Transcript
Page 1: Responses of fungal community composition to long‐term

MicrobiologyOpen. 2018;e597.  | 1 of 12https://doi.org/10.1002/mbo3.597

www.MicrobiologyOpen.com

Received:8September2017  |  Revised:2January2018  |  Accepted:9January2018DOI: 10.1002/mbo3.597

O R I G I N A L R E S E A R C H

Responses of fungal community composition to long- term chemical and organic fertilization strategies in Chinese Mollisols

Mingchao Ma1,2  | Xin Jiang1,3 | Qingfeng Wang1 | Marc Ongena2 | Dan Wei4 |  Jianli Ding1,3 | Dawei Guan1,3 | Fengming Cao1,3 | Baisuo Zhao3 | Jun Li1,3

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2018TheAuthors.MicrobiologyOpenpublishedbyJohnWiley&SonsLtd.

1InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing,China2MicrobialProcessesandInteractionsResearchUnit,GemblouxAgro-BioTech,UniversityofLiège,Gembloux,Belgium3LaboratoryofQuality&SafetyRiskAssessmentforMicrobialProducts,MinistryofAgriculture,Beijing,China4TheInstituteofSoilFertilityandEnvironmentalSources,HeilongjiangAcademyofAgriculturalSciences,Harbin,China

CorrespondenceXinJiangandJunLi,InstituteofAgriculturalResourcesandRegionalPlanning,ChineseAcademyofAgriculturalSciences,Beijing,China.Emails:[email protected];[email protected]

Funding informationNationalNaturalScienceFoundationofChina,Grant/AwardNumber:41573066and31200388;NationalKeyBasicResearchProgramofChina,Grant/AwardNumber:2015CB150506;theFoundationforSafetyofAgriculturalProductsbyMinistryofAgriculture,China,Grant/AwardNumber:GJFP201801202;FundamentalResearchFundsforCentralNon-profitScientificInstitution,Grant/AwardNumber:1610132017010

AbstractHowfungirespondtolong-termfertilizationinChineseMollisolsassensitiveindica-torsofsoilfertilityhasreceivedlimitedattention.Tobroadenourknowledge,weusedhigh-throughputpyrosequencingandquantitativePCRtoexploretheresponseofsoilfungalcommunitytolong-termchemicalandorganicfertilizationstrategies.Soilswerecollected ina35-year fieldexperimentwith four treatments:no fertilizer, chemicalphosphorus,andpotassiumfertilizer(PK),chemicalphosphorus,potassium,andnitro-gen fertilizer (NPK), andchemicalphosphorus andpotassium fertilizerplusmanure(MPK).Allfertilizationdifferentlychangedsoilpropertiesandfungalcommunity.TheMPKapplicationbenefitedsoilacidificationalleviationandorganicmatteraccumula-tion,aswellassoybeanyield.Moreover,thecommunityrichnessindices(Chao1andACE)werehigherundertheMPKregimes,indicatingtheresilienceofmicrobialdiver-sity and stability. With regards to fungal community composition, the phylumAscomycotawasdominant inall samples, followedbyZygomycota,Basidiomycota,Chytridiomycota,andGlomeromycota.Ateachtaxonomiclevel,thecommunitycom-positiondramaticallydifferedunderdifferentfertilizationstrategies,leadingtodiffer-entsoilquality.TheNPKapplicationcausedalossofLeotiomycetesbutanincreaseinEurotiomycetes,whichmightreducetheplant–fungalsymbiosesandincreasenitro-genlossesandgreenhousegasemissions.Accordingtothelineardiscriminantanalysis(LDA)coupledwitheffectsize(LDAscore>3.0),theNPKapplicationsignificantlyin-creasedtheabundancesoffungaltaxawithknownpathogenictraits,suchasorderChaetothyriales,familyChaetothyriaceaeandPleosporaceae,andgeneraCorynespora,Bipolaris,andCyphellophora.Incontrast,thesefungiweredetectedatlowlevelsundertheMPKregime.SoilorganicmatterandpHwerethetwomostimportantcontribu-torstofungalcommunitycomposition.

K E Y W O R D S

fungalcommunitycomposition,illuminamiseqsequencing,inorganicfertilizer,manure,soildegradation

Page 2: Responses of fungal community composition to long‐term

2 of 12  |     MA et Al.

1  | INTRODUCTION

Mollisols(blacksoilregions)arewidelydistributedinnortheastChinaandareconsideredhighlyfertilesoils.Consequently,theseblacksoilregions have become important agricultural areas for grain produc-tionandcultivation(Zhaoetal.,2015).However,severaldecadesofexcessivecultivationandintensivefertilizationhavecausedsubstan-tial loss of soil and soil productivity (Liu etal., 2015; Singh,Verma,Ansari,&Shukla,2014).Inappropriatechemicalfertilizerapplicationscauseserioussoildegradationandenvironmentalpollution(Yinetal.,2015), especially the overuse of nitrogen (N) fertilizers,which havea litanyof consequences, including climate change, greenhouse gasemission,marineandfreshwatereutrophication,soilacidificationandsoilmicrobialdiversity,activity,andbiomassreduction(Edwards,Zak,Kellner,Eisenlord,&Pregitzer,2011;Guoetal.,2010;Ramirez,Craine,&Fierer,2012;Zhouetal., 2015).Furthermore, excessiveuseofNfertilizercanalterthedynamicsofplantpopulations,causechangesinplantspeciescompositions,andincreasetheconcentrationsofel-ements likemanganese, iron,andaluminum,whichharmplantsatahighconcentration(Clarketal.,2007;Johnson,Wolf,&Koch,2003).

TheabovementionedproblemswillbedifficulttosolveaslongasexcessiveNfertilizationinputscontinue,thusreductionsinchemicalfertilizer application have been advocated (Williams, Börjesson, &Hedlund,2013).OrganicamendmentscansupplyNtocropsandarebeneficialforsoilquality,causingresidualNeffectstheyearaftertheirapplication(Schröder,Uenk,&Hilhorst,2007).Manure,asanimport-antsourceoforganicmatter(OM),isaneffectivesubstituteforchem-icalNinputsanditsusecouldsolvetheproblemswithoutdecreasingcropyields(Dingetal.,2017).However,weknowlessabouttheef-fectsofmanureapplicationonsoilmicroorganisms,whicharevaluableindicatorsofsoilqualityandare involved instabilizingsoilstructure(Chuetal.,2007;Romaniuk,Giuffré,Costantini,&Nannipieri,2011).Comparedwithbacteria,soilfungaldiversityismoresensitivetosoilfertility(He,Zheng,Chen,He,&Zhang,2008),duetotheirorganicNandphosphorus(P)acquisitioncapabilities(Behie&Bidochka,2014;Näsholm,Kielland,&Ganeteg,2009)andimportantrolesinnutrientcycling(Cairney,2011;Szuba,2015).Astableandappropriatefungalcommunity composition is alsobeneficial for soil biochemical cycle,and also leads to a healthy and stable surrounding ecosystem forplants (Sun,Liu,Yuan,&Lian,2016).Thus, it isofcrucial interesttoinvestigatesoilfungalcommunities.

In our previous studies, the impacts of long-term fertilizationson bacterial community composition have been examined (Zhouetal.,2015).Inorganicfertilizationledtoasignificantdecreaseinthebiodiversity and abundance of bacteria, and the influence of moreconcentrated fertilizer treatments was greater than that of lowerconcentrations. However, a comprehensive understanding of thefungal responses is still unclear, especiallywhen organicmanure issubstitutedforchemicalNfertilizer.Inthisstudy,soilswerecollectedduringa35-yearfieldexperimentintheChineseMollisols,andhigh-throughputpyrosequencingandquantitativePCR(qPCR)technologywere performed to analyze soil fungal community composition andabundance.Here,wehypothesize that: (1) thedifferences in fungal

communitycompositionandabundancearearesultoflong-termfer-tilizationstrategiesthatinduceschangesinsoilproperties;(2)manurehelpsshiftthesoilfungalcommunitytoagoodstatus,whereaschemi-calfertilizerapplicationsexhibittheoppositepattern;and(3)theshiftsoffungalcommunitymaymainlyresultfromchangesinthesoilpHandOM.Insummary,understandingtheresponsesoffungalcommunitycompositiontodifferentfertilizationstrategiesisnotonlyaneffectivewaytorevealtherelationshipbetweenintensivefertilizationandblacksoil degradation but is alsomeaningful for determining appropriatefertilizationapplicationstoimproveandmaintainsoilfertility.

