zhou,J.,Jiang,X.,Zhou,B.,Zhao,B.,Ma,M.,Guan,D.,…Qin,J. (2016).ThirtyfouryearsofnitrogenfertilizationdecreasesfungaldiversityandaltersfungalcommunitycompositioninblacksoilinnortheastChina.Soil Biology & Biochemistry, 95, 135–143. https://doi.org/10.1016/j.soilbio.2015.12.012

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle.

How to cite this article:MaM,JiangX,WangQ,etal.Responsesoffungalcommunitycompositiontolong-termchemicalandorganicfertilizationstrategiesinChineseMollisols. MicrobiologyOpen. 2018;e597. https://doi.org/10.1002/mbo3.597