research article exploring the ruthenium-ligands bond and...

16
Research Article Exploring the Ruthenium-Ligands Bond and Their Relative Properties at Different Computational Methods Adebayo A. Adeniyi and Peter A. Ajibade Department of Chemistry, University of Fort Hare, Private Bag Box X1314, Alice 5700, South Africa Correspondence should be addressed to Peter A. Ajibade; [email protected] Received 21 September 2015; Revised 17 November 2015; Accepted 25 November 2015 Academic Editor: Maria F. Carvalho Copyright © 2016 A. A. Adeniyi and P. A. Ajibade. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We report some experimental bond distances and computational models of six ruthenium bonds obtained from DFT to higher computational methods like MP2 and CCSD. e bonds distances, geometrical RMSD, and the thermodynamic properties of the models from different computational methods are similar. It is observed that optimization of molecules of many light atoms with different functional methods results in significant geometrical variation in the values and order of the computed properties. e values of the hyperpolarizabilities, HOMO, LUMO, and isotropic and anisotropic shielding are found to depend greatly on the type of the functional used and the geometrical variation rather than on the nature of basis set used. However, all the methods rated modelled Ru-S, Ru-Cl, and Ru-O bonds as having the highest hyperpolarizabilities values. e infrared spectra data obtained from the different computational methods are significantly different from each other except for MP2 and CCSD which are found to be very similar. 1. Introduction Ruthenium complexes have received significant considera- tion as conductive, optical, anticancer, and antibiotic applica- tions [1–16]. Besides great number of ruthenium complexes, there are many of the ruthenium-ligand bonds which are found relevant to their biological activities. e covalent bonding between Ru and N7 (guanine) is considered the predominant mode of action with DNA for Ru antitumor compounds [17–19]. It was also assumed that metals can form chelates with N7 and O6 atoms of guanine [20]. e formation of a hydrolyzed Ru-O bond is very significant for the activation of ruthenium complexes for biological activities [19, 21]. e rate of hydrolysis has significant effect on the anticancer activities [22–24]. Ruthenium has also been reported to bind to S of Cys. residue of Cathepsin B [25–27]. Mostly for Ru anticancer activities, bonding between Ru and N7 (guanine) is considered to be the predominant mode of action with DNA [17]. However, it is also possible that binding to guanine N7 atoms is less important than other types of interaction like interaction with phosphate groups, hydrogen bonds, and so forth [28]. e computational approach is very significant for the optimization of the complexes and design of novel complexes for various applications, studying their electronic, conduc- tive, and spectroscopic properties in relation to their stability. However, it is computationally expensive to compute the properties of ruthenium complexes using higher basis set like aug-cc-pVTZ and high perturbation method like MP2. It is therefore highly important to optimize the compu- tational methods which are affordable for the ruthenium complexes. In this paper, we have presented different models of ruthenium complexes which are different by the type of the ruthenium-ligand (Ru-L) bonds. e types of the Ru- L bond of interest to us are Ru-C, Ru-N, Ru-O, Ru-P, Ru- S, Ru-Cl, and Ru-H which are common to many of the synthesised ruthenium complexes for various applications as shown in Table 1. e effects of the functional methods and the level of basis sets on the Ru-L bond length and their relative properties are presented with the intention to find cheaper and approachable computational methods for ruthenium complexes. Hindawi Publishing Corporation Journal of Chemistry Volume 2016, Article ID 3672062, 15 pages http://dx.doi.org/10.1155/2016/3672062

Upload: others

Post on 12-Jul-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Research ArticleExploring the Ruthenium-Ligands Bond and Their RelativeProperties at Different Computational Methods

Adebayo A Adeniyi and Peter A Ajibade

Department of Chemistry University of Fort Hare Private Bag Box X1314 Alice 5700 South Africa

Correspondence should be addressed to Peter A Ajibade pajibadeufhacza

Received 21 September 2015 Revised 17 November 2015 Accepted 25 November 2015

Academic Editor Maria F Carvalho

Copyright copy 2016 A A Adeniyi and P A Ajibade This is an open access article distributed under the Creative CommonsAttribution License which permits unrestricted use distribution and reproduction in any medium provided the original work isproperly cited

We report some experimental bond distances and computational models of six ruthenium bonds obtained from DFT to highercomputational methods like MP2 and CCSD The bonds distances geometrical RMSD and the thermodynamic properties of themodels from different computational methods are similar It is observed that optimization of molecules of many light atoms withdifferent functional methods results in significant geometrical variation in the values and order of the computed properties Thevalues of the hyperpolarizabilities HOMO LUMO and isotropic and anisotropic shielding are found to depend greatly on the typeof the functional used and the geometrical variation rather than on the nature of basis set used However all the methods ratedmodelled Ru-S Ru-Cl and Ru-O bonds as having the highest hyperpolarizabilities valuesThe infrared spectra data obtained fromthe different computational methods are significantly different from each other except for MP2 and CCSD which are found to bevery similar