2  | MATERIALS AND METHODS

2.1 | Field experiments and soil sampling

Thisstudyhasbeenperformedinanexperimentalfieldwithawheat–maize–soybeancroprotationsince1980inHarbinCity,HeilongjiangProvince,China (45°40′N, 126°35′E). The climate for this region ischaracterized as typical temperate monsoon, with an annual meanairtemperatureof3.5°C,evaporationof1,315mmandprecipitationof533mm.Thefieldexperimentwassetupasablockdesignwiththreereplicates,witheachblockcomprisedofadifferenttreatmentrandomized inplotsof9×4m.Chemical fertilizerswereappliedasurea(75kg/hm2),calciumsuperphosphateplusammoniumhydrogenphosphate(150kg/hm2),andpotassiumsulfate(75kg/hm2),respec-tively.Thehorsemanurewasusedatapproximately18,600kg/hm2. Moredetailson theexperimental fieldwere shown inourpreviousstudy(Weietal.,2008).

SoilswerecollectedamongplantrowsafterthesoybeanharvestinSeptember2014.Fourtreatmentswiththreereplicateswerechosen:nofertilizer (CK),chemicalPandpotassium(K)fertilizer (PK),chem-icalN,PandK fertilizer (NPK), andchemicalPandK fertilizerplusmanure (MPK). Foreach replicateplot inevery treatment, six coreswererandomlycollectedintheploghedsoillayer(5–20cm)afterre-movingplantresiduesandgravels.Coreswerecombinedandmixeduniformlytoobtainahomogeneousblendandsubsampledintothreeparts.Onepartwasreservedat−80°C,andtheothertwowereusedastwosubsamples.Atotalof24soilsubsampleswereobtained.Soilchemicalpropertiesandmolecularanalyseswereperformedforeachsubsample.

2.2 | Analyses of soil chemical properties and soybean yield

Soilchemicalproperties,includingsoilpH,OM,TotalN(TN),nitratenitrogen(NO3

−–N),ammoniumnitrogen(NH4+–N),TotalP(TP),avail-

ableP(AP),TotalK(TK),andavailableK(AK)wereanalyzedafterbeingairdriedatroomtemperatureandpassedthrougha2.0-mmsieve.SoilpHwasmeasuredwithapHmeterusinga1:1sample:waterextract.SoilOMwasassayedbyapplying theK2Cr2O7-capacitancemethod(Strickland & Sollins, 1987). TN was measured using the Kjeldahlmethod(Huangetal.,2007).NH4

+–NandNO3−–Nwereextractedby

2mol/LKClsolutionandsubjectedtoflowinjectionanalysisaccording

Page 3: Responses of fungal community composition to long‐term

     |  3 of 12MA et Al.

toHart, Stark,Davidson, and Firestone (1994).AmodifiedmethodofresinextractionwasusedfortheAPanalysis (Hedley&Stewart,1982),andTPwasdeterminedusingthecolorimetricmethod (Garg& Kaushik, 2005). TK andAKwere analyzed by atomic absorptionspectrometerand flamephotometry, respectively, as recommendedbyHelmkeandSparks (1996)andHabib, Javid,Saleem,Ehsan,andAhmad (2014). Soybean yields under different conditions were re-cordedafterharvest.

2.3 | Total DNA extraction

TotalDNAwas extracted from0.25g soil in each subsampleusingaMOBIOPowerSoilDNA IsolationKit (Carlsbad,CA,USA)accord-ing to themanufacturers’ protocol withmodifications (Fierer etal.,2012). Briefly, six successive replicate extractionswere taken fromeachsubsampleandfixedtogetherasoneDNAtemplatetoprovideenoughtotalDNA(Zhouetal.,2016).DNApurificationfollowed,andthen,DNAconcentrationandquality(A260/A280)oftheextractswereestimatedvisuallyusingaNanoDropND-1000UVevis spectropho-tometer(ThermoScientific,Rockwood,TN,USA).

2.4 | qPCR analysis

ThesoilfungalabundancelevelswerequantifiedusingtheqPCRde-tectionsystem(AppliedBiosystems7500,CA,USA).Theinternaltran-scribedspacer(ITS)primersITS4F(5′-TCCTCCGCTTATTGATATGC-3′)andITS5(5′-GGAAGTAAAAGTCGTAACAAGG-3′)wereusedtoamplifythefungalITSregionofribosomalRNAgeneasrec-ommendedbySchochetal.(2012).Thecomponentsofthereactionmixture (25μl) and the optimized conditions for amplificationwereaspreviouslyreported(Zhouetal.,2016).TheqPCRwascarriedoutwiththreereplicatesforeachsoilsubsample.Thestandardcurvewasgeneratedusing10-fold serial dilutionsof a plasmid containing theITSgeneinsert.Theabundancesofthebacterial16S rRNA gene cop-ieswerequantifiedusingthesamemethodasfortheITSgene,withprimers515Fand806R(Lauber,Ramirez,Aanderud,Lennon,&Fierer,2013),andpresentedinTableS1.Thevalueofthefungi/bacteriaratio(F/Bratio)wascalculatedbydividingtheITSgenecopynumberbythe16S rRNAgenecopynumber(Wurzbacher,Rösel,Rychła,&Grossart,2014).

2.5 | Illumina MiSeq sequencing

ThefungalITS1regionwasamplifiedusingtheprimersITS1F(5′-CTTGGTCATTTAGAGGAAGTAA-3′)andITS2(5′-GCTGCGTTCTTCATCGATGC-3′)aspreviouslydocumented(Bueeetal.,2009;Degnan&Ochman,2012;Dingetal.,2017).TheITS1F/ITS2primersarecon-sideredastheuniversalDNAbarcodemarkersforthemoleculariden-tificationoffungi(Blaalidetal.,2013;Schochetal.,2012).Barcodeswere connectedwithprimers andwereused to separate rawdata,allowingmultiplesamplestobepooledintoonerunofIlluminaMiSeqsequencing.TheconditionsofthePCRreactionwereasfollows:94°Cfor2min;32cyclesof94°Cfor30s,55°Cfor30sand72°Cfor30s;

and72°Cfor5min.PCRproductsweremixed(equimolarratio)afterpurification, creating aDNApool. Sequencing librarieswere gener-ated.Finally,thelibrariesweresequencedonIlluminaMiSeqplatformatPersonalBiotechnologyCo.,Ltd.(Shanghai,China).

2.6 | Data processing and statistical analyses

Barcode sequences were removed according to the methods ofEdgar,Haas,Clemente,Quince,andKnight(2011).TherawsequencereadswereprocessedusingQIIME(version1.7.0,http://qiime.org/)(Caporaso etal., 2010) and referring to the default parameters toobtain valid tags (Bokulich etal., 2013). Singletons, non-bacterialandnon-fungalOTUswere removed, and theOTUabundance lev-elswerenormalizedbasedon the samplewith the leastnumberofsequences.Toperforma faircomparisonbetweensamples,all sub-sequentanalyseswereperformedaccording to thenormalizeddata(Zhouetal.,2016).Then,operationaltaxonomicunitsdefinedbyclus-teringat the97%similarity levelweregeneratedandtaxonomicallyclassified using a BLAST algorithm against theUNITE database re-lease5.0(Koljalgetal.,2014)withaminimal80%confidenceestimate(Bokulich&Mills,2013).TheUNITEandINSDCfungalITSdatabaseswere used as references for classification (Abarenkov etal., 2010).ThesequenceswereuploadedanddepositedintheNationalCenterforBiotechnologyInformation (NCBI)SequenceReadArchive (SRA)undertheaccessionnumberSRP092759.

Thefungalα-diversityindex(includingShannon,Simpson,Chao1,andACE)wasanalyzedusingMothursoftware(version1.31.2,http://www.mothur.org/)(Schochetal.,2012).TheunweightedFastUniFracmetric was calculated to construct distance matrices using QIIME(Caporasoetal.,2010).Aprincipalcoordinateanalysis (PCoA)basedon theunweightedFastUniFracmetricwascarriedout tocomparebetween-samplevariationsinfungalcommunitycomposition(Marsh,OSullivan,Hill,Ross,&Cotter,2013).A lineardiscriminantanalysiscoupledwitheffectsize(LEfSe)wasperformedtodistinguishsignifi-cantly different fungal taxa betweenMPKandNPK regimes to thegenusorhighertaxonomylevel(Segataetal.,2011).ThesoftwareofCANOCO5.0wasusedforribosomaldatabaseproject(RDP)analysiswithaminimal60%threshold toexplorepossible linkagesbetweenfungalcommunityandsoilproperty,followedthemethodofBraakandSmilauer(2012).Ananalysisofvariancewasperformedonallexperi-mentaldatausingSPSS(v.19).Inalltests,ap-value<.05wasconsid-eredstatisticallysignificant.

3  | RESULTS

3.1 | Soil properties and soybean yields under different fertilization regimes

SoilpropertiesunderdifferentfertilizationregimesareshowninTable1.PKandNPKapplicationssignificantlydecreasedsoilpH,whereastheMPKapplicationalleviatedsoilacidification.TheMPKapplicationalsohad an accumulative effect on soilOM.Comparedwith theCK, thethreefertilizationstrategiessignificantly increasedtheconcentrations

Page 4: Responses of fungal community composition to long‐term

4 of 12  |     MA et Al.

ofAKandTK,aswellasAPandTP.TheNPKapplicationsignificantlyin-creasedtheTNconcentration,whereastheconcentrationsofNO3

−–NandNH4

+–NwerelowerthanundertheMPKregime.Inaddition,soy-beanyieldsweresignificantlyhigherunderthefertilizationregimes,withtheMPKapplicationbeingthemosteffectivestrategy(2702kg·ha−1).

3.2 | Fungal ITS gene copy number under different fertilization regimes

ThevaluesofthefungalITScopynumberrangedfrom1.62×106 to 6.67×106 g−1soilwithsignificantdifferences(Figure1a).Comparedwith theCK,PK,andNPKapplications increasedthe ITS gene cop-ies,resultinginasignificant increaseintheF/Bratio,whereasMPKapplications exhibited the opposite pattern (Figure1b). In addition,therewere significant positive correlations between ITS gene copy numberandTP(r=.613,p<.01)andAP(r=.435,p<.05),referringtoPearson’scorrelations(TableS2).Moreover,theF/Bratioshowedsignificantly negative correlations with soil pH (r=−.912, p<.01)andOM (r=−.572, p<.01), but was positively correlatedwith TN(r=.795,p<.01)andTP(r=.523,p<.01).

3.3 | Fungal diversity analysis under different fertilization regimes

A total of 1,399,128 raw sequence reads were obtained from theIlluminaMiSeqplatformanalysisof24soilsubsamples,and1,179,936effectivesequenceswereproducedafterprocessing.Thehigh-qualitypercentagewasmorethan82%,withameanreadlengthof280bp.MorestatisticaldataofsequencingindifferentsamplesaredetailedinTableS3.Rarefactionanalysis (FigureS1)displayedsimilartrendswherebythegreatestOTUoccurredundertheMPKregime,andthelowest value occurred in theNPK treatment. TheGood’s coveragevalues(0.991–0.992)indicatedthatthereweresufficientreadstoob-tainthefungaldiversity.Withregardstofungalcommunityrichnessindices(Table2),PKandNPKapplicationsreducedChao1andACEin-dices,whereastheMPKapplicationledtothegreatestindices.Inad-dition,Pearson’scorrelations(TableS2)showedthattheChao1indexwassignificantlypositivelycorrelatedwithOM(r=.564,p<.01).

APCoAwasperformedtoanalyzetheimpactsoffertilizationstrat-egiesonfungalcommunitystructure(Figure2).Thetwoaxes,PC1andPC2,explained32.78%and19.84%ofthetotalvariation,respectively.TheNPKplotslocatedinthelowerrightcornerandwerefarfromtheCK;whereasPKandMPKplotswereclusteredtogetherandlocatedinthemiddle.ComparedwiththeCK,long-termfertilizationstrategiesclearlychangedthefungalcommunitycompositionduetotheeffectsofchemicalNinputs.

3.4 | Fungal community compositions and relative abundance under different fertilization regimes

Phyla Ascomycota, representing 70.83%–76.16% of the total se-quences,wasdominant,followedbyZygomycota(15.56%–19.22%),Basidiomycota (6.14%–10.72%), Chytridiomycota (0.94%–3.37%),T

ABLE 1 Soilpropertiesandsoybeanyieldunderdifferentfertilizationregimes

Fert

iliza

tion

regi

mes

pHO

M (g

·kg−1

)A

K (g

·kg−1

)TK

(g·k

g−1)

NH

4+ (mg·

kg−1

)N

O3− (m

g·kg

−1)

TN (g

·kg−1

)A

P (g

·kg−1

)TP

(g·k

g−1)

Soyb

ean

yiel

d (k

g·ha

−1)

CK6.43±0.08c

24.39±0.37a

0.17±0.03a

6.30±0.89a

35.01±1.16a

2.45±0.88a

1.20±0.05a

0.02±0.01a

0.44±0.03a

1812.67±141.99a

PK6.18±0.04b

25.51±0.30c

0.24±0.01b

28.57±2.25b

37.80±2.95a

3.62±0.57b

1.26±0.03a

0.89±0.04c

0.73±0.02c

2377.33±118.85bc

NPK

5.54±0.04a

24.88±0.25b

0.23±0.03b

30.36±1.02b

37.30±6.29a

4.53±0.91bc

1.43±0.08b

0.94±0.06d

0.70±0.02bc

2241.33±186.11b

MPK

6.38±0.05c

27.47±0.41d

0.23±0.03b

28.43±3.93b

39.36±6.95a

5.17±0.67c

1.20±0.03a

0.66±0.01b

0.61±0.05b

2702.67±169.39c

Valuesaremeans±standarddeviations(n=6).Valueswithinthesamecolumnfollowedbydifferentlettersindicatesignificantdifferences(p<.05)accordingtoTukey’smultiplecomparison.

Fertilizationregimes:CK,nofertilizer;PK,chemicalphosphorusandpotassiumfertilizer;NPK,chemicalphosphorus,potassium,andnitrogenfertilizer;MPK,chemicalphosphorusandpotassiumfertilizerplus

manure.

Soilproperties:AP,availablephosphorus;AK,availablepotassium;NH

4+ ,ammoniumnitrogen;NO

3− ,nitratenitrogen;TK,totalpotassium;TP,totalphosphorus;TN,totalnitrogen;OM,organicmatter.

Page 5: Responses of fungal community composition to long‐term

     |  5 of 12MA et Al.

andGlomeromycota(0.28%–0.83%)(Figure3).ComparedwiththeCK,theMPKapplicationsignificantly increasedtherelativeabun-danceof thephylaAscomycota,whichdecreasedunder theNPKregime.Sordariomyceteswasdominantatclass level, followedbyIncertae_sedis_Zygomycota,Leotiomycetes,andDothideomycetes(shown in Figure4, at least one groupwith a relative abundance>0.1%). NPK and MPK applications significantly increased therelative abundance of Sordariomycetes, but decreased those ofLeotiomycetes and Dothideomycetes. The abundances of theclasses Eurotiomycetes and Tremellomycetes were significantlyhigherundertheNPKregimethanundertheothers.All theferti-lization treatments hadpositive effects on thePezizomycetes.Atthegenuslevel(Figure5),allthefertilizationstrategiessignificantlydecreasedtherelativeabundancesofMortierella,Chaetomium,andEpicoccum, butPenicilliumwas increased.Periconia and Ilyonectria were lower under the NPK and MPK regimes. In particular, thechemical N fertilizer significantly increased the abundances ofChaetomidiumandCorynespora.

3.5 | Significantly different fungal taxa occurred under the NPK and MPK regimes

TheLEfSeanalysisdistinguishedthepresenceofsignificantlydifferentfungaltaxaundertheNPKandMPKregimes(averagerelativeabun-dance>0.01; Figure6). The linear discriminant analysis score was

greater than3.0.TheMPK-treated sampleshad significantlyhigherabundanceofthephylumAscomycota,andgeneraMycothermusandPericonia, whereas the phyla Basidiomycota and Chytridiomycota,the order Chaetothyriales,thefamiliesChaetomiaceae,Pleosporaceae, and Chaetothyriaceae, and genera Chaetomidium, Bipolaris, andCyphellophorawereoverrepresentedundertheNPKregime.

3.6 | Correlation between fungal community composition and soil properties

Basedontheredundancyanalysis(Figure7),alltheselectedsoilprop-ertiesaccountedfor56.8%oftheexplanatoryvariablesinthefungalcommunity composition among the samples. The primary contribu-torsinshiftingthefungalcommunityweresoilOM(F=4.5,p =.002)andpH(F=4.1,p=.002),whichindividuallyaccountedfor14.9%and15.7%ofthevariation,respectively.Theothersoilpropertiesaffectedfungalcommunitycompositioninthefollowingorder:AK>AP>TN>TP>NO3

−–N=NH4+–N>TK.Inaddition,theplotsofCK,PK,NPK

andMPKwerewellgroupedandseparatedfromtheNPKplot.Pearson’scorrelations(TableS4)showedthatAscomycotawaspos-

itivelycorrelatedwithOM(r=.709,p<.01)andpH(r=.508,p<.05),whereasZygomycotawasnegativelycorrelatedwithAP,AK,OM,TK,TP,andNO3

−–N(p<.01).SoilpHhadnegativeimpactsonBasidiomycota;however,theeffectofTNwaspositive.BothAPandTPwerepositivelycorrelated(p<.01)withChytridiomycotaandGlomeromycota.

F IGURE  1 ResultsofthequantitativePCR.(a)TheabundanceoffungiasindicatedbythenumberofITScopies;(b)Fungi/Bacteriaratiosunderdifferentfertilizationregimes.Samelettersabovecolumnsindicatenosignificantdifference(p <.05,Tukey’stest)

TABLE  2 Estimatednumbersofobservedoperationaltaxonomicunits(97%similarity)anddiversityofsoilindifferentfertilizationregimes

Fertilization regimes Observed species Chao1 Ace Simpson Shannon Goods coverage

CK 895.83±59.44a 1050.1±46.2a 1084.1±80.8ab 0.979±0.016a 7.22±0.27ab 0.992±0.0015a

PK 877.33±97.73a 1028.6±37.9a 1040.9±57.8a 0.987±0.002a 7.46±0.21b 0.992±0.0019a

NPK 812.00±40.87a 1034.1±54.5a 1049.0±41.9a 0.985±0.003a 7.19±0.14a 0.992±0.0020a

MPK 914.17±167.33a 1140.2±101.7b 1164.8±101.6b 0.986±0.004a 7.40±0.14ab 0.991±0.0038a

Valueswithinthesamecolumnfollowedbydifferentlettersindicatesignificantdifferences(p<.05)accordingtoTukey’smultiplecomparison.

Page 6: Responses of fungal community composition to long‐term

6 of 12  |     MA et Al.

4  | DISCUSSION

4.1 | Improvements in soil acidification, OM accumulation, and soybean yield

Long-termchemicalfertilizerapplications,especiallytheNPKapplica-tion,significantlyincreasedsoilacidification;however,manurecouldeffectively alleviate soil acidification, perhaps due to the bufferingfunctionsoforganicacids,carbonates,andbicarbonates (García-Gil,Ceppi, Velasco, Polo, & Senesi, 2004; Whalen, Chang, Clayton, &Carefoot,2000).Furthermore,manurehadmacronutrientstatus,con-tributingtothesignificantaccumulationofsoilOM(Xieetal.,2014).Inturn,thehighproductivityresultingfromorganicmanureincreasestheamountsofOMinthesoil,intheformofrootexudates,decayingrootsandabovegroundresidues,whicharebeneficialforsoilOMac-cumulation(Geisseler&Scow,2014).Inaddition,soybeanyieldsweresignificantlyhigherunderthefertilizationregimes,withtheMPKap-plication being themost effective fertilization strategy. The resultsagreedwellwithotherfindings(Zhaoetal.,2014).

4.2 | Changes in the ITS gene’s abundance and F/B ratio

ComparedwiththeCK,ITSgenecopieswereincreasedunderbothPKandNPKregimes,whichconfirmedthepositivestimulatoryeffectsofchemicalfertilizeronfungalpopulations(Zhouetal.,2016).Moreover,Pearson’s correlations showedpositive correlationsbetween fungalabundanceandAP(r=.435,p<.05)andTP(r=.613,p<.01),whichwerequitesimilartootherfindings(Kuramaeetal.,2012).

Inaddition, theF/B ratiowasconsideredan indicatorofeco-systemprocesses,asthechangesinratiowerelikelytoberelatedtodecomposition,nutrientcycling,C-sequestrationpotential,andecosystemself-regulation(Strickland&Rousk,2010).Inthisstudy,the F/BratiosunderCKandMPKregimeswerelowerthanthoseofPKandNPK,probablydue to theacidificationof soil inducedby chemical inputs.As documented by Joergensen andWichern(2008) and Rousk, Brookes, and Bååth (2009), fungi have beenfoundtobemoreacidtolerantthanbacterialeadingtoincreasedfungaldominanceinacidicsoils.Moreover,theF/Bratiowashigh-est under thePK regimeprobably due to thebetter adaptabilityoffungalspeciestoNlimitationcomparedwithbacteria(Rousk&Frey,2015).TheF/BratioundertheMPKregimewassignificantlylowerthanothers,indicatingahigherturnoverrateofeasilyavail-able substrates (Rousk, Brookes, & Bååth, 2010) and highly pro-ductivecropsoils(Strickland&Rousk,2010).Additionally,theF/B ratio was significantly positive correlatedwith soil pH (r=.648,p<.01), thismightbedue to thedifferent responsesofbacteriaand fungi to lower pH levels, namely the significant suppressiveeffectofbacteriaandwelltoleranceoffungi(Coyne,1999;Rousk,Bååth,etal.,2010).

4.3 | Effects on fungal α- diversity

Microbialdiversity insoilwasclosely relatedtosoilqualityandthenutrient cycling rate (Nevarezetal.,2009).The richer thebiodiver-sity,themorestablethesoil(Chaer,Fernandes,Myrold,&Bottomley,2009).Thelowerbiodiversityoffungialsocausedunsustainablecropproduction and an unstable ecosystem (Maček etal., 2011). In this

F IGURE  2 PCoAofthepyrosequencingreadsbasedontheunweightedFastUniFracmetric

Page 7: Responses of fungal community composition to long‐term

     |  7 of 12MA et Al.

study,PKandNPKapplicationsreducedthefungalcommunityrich-ness indices (Chao1andACE),whereastheMPKapplicationsignifi-cantlyincreasedthem.Thismightbeexplainedbythecomplexorganiccompounds present inmanure requiring variousmicroorganisms todegrade.Theresultsconfirmedpreviousfindingsthatahighmicrobialdiversitywasalwaysfoundunderorganicamendmentregimesrather

than chemical regimes (Esperschütz, Gattinger, Mäder, Schloter, &Fließbach,2007).Comparedwithsoilnutrients,theChao1indexwaspositivelycorrelatedwithsoilOM(r=.564,p<.01),whichprobablyprovidedmacronutrient for fungi and stimulated themicrobial bio-massanddiversity(Peacocketal.,2001).Inconclusion,thesubstitu-tionofchemicalNfertilizerwithorganicmanure,whichisbeneficial

F IGURE  3 Relativeabundanceofphylogeneticphylaunderdifferentfertilizationregimes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CK PK MPK NPKre

lativ

e ab

unda

nce

treatments

Others

Glomeromycota

Chytridiomycota

Basidiomycota

Zygomycota

Ascomycota

F IGURE  4 Relativeabundanceofphylogeneticclassesunderdifferentfertilizationregimes.Atleastonegroup’srelativeabundanceismorethan0.1%ofthetotalsequences

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CK PK MPK NPK

rela

tive

abun

danc

e

Treatments

other

Incertae_sedis_Ascomycota

Chytridiomycetes

Pezizomycetes

Agaricomycetes

Eurotiomycetes

Tremellomycetes

Dothideomycetes

Leotiomycetes

Incertae_sedis_Zygomycota

Sordariomycetes

F IGURE  5 Relativeabundanceofphylogeneticgeneraunderdifferentfertilizationregimes.Atleastonegroup’srelativeabundanceismorethan1%ofthetotalsequences

0%

2%

4%

6%

8%

10%

12%

14%

CK PK MPK NPK

rela

tive

abun

danc

e

Treatments

Chaetomium

Periconia

Epicoccum

Ilyonectria

Bipolaris

Chaetomidium

Corynespora

Penicillium

Mor�erella

Page 8: Responses of fungal community composition to long‐term

8 of 12  |     MA et Al.

for the resilienceofmicrobialdiversity (Naeem&Li,1997)andsoilproductivity(Sapp,Harrison,Hany,Charlton,&Thwaites,2015),wasagoodwaytoreduceanthropogenicNinputs.

4.4 | Impact on fungal community composition

The phylum Ascomycota was dominant in all the fertilization re-gimes. Similar results have been observed in other studies (Xiongetal., 2014; Li, Ding, Zhang, & Wang, 2014). The abundance ofAscomycotaundertheNPKregimewaslowerthanunderthePKandMPKregimes,whichcontrastedwithotherfindingsthatAscomycotawas enhanced by relatively high N inputs (Nemergut etal., 2008;Paungfoo-Lonhienneetal.,2015).ThiscouldbeexplainedbythefactthatmembersoftheAscomycotaareadaptedtotheappropriateNcontent(Klaubaufetal.,2010)butwerevulnerabletoexcessNlevels(Wangetal.,2015).

Attheclasslevel,Sordariomyceteswasthemostdominantmem-ber,inlinewithotherfindings(Zhouetal.,2016).ComparedwiththeCKandPKapplication,therelativeabundancesofSordariomycetesweresignificantlyhigherundertheNPKandMPKregimes,proba-blyduetosufficientnutrients insoil (Dingetal.,2017).However,Dothideomycetesshowedtheoppositepattern,namely,theyweresignificantlylowerundertheNPKandMPKregimes,indicatingpos-itiveeffectsonsoilquality,asmanyofthetaxaappearedtobeplantpathogens(Lyons,Newell,Buchan,&Moran,2003).LeotiomycetesdominancewaslowestundertheNPKregime,indicatinganegative

F IGURE  6 HistogramofthelineardiscriminantanalysisscorescomputedforfeaturesdifferentiallyabundantbetweenNPKandMPKsamplesidentifiedbyLEfSe(LDAscore>3)

F IGURE  7 Redundancyanalysisofsoilbacterialcommunitiesandsoilcharacteristicsforindividualsamples.Soilfactorsindicatedinredtextincludeavailablephosphorus(AP),availablepotassium(AK),pH,soilconcentrationofNH4

+(NH4+),soilconcentrationofNO3

− (NO3

−),totalnitrogen(TN),totalpotassium(TK),totalphosphorus(TP),andorganicmatter(OM)

Page 9: Responses of fungal community composition to long‐term

     |  9 of 12MA et Al.

correlation with the chemical N input (Freedman, Romanowicz,Upchurch, & Zak, 2015; Zhou etal., 2016). The decline ofLeotiomycetesunderNPKregimeprobablycausedalossofplant–fungalsymbiosesunderhighNinputconditions(Deanetal.,2014).Additionally,theNPKapplicationproducedahigherabundanceofTremellomycetes,whichprobablybenefitedinorganicmatterdecay(Freedmanetal.,2015).TheabundanceofEurotiomyceteswasalsohigher under theNPK regime, probably causingN loss in the soiland greenhouse gas emissions due to its N2O-producing activity(Jasrotiaetal.,2014;Mothapo,Chen,Cubeta,Grossman,&Fuller,2015). The abundances of Pezizomycetes were significantly highunderall the fertilization regimes,whichmaybe the resultof soilOMaccumulationduetodecayingwood,dung,leaflitter,andtwigs(Stajich,2015).

Athoroughinvestigationatthegenusorhighertaxonomiclevelshowed differences among the treatments. More harmful fun-gal taxa with known pathogenic traits were also overrepresentedunder theNPK regime, suchas theorderChaetothyriales, familiesChaetothyriaceae, Pleosporaceae, and Chaetomiaceae, and generaCorynespora, Bipolaris, and Cyphellophora Chaetomidium. The order Chaetothyriales, familyPleosporaceae and genusChaetomidium arewell-known for their animal and human opportunistic pathogens(Arzanlou, Khodaei, & Saadati Bezdi, 2012; Sajeewa etal., 2015;Winka,Eriksson,&Bång,1998).AndfamilyChaetomiaceaeincludesnumeroussoil-born,saprotrophic,endophytic,andpathogenicfungi(Zámockyetal.,2016),andalso,severalCyphellophoraspecieshavealso been associated with potential pathogens (Decock, Delgado-Rodríguez, Buchet,& Seng, 2003).Moreover, some isolateswithinCorynesporaarepathogenictoawiderangeofhosts(Dixon,Schlub,Pernezny, & Datnoff, 2009) and Bipolaris causes significant yieldlosses as a foliar disease constraint (Road, 2002).Obviously, long-termNPKapplicationsmayinducetheincidenceratesoffungaldis-eases.Incontrast,thesefungiweredetectedatlowlevelsundertheMPK regime.Meanwhile, the genusMycothermuswas also signifi-cantlymoredominantundertheMPKregime,whichbenefitsthede-compositionofcellulosebecauseofitsappreciabletitersofcellulasesandhemicellulases(Basotra,Kaur,DiFalco,Tsang,&Chadha,2016).Thus,manurehelpsshiftthesoilfungalcommunitytoagoodstatus,whereaschemicalfertilizerapplicationsexhibittheoppositepattern.

4.5 | Soil properties effects on fungal community composition

Inlinewithpreviousfindings(Liuetal.,2015;Dingetal.,2017),weconcludedthatsoilOMandpHwerethemostimportantcontributorstothevariation inthefungalcommunitycomposition,basedontheredundancyanalysis.AsdocumentedbyBroeckling,Broz,Bergelson,Manter,andVivanco (2008), themajorityof fungiareheterotrophsanddependonexogenousC forgrowth, thus labileOMhasapro-foundinfluenceontheirabundance.Moreover,soilpHalsoplayedakeyroleinshapingfungalcommunitycomposition(Dingetal.,2017;Kimetal.,2015).ThiscouldbeexplainedbythemoresensitivityoffungitoapHchange(Liuetal.,2015).Additionally,soilpHmayaffect

fungalcommunitycompositionbyrespondingtoothervariablesandmayprovideanintegratedindexofsoilconditions.Hydrogenioncon-centration varies bymanyorders ofmagnitude across various soilsand, as numerous soil properties are related to soil pH, these fac-torsmayhavedriventheobservedshiftsincommunitycomposition(Rousk,Bååth,etal.,2010;Shenetal.,2013;Xiongetal.,2012).Thus,soilmicroorganismscouldrapidlyrespondtothechangesintheenvi-ronmental conditions (Eilers,Debenport,Anderson,&Fierer,2012),suchassoilchemicalorphysicalpropertiesinducedbyfertilization.Inturn,shiftsinmicroorganismcompositioncouldinfluencesoilqualityandplantgrowth.

Inaddition,long-termdifferentfertilizationstrategieshadsignifi-canteffectsonbacterialβ-diversityandshapedvariantmicrobialcom-positionsinthesoil(Zhouetal.,2017).Inthisstudy,aPCoArevealedtherelationshipbetweensoilfertilizationandthefungalcommunity.TheNPKplot,locatedinthelowerrightcorner,wasfarfromtheCKplot,indicatingastrongeffectofchemicalfertilizer;however,thePKandMPKplotswereclusteredtogetherandneartheCKplot,suggest-ing theeffective resilienceoforganicmanureon fungal communitystructure,inlinewithDingetal.(2017).

5  | CONCLUSION

Ourfindingsdeterminedtheresponsesofsoilfungalcommunitycom-positiontolong-termfertilizationstrategiesinblacksoil.SuchshiftsmaymainlybederivedfromchangesinthesoilpHandOM.Comparedwithchemicalfertilization,manureapplicationsalleviatedsoilacidifi-cation,accumulatedsoilOM, increasedsoilnutrients, improvedsoilfungalcommunitycomposition,andrestoredsoilmicrobialalterations,leadingtoimprovementsofsoilqualityandsoybeanyield.Theresultshighlightedthepotentialoforganicmanureasasubstituteforchemi-calNfertilizersinthesustainabledevelopmentofChineseMollisols.

ACKNOWLEDGMENTS

ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(No.41573066andNo.31200388),theNationalKeyBasicResearch Program of China (973 Program: 2015CB150506), theFoundationforSafetyofAgriculturalProductsbyMinistryofAgriculture,China (GJFP201801202), and the Fundamental Research Funds forCentral Non-profit Scientific Institution (No. 1610132017010). WethanktheUniversityofLiège-GemblouxAgro-BioTechandmorespe-cificallytheresearchplatformAgricultureIsLifeforthefundingofthescientificstayinBelgiumthatmadethispaperpossible.

CONFLICT OF INTEREST

Noconflictofinterestisdeclared.

ORCID

Mingchao Ma http://orcid.org/0000-0003-2609-321X

Page 10: Responses of fungal community composition to long‐term

10 of 12  |     MA et Al.

REFERENCES

Abarenkov, K., Henrik Nilsson, R., Larsson, K. H., Alexander, I. J.,Eberhardt, U., Erland, S., … Sen, R. (2010). The UNITE databasefor molecular identification of fungi–recent updates and fu-ture perspectives. New Phytologist, 186(2), 281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x

Arzanlou, M., Khodaei, S., & Saadati Bezdi, M. (2012). Occurrence ofChaetomidium arxii on sunn pest in Iran.Mycosphere, 3, 234–239.https://doi.org/10.5943/mycosphere/

Basotra, N., Kaur, B., Di Falco, M., Tsang, A., & Chadha, B. S. (2016).Mycothermus thermophilus (Syn. Scytalidium thermophilum):Repertoireofadiversearrayofefficientcellulasesandhemicellulasesin the secretome revealed. Bioresource Technology, 222, 413–421.https://doi.org/10.1016/j.biortech.2016.10.018

Behie,S.W.,&Bidochka,M.J.(2014).Nutrienttransferinplant-fungalsym-bioses. Trends in Plant Science,19,734–740.https://doi.org/10.1016/j.tplants.2014.06.007

Blaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., &Kauserud, H. (2013). ITS1 versus ITS2 as DNA metabarcodesfor fungi. Molecular Ecology Resources, 13, 218–224. https://doi.org/10.1111/1755-0998.12065

Bokulich, N. A., & Mills, D. A. (2013). Improved selection of internaltranscribed spacer-specific primers enables quantitative, ultra-high-throughputprofilingof fungalcommunities.Applied and Environment Microbiology,79,2519–2526.https://doi.org/10.1128/AEM.03870-12

Bokulich,N.A.,Subramanian,S.,Faith,J.J.,Gevers,D.,Gordon,J.I.,Knight,R.,…Caporaso,J.G.(2013).Quality-filteringvastlyimprovesdiversityestimates from Illumina amplicon sequencing. Nature Methods, 10,57–59.

Braak,C.J.F.,&Smilauer,P.(2012).Canocoreferencemanualanduser’sguide:softwareforordination,version5.0.IthacaUSAMicrocomput.Power.

Broeckling,C.D.,Broz,A.K.,Bergelson,J.,Manter,D.K.,&Vivanco,J.M.(2008).Rootexudatesregulatesoilfungalcommunitycompositionanddiversity. Applied and Environment Microbiology,74,738–744.https://doi.org/10.1128/AEM.02188-07

Buee,M.,Reich,M.,Murat,C.,Morin,E.,Nilsson,R.H.,Uroz,S.,&Martin,F.(2009).454Pyrosequencinganalysesofforestsoilsrevealanunex-pectedlyhighfungaldiversity.New Phytologist,184,449–456.https://doi.org/10.1111/j.1469-8137.2009.03003.x

Cairney,J.W.G.(2011).Ectomycorrhizalfungi:Thesymbioticroutetotherootforphosphorusinforestsoils.Plant and Soil,344,51–71.https://doi.org/10.1007/s11104-011-0731-0

Caporaso,J.G.,Kuczynski,J.,Stombaugh,J.,Bittinger,K.,Bushman,F.D.,Costello,E.K.,…Huttley,G.A.(2010).QIIMEallowsanalysisofhigh-throughput community sequencingdata.Nature Methods,7(5), 335–336.https://doi.org/10.1038/nmeth.f.303

Chaer,G.,Fernandes,M.,Myrold,D.,&Bottomley,P.(2009).Comparativeresistanceandresilienceofsoilmicrobialcommunitiesandenzymeac-tivitiesinadjacentnativeforestandagriculturalsoils.Microbial Ecology,58,414–424.https://doi.org/10.1007/s00248-009-9508-x

Chu,H.,Lin,X.,Fujii,T.,Morimoto,S.,Yagi,K.,Hu,J.,&Zhang,J.(2007).Soil microbial biomass, dehydrogenase activity, bacterial commu-nity structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39, 2971–2976. https://doi.org/10.1016/j.soilbio.2007.05.031

Clark,C.M.,Cleland,E.E.,Collins,S.L.,Fargione,J.E.,Gough,L.,Gross,K.L.,…Grace,J.B.(2007).Environmentalandplantcommunitydetermi-nantsofspecieslossfollowingnitrogenenrichment.Ecology Letters,10,596–607.https://doi.org/10.1111/j.1461-0248.2007.01053.x

Coyne,M.S. (1999).Soil microbiology: An exploratory approach.NY,USA:DelmarNewYork.

Dean, S. L., Farrer, E.C.,Taylor,D. L., Porras-Alfaro,A., Suding,K.N.,&Sinsabaugh, R. L. (2014). Nitrogen deposition alters plant–fungal

relationships: Linking belowground dynamics to aboveground veg-etation change. Molecular Ecology, 23, 1364–1378. https://doi.org/10.1111/mec.12541

Decock,C.,Delgado-Rodríguez,G.,Buchet,S.,&Seng,J.M.(2003).AnewspeciesandthreenewcombinationsinCyphellophora,withanoteonthetaxonomicaffinitiesofthegenus,anditsrelationtoKumbhamayaandPseudomicrodochium.Antonie van Leeuwenhoek,84(3),209–216.https://doi.org/10.1023/A:1026015031851

Degnan, P. H., & Ochman, H. (2012). Illumina-based analysis of micro-bial community diversity. ISME Journal, 6, 183–194. https://doi.org/10.1038/ismej.2011.74

Ding, J., Jiang, X., Guan, D., Zhao, B.,Ma,M., Zhou, B., … Li, J. (2017).Influenceofinorganicfertilizerandorganicmanureapplicationonfun-galcommunitiesinalong-termfieldexperimentofChineseMollisols.Applied Soil Ecology, 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003

Dixon,L.J.,Schlub,R.L.,Pernezny,K.,&Datnoff,L.E.(2009).Hostspecializa-tionandphylogeneticdiversityofCorynesporacassiicola.Phytopathology,99,1015–1027.https://doi.org/10.1094/PHYTO-99-9-1015

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R.(2011). UCHIME improves sensitivity and speed of chimera de-tection. Bioinformatics, 27, 2194–2200. https://doi.org/10.1093/bioinformatics/btr381

Edwards, I. P., Zak, D. R., Kellner, H., Eisenlord, S. D., & Pregitzer, K. S.(2011).SimulatedatmosphericNdepositionaltersfungalcommunitycompositionandsuppressesligninolyticgeneexpressioninaNorthernHardwoodforest.PLoS ONE,6,1–10.https://doi.org/10.1371/journal.pone.0020421

Eilers, K. G., Debenport, S., Anderson, S., & Fierer, N. (2012). Diggingdeeper to find unique microbial communities: The strong effect ofdepthonthestructureofbacterialandarchaealcommunities insoil.Soil Biology & Biochemistry, 50, 58–65. https://doi.org/10.1016/j.soilbio.2012.03.011

Esperschütz, J., Gattinger, A., Mäder, P., Schloter, M., & Fließbach, A.(2007). Response of soil microbial biomass and community struc-tures to conventional and organic farming systems under identicalcrop rotations. FEMS Microbiology Ecology, 61, 26–37. https://doi.org/10.1111/j.1574-6941.2007.00318.x

Fierer,N.,Leff,J.W.,Adams,B.J.,Nielsen,U.N.,Bates,S.T.,Lauber,C.L., … Caporaso, J. G. (2012). Cross-biomemetagenomic analyses ofsoilmicrobialcommunitiesandtheirfunctionalattributes.Proceedings of the National Academy of Sciences,109, 21390–21395. https://doi.org/10.1073/pnas.1215210110

Freedman,Z.B.,Romanowicz,K.J.,Upchurch,R.A.,&Zak,D.R.(2015).Differentialresponsesoftotalandactivesoilmicrobialcommunitiestolong-termexperimentalNdeposition.Soil Biology & Biochemistry,90,275–282.https://doi.org/10.1016/j.soilbio.2015.08.014

García-Gil,J.C.,Ceppi,S.B.,Velasco,M.I.,Polo,A.,&Senesi,N. (2004).Long-termeffectsofamendmentwithmunicipalsolidwastecomposton the elemental and acidic functional group composition and pH-buffercapacityofsoilhumicacids.Geoderma,121,135–142.https://doi.org/10.1016/j.geoderma.2003.11.004

Garg,V.K.,&Kaushik,P. (2005).Vermistabilizationof textilemill sludgespikedwithpoultrydroppingsbyanepigeicearthwormEiseniafoetida.Bioresource Technology, 96, 1063–1071. https://doi.org/10.1016/j.biortech.2004.09.003

Geisseler,D.,&Scow,K.M.(2014).Long-termeffectsofmineralfertiliz-ersonsoilmicroorganisms–Areview.Soil Biology & Biochemistry,75,54–63.https://doi.org/10.1016/j.soilbio.2014.03.023

Guo,J.H.,Liu,X.J.,Zhang,Y.,Shen,J.L.,Han,W.X.,Zhang,W.F.,…Zhang,F.S.(2010).SignificantacidificationinmajorChinesecroplands.Science,327(5968),1008–1010.https://doi.org/10.1126/science.1182570

Habib,F.,Javid,S.,Saleem,I.,Ehsan,S.,&Ahmad,Z.A.(2014).Potassiumdynamicsinsoilunderlongtermregimesoforganicandinorganicfer-tilizerapplication.Soil Environment,33(2),110–115.

Page 11: Responses of fungal community composition to long‐term

     |  11 of 12MA et Al.

Hart,S.C.,Stark,J.M.,Davidson,E.A.,&Firestone,M.K.(1994).Nitrogenmineralization,immobilization,andnitrification.Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties,42,985–1018.

He,J.Z.,Zheng,Y.,Chen,C.R.,He,Y.Q.,&Zhang,L.M.(2008).Microbialcompositionanddiversityofanuplandredsoilunder long-termfer-tilization treatments as revealed by culture-dependent and culture-independent approaches. Journal of Soils and Sediments,8, 349–358.https://doi.org/10.1007/s11368-008-0025-1

Hedley,M. J., & Stewart, J.W.B. (1982).Method tomeasuremicrobialphosphateinsoils.Soil Biology & Biochemistry,14,377–385.https://doi.org/10.1016/0038-0717(82)90009-8

Helmke,P.A.,&Sparks,D.L. (1996).Lithium,sodium,potassium, rubid-ium,andcesium.Methods of Soil Analysis Part 3—Chemical Methods,19,551–574.

Huang, B., Sun,W., Zhao,Y., Zhu, J., Yang, R., Zou, Z., … Su, J. (2007).Temporalandspatialvariabilityofsoilorganicmatterandtotalnitrogeninanagriculturalecosystemasaffectedbyfarmingpractices.Geoderma,139,336–345.https://doi.org/10.1016/j.geoderma.2007.02.012

Jasrotia,P.,Green,S.J.,Canion,A.,Overholt,W.A.,Prakash,O.,Wafula,D.,…Kostka,J.E. (2014).Watershed-scalefungalcommunitycharacter-izationalongapHgradient in a subsurfaceenvironment cocontami-natedwithuraniumandnitrate.Applied and Environment Microbiology,80(6),1810–1820.https://doi.org/10.1128/AEM.03423-13

Joergensen,R.G.,&Wichern,F. (2008).Quantitativeassessmentof thefungalcontributiontomicrobialtissueinsoil.Soil Biology & Biochemistry,40,2977–2991.https://doi.org/doi:10.1016/j.soilbio.2008.08.017

Johnson,N.C.,Wolf,J.,&Koch,G.W.(2003).Interactionsamongmycorrhizae,atmosphericCO2andsoilNimpactplantcommunitycomposition.Ecology Letters,6,532–540.https://doi.org/10.1046/j.1461-0248.2003.00460.x

Kim,Y.C.,Gao,C.,Zheng,Y.,He,X.H.,Yang,W.,Chen,L.,…Guo,L.D.(2015).Arbuscularmycorrhizalfungalcommunityresponsetowarmingandnitrogenadditioninasemiaridsteppeecosystem.Mycorrhiza,25,267–276.https://doi.org/10.1007/s00572-014-0608-1

Klaubauf, S., Inselsbacher, E., Zechmeister-Boltenstern, S., Wanek, W.,Gottsberger, R., Strauss, J., &Gorfer,M. (2010).Molecular diversityoffungalcommunitiesinagriculturalsoilsfromLowerAustria.Fungal Diversity,44,65–75.https://doi.org/10.1007/s13225-010-0053-1

Koljalg,U.,Nilsson, R.H.,Abarenkov, K.,Tedersoo, L.,Taylor,A. F. S., &Bahram,M. (2014).Towards a unified paradigm for sequence-basedidentificationoffungi.Molecular Ecology,22,5271–5277.https://doi.org/10.1111/mec.12481

Kuramae, E. E., Yergeau, E., Wong, L. C., Pijl, A. S., Van Veen, J. A., &Kowalchuk,G.A.(2012).Soilcharacteristicsmorestronglyinfluencesoilbacterialcommunitiesthanland-usetype.FEMS Microbiology Ecology,79,12–24.https://doi.org/10.1111/j.1574-6941.2011.01192.x

Lauber,C.L.,Ramirez,K.S.,Aanderud,Z.,Lennon,J.,&Fierer,N.(2013).Temporalvariabilityinsoilmicrobialcommunitiesacrossland-usetypes.ISME Journal,7,1641–1650.https://doi.org/10.1038/ismej.2013.50

Li,X.G.,Ding,C.F.,Zhang,T.L.,&Wang,X.X.(2014).Fungalpathogenac-cumulationattheexpenseofplant-beneficialfungiasaconsequenceofconsecutivepeanutmonoculturing.Soil Biology and Biochemistry,72,11–18https://doi.org/10.1016/j.soilbio.2014.01.019

Liu,J.,Sui,Y.,Yu,Z.,Shi,Y.,Chu,H.,Jin,J.,…Wang,G.(2015).SoilcarboncontentdrivesthebiogeographicaldistributionoffungalcommunitiesintheblacksoilzoneofnortheastChina.Soil Biology & Biochemistry,83,29–39.https://doi.org/doi:10.1016/j.soilbio.2015.01.009

Lyons, J. I., Newell, S. Y., Buchan, A., &Moran, M. A. (2003). Diversityof ascomycete laccase gene sequences in a southeastern US saltmarsh. Microbial Ecology, 45, 270–281. https://doi.org/10.1007/s00248-002-1055-7

Maček,I.,Dumbrell,A.J.,Nelson,M.,Fitter,A.H.,Vodnik,D.,&Helgason,T.(2011).LocaladaptationtosoilhypoxiadeterminesthestructureofanarbuscularmycorrhizalfungalcommunityinrootsfromnaturalCO2springs. Applied and Environment Microbiology,77,4770–4777.https://doi.org/10.1128/AEM.00139-11

Marsh, A. J., O Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. (2013).Sequencing-based analysis of the bacterial and fungal compositionofkefirgrainsandmilksfrommultiplesources.PLoS ONE,8,e69371.https://doi.org/10.1371/journal.pone.0069371

Mothapo,N.,Chen,H.,Cubeta,M.A.,Grossman,J.M.,&Fuller,F.(2015).Phylogenetic,taxonomicandfunctionaldiversityoffungaldenitrifiersandassociatedN2Oproductionefficacy.Soil Biology and Biochemistry,83,160–175https://doi.org/10.1016/j.soilbio.2015.02.001

Naeem, S., & Li, S. (1997). Biodiversity enhances ecosystem reliability.Nature,390,507–509.https://doi.org/10.1038/37348

Näsholm,T.,Kielland,K.,&Ganeteg,U.(2009).Tansleyreview.New Phytologist,182(1),31–48.https://doi.org/10.1111/j.1469-8137.2006.01864.x

Nemergut,D.R.,Townsend,A.R.,Sattin,S.R.,Freeman,K.R.,Fierer,N.,Neff, J. C., … Schmidt, S. K. (2008). The effects of chronic nitrogenfertilizationonalpinetundrasoilmicrobialcommunities: Implicationsforcarbonandnitrogencycling.Environmental Microbiology,10,3093–3105.https://doi.org/10.1111/j.1462-2920.2008.01735.x

Nevarez,L.,Vasseur,V.,LeMadec,A.,LeBras,M.A.,Coroller,L.,Leguérinel,I.,&Barbier,G.(2009).PhysiologicaltraitsofPenicilliumglabrumstrainLCP08.5568,a filamentousfungus isolatedfrombottledaromatisedmineralwater.International Journal of Food Microbiology,130,166–171.https://doi.org/10.1016/j.ijfoodmicro.2009.01.013

Paungfoo-Lonhienne,C.,Yeoh,Y.K.,Kasinadhuni,N.R.P.,Lonhienne,T.G.A.,Robinson,N.,Hugenholtz,P.,…Schmidt,S.(2015).Nitrogenfertil-izerdosealtersfungalcommunitiesinsugarcanesoilandrhizosphere.Scientific Reports,5,8678.https://doi.org/10.1038/srep08678

Peacock,A.G.,Mullen,M.D.,Ringelberg,D.B.,Tyler,D.D.,Hedrick,D.B., Gale, P.M., &White,D. C. (2001). Soilmicrobial community re-sponses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry,33(7),1011–1019.https://doi.org/10.1016/S0038-0717(01)00004-9

Ramirez,K.S.,Craine,J.M.,&Fierer,N.(2012).Consistenteffectsofni-trogen amendments on soil microbial communities and processesacross biomes. Global Change Biology, 18, 1918–1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x

Road,A.(2002).PathogenprofileBipolarissorokiniana,acerealpathogenofglobalconcern :Cytologicalandmolecularapproachestowardsbet-ter control. Molecular Plant Pathology,3,185–195.

Romaniuk,R.,Giuffré,L.,Costantini,A.,&Nannipieri,P.(2011).Assessmentofsoilmicrobialdiversitymeasurementsasindicatorsofsoilfunctioninginorganicandconventionalhorticulturesystems.Ecological Indicators,11,1345–1353.https://doi.org/10.1016/j.ecolind.2011.02.008

Rousk,J.,Bååth,E.,Brookes,P.C.,Lauber,C.L.,Lozupone,C.,Caporaso,J.G.,…Fierer,N.(2010).SoilbacterialandfungalcommunitiesacrossapHgradientinanarablesoil.ISME Journal,4,1340–1351.https://doi.org/10.1038/ismej.2010.58

Rousk,J.,Brookes,P.C.,&Bååth,E.(2009).ContrastingsoilpHeffectsonfungalandbacterialgrowthsuggestfunctionalredundancyincarbonmineralization.Applied and Environment Microbiology,75,1589–1596.https://doi.org/10.1128/AEM.02775-08

Rousk,J.,Brookes,P.C.,&Bååth,E.(2010).ThemicrobialPLFAcomposi-tionasaffectedbypHinanarablesoil.Soil Biology & Biochemistry,42,516–520.https://doi.org/10.1016/j.soilbio.2009.11.026

Rousk, J., & Frey, S.D. (2015). Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic mat-ter and nutrients. Ecological Monographs, 85, 457–472. https://doi.org/10.1890/14-1796.1

Sajeewa, S., Maharachchikumbura, N., Hyde, K. D., Jones, G., Eric, H.,Mckenzie,C.,…Hongsanan,S.(2015).TowardsanaturalclassificationandbackbonetreeforSordariomycetes.Fungal Diversity,72,199.

Sapp,M.,Harrison,M.,Hany,U.,Charlton,A.,&Thwaites,R.(2015).Comparingtheeffectofdigestateandchemicalfertiliseronsoilbacteria.Applied Soil Ecology,86,1–9.https://doi.org/10.1016/j.apsoil.2014.10.004

Schoch,C.L.,Seifert,K.A.,Huhndorf,S.,Robert,V.,Spouge,J.L.,Levesque,C.A., …Miller,A. N. (2012). Nuclear ribosomal internal transcribed

Page 12: Responses of fungal community composition to long‐term

12 of 12  |     MA et Al.

spacer (ITS) region as a universal DNA barcode marker for Fungi.Proceedings of the National Academy of Sciences, 109, 6241–6246.https://doi.org/10.1073/pnas.1117018109

Schröder,J.J.,Uenk,D.,&Hilhorst,G.J.(2007).Long-termnitrogenfertil-izerreplacementvalueofcattlemanuresappliedtocutgrassland.Plant and Soil,299,83–99.https://doi.org/10.1007/s11104-007-9365-7

Segata, N., Izard, J.,Waldron, L., Gevers, D.,Miropolsky, L., Garrett,W.S., & Huttenhower, C. (2011). Metagenomic biomarker discoveryand explanation. Genome Biology, 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60

Shen,C.,Xiong,J.,Zhang,H.,Feng,Y.,Lin,X.,Li,X.,…Chu,H.(2013).SoilpHdrivesthespatialdistributionofbacterialcommunitiesalongeleva-tiononChangbaiMountain.Soil Biology & Biochemistry,57,204–211.https://doi.org/10.1016/j.soilbio.2012.07.013

Singh,H.,Verma,A.,Ansari,M.W.,&Shukla,A. (2014).Physiologicalre-sponseofrice(Oryza sativaL.)genotypestoelevatednitrogenappliedunder fieldconditions.Plant Signaling & Behavior,9, e29015.https://doi.org/10.4161/psb.29015

Stajich, J. E. (2015). Phylogenomics enabling genome-based mycol-ogy, the mycota: A comprehensive treatise on fungi as experimen-tal systems for basic and applied research: VII systematics and evo-lution Part B(2nd ed.). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-46011-5_11

Strickland,M. S.,&Rousk, J. (2010). Considering fungal: Bacterial dom-inance in soils –methods, controls, andecosystem implications.Soil Biology & Biochemistry,42,1385–1395.https://doi.org/doi:10.1016/j.soilbio.2010.05.007

Strickland,T.C.,&Sollins,P.(1987).Improvedmethodforseparatinglight-and heavy-fraction organicmaterial from soil. Soil Science Society of America Journal,51,1390–1393.https://doi.org/10.2136/sssaj1987.03615995005100050056x

Sun,Q., Liu,Y.,Yuan,H.,& Lian,B. (2016).Theeffect of environmentalcontamination on the community structure and fructification of ec-tomycorrhizal fungi.Microbiologyopen, 1–8, https://doi.org/10.1002/mbo3.396

Szuba, A. (2015). Ectomycorrhiza of Populus. Forest Ecology and Management, 347, 156–169. https://doi.org/10.1016/j.foreco.2015.03.012

Wang,J.T.,Zheng,Y.M.,Hu,H.W.,Zhang,L.M.,Li,J.,&He,J.Z.(2015).Soil pHdetermines the alpha diversity but not beta diversity of soilfungalcommunityalongaltitudeinatypicalTibetanforestecosystem.Journal of Soils and Sediments,15,1224–1232.https://doi.org/10.1007/s11368-015-1070-1

Wei,D.,Yang,Q.,Zhang,J.-Z.,Wang,S.,Chen,X.-L.,Zhang,X.-L.,&Li,W.-Q.(2008).Bacterialcommunitystructureanddiversityinablacksoilasaffectedby long-termfertilization*1*1ProjectsupportedbytheHeilongjiangProvincialNaturalScienceFundsforDistinguishedYoung Scholars, China (No. JC200622), the HeilongjiangProvinci. Pedosphere, 18, 582–592. https://doi.org/doi: 10.1016/S1002-0160(08)60052-1

Whalen,J.K.,Chang,C.,Clayton,G.W.,&Carefoot,J.P. (2000).Cattlemanure amendments can increase the pH of acid soils. Soil Science Society of America Journal, 64, 962–966. https://doi.org/10.2136/sssaj2000.643962x

Williams,A.,Börjesson,G.,&Hedlund,K.(2013).Theeffectsof55yearsofdifferentinorganicfertiliserregimesonsoilpropertiesandmicrobialcommunitycomposition.Soil Biology & Biochemistry,67,41–46.https://doi.org/10.1016/j.soilbio.2013.08.008

Winka,K.,Eriksson,O.E.,&Bång,Å.(1998).Molecularevidenceforrec-ognizing the Chaetothyriales. Mycologia, 1, 822–830. https://doi.org/10.2307/3761324

Wurzbacher,C.,Rösel,S.,Rychła,A.,&Grossart,H.-P.(2014).Importanceofsaprotrophicfreshwaterfungiforpollendegradation.PLoS ONE,9,e94643.https://doi.org/10.1371/journal.pone.0094643

Xie, H., Li, J., Zhu, P., Peng, C.,Wang, J., He, H., & Zhang, X. (2014).Long-term manure amendments enhance neutral sugar accumu-lation in bulk soil and particulate organicmatter in aMollisol.Soil Biology & Biochemistry, 78, 45–53. https://doi.org/10.1016/j.soilbio.2014.07.009

Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., … Chu, H.(2012). Geographic distance and pH drive bacterial distri-bution in alkaline lake sediments across Tibetan Plateau.Environmental Microbiology, 14, 2457–2466. https://doi.org/10.1111/j.1462-2920.2012.02799.x

Xiong,W.,Zhao,Q.,Zhao,J.,Xun,W.,Li,R.,Zhang,R.,…Shen,Q.(2014).Differentcontinuouscroppingspanssignificantlyaffectmicrobialcom-munitymembershipandstructure inavanilla-grownsoilas revealedbydeeppyrosequencing.Microbial Ecology,70,209–218.https://doi.org/10.1007/s00248-014-0516-0

Yin,C., Fan,F., Song,A.,Cui,P., Li,T.,&Liang,Y. (2015).Denitrificationpotential under different fertilization regimes is closely cou-pled with changes in the denitrifying community in a black soil.Applied Microbiology and Biotechnology, 99, 5719–5729. https://doi.org/10.1007/s00253-015-6461-0

Zámocky, M., Tafer, H., Chovanová, K., Lopandic, K., Kamlárová, A., &Obinger,C. (2016).GenomesequenceofthefilamentoussoilfungusChaetomium cochliodes reveals abundance of genes for heme en-zymesfromallperoxidaseandcatalasesuperfamilies.BMC Genomics,17,763.https://doi.org/10.1186/s12864-016-3111-6

Zhao, J., Ni, T., Li,Y., Xiong,W., Ran,W., Shen, B., … Zhang, R. (2014).Responses of bacterial communities in arable soils in a rice-wheatcroppingsystemtodifferentfertilizerregimesandsamplingtimes.PLoS ONE,9,https://doi.org/10.1371/journal.pone.0085301

Zhao, Y., Xu, X., Hai, N., Huang, B., Zheng, H., & Deng, W. (2015).Uncertainty assessment for mapping changes in soil organic matterusingsparselegacysoildataanddensenew-measureddatainatypicalblacksoilregionofChina.Environmental Earth Sciences,73,197–207.https://doi.org/10.1007/s12665-014-3411-6

Zhou, J., Guan,D., Zhou, B., Zhao, B.,Ma,M.,Qin, J., … Li, J. (2015).Influence of 34-years of fertilization on bacterial communitiesin an intensively cultivated black soil in northeast China. Soil Biology & Biochemistry, 90, 42–51. https://doi.org/10.1016/j.soilbio.2015.07.005

Zhou, J., Jiang, X.,Wei, D., Zhao, B., Ma, M., Chen, S., … Li, J. (2017).Consistenteffectsofnitrogenfertilizationonsoilbacterialcommuni-ties inblacksoilsfortwocropseasons inChina.Scientific Reports,7,3267.

Zhou,J.,Jiang,X.,Zhou,B.,Zhao,B.,Ma,M.,Guan,D.,…Qin,J. (2016).ThirtyfouryearsofnitrogenfertilizationdecreasesfungaldiversityandaltersfungalcommunitycompositioninblacksoilinnortheastChina.Soil Biology & Biochemistry, 95, 135–143. https://doi.org/10.1016/j.soilbio.2015.12.012

SUPPORTING INFORMATION

Additional Supporting Informationmay be found online in the sup-portinginformationtabforthisarticle.

How to cite this article:MaM,JiangX,WangQ,etal.Responsesoffungalcommunitycompositiontolong-termchemicalandorganicfertilizationstrategiesinChineseMollisols. MicrobiologyOpen. 2018;e597. https://doi.org/10.1002/mbo3.597


Top Related