1 Introduction

Ruthenium complexes have received significant considera-tion as conductive optical anticancer and antibiotic applica-tions [1ndash16] Besides great number of ruthenium complexesthere are many of the ruthenium-ligand bonds which arefound relevant to their biological activities The covalentbonding between Ru and N7 (guanine) is considered thepredominant mode of action with DNA for Ru antitumorcompounds [17ndash19] It was also assumed that metals canform chelates with N7 and O6 atoms of guanine [20] Theformation of a hydrolyzed Ru-O bond is very significantfor the activation of ruthenium complexes for biologicalactivities [19 21] The rate of hydrolysis has significant effecton the anticancer activities [22ndash24] Rutheniumhas also beenreported to bind to S of Cys residue of Cathepsin B [25ndash27]Mostly for Ru anticancer activities bonding between Ru andN7 (guanine) is considered to be the predominant mode ofactionwithDNA [17]However it is also possible that bindingto guanine N7 atoms is less important than other types ofinteraction like interaction with phosphate groups hydrogenbonds and so forth [28]

The computational approach is very significant for theoptimization of the complexes and design of novel complexesfor various applications studying their electronic conduc-tive and spectroscopic properties in relation to their stabilityHowever it is computationally expensive to compute theproperties of ruthenium complexes using higher basis setlike aug-cc-pVTZ and high perturbation method like MP2It is therefore highly important to optimize the compu-tational methods which are affordable for the rutheniumcomplexes In this paper we have presented different modelsof ruthenium complexes which are different by the type ofthe ruthenium-ligand (Ru-L) bonds The types of the Ru-L bond of interest to us are Ru-C Ru-N Ru-O Ru-P Ru-S Ru-Cl and Ru-H which are common to many of thesynthesised ruthenium complexes for various applicationsas shown in Table 1 The effects of the functional methodsand the level of basis sets on the Ru-L bond length andtheir relative properties are presented with the intention tofind cheaper and approachable computational methods forruthenium complexes

Hindawi Publishing CorporationJournal of ChemistryVolume 2016 Article ID 3672062 15 pageshttpdxdoiorg10115520163672062

2 Journal of Chemistry

Table 1 The experimental bond distances for Ru-L which are found to be common in different ruthenium complexes

Ru-C Ru-N Ru-O Ru-P Ru-S Ru-Cl Ru-H1827 [44] 1940 to 2137 [45] 200 to 201 [46] 22587 to 23141 [47] 2246 to 2266 [48] 22971 to 23680 [49] 1494 [44]

1845 to 2220 [50] 200 to 2053 [46] 20514 to 2091 [47] 2277 [50] 22777 to 23050 [51] 2327 to 3366 [51] 157 to 159[52]

1865 to 2035 [53] 20190 to 20914 [49] 2058 to 2074 [54] 2279 to 2298 [54] 23436 to 23737 [55] 2359 to 2388 [45]2083 [1] 2024 to 2114 [51] 20656 [51] 22812 to 24188 [52] 23726 to 23885 [53]2109 to 2287 [55] 2025 to 2047 [46] 2066 to 2092 [44] 231 to 2389 [47] 2407 to 2418 [37]2116 to 21777 [43] 2066 to 2196 [56] 2076 to 2109 [49] 23165 to 23679 [57] 2407 to 24511 [46]2199 to 2281 [58] 20703 to 2183 [53] 20783 to 2118 [53] 2336 [46] 2411 to 2434 [54]

20792 [58] 218 to 223 [59] 2363 to 2378 [44] 2431 to 24823 [47]2107 to 2122 [60] 2412 [56] 2434 to 24567 [51]2141 to 2196 [44] 24357 [1]

2 Computational Method

Six models of common ruthenium-ligand bonds which areH5Ru-CH

3 H5Ru-NH

2 H5Ru-OH H

5Ru-Cl H

5Ru-PH

3

and H5Ru-SH

3were built to represent common types of

bonds in ruthenium-ligand complexes and in ruthenium-receptor interactions The models were optimized with DFThybrid functional like PBE [29] and B3LYP [30] and otherhigher computational methods like MP2 and CCSD usingmixed basis sets of SBKJC VDZ [31] for Ru atom and6-31+G(dp) for other atoms Many of the properties arecomputed using DGDZVP for Ru while others were treatedwith 6-31+G(dp) Also for better simulation results themodels were treated with higher perturbation method MP2and at higher basis set aug-cc-pVTZ for all the atomsincluding ruthenium In all the methods all atoms besidesthe Ru atom are treated with 6-31+G(dp) basis set exceptwhen basis sets aug-cc-pVTZ was applied on all atomsTherefore in the methods where different basis set is appliedon Ru atom the method will be reference based on thetype of basis set applied on the Ru atom All the com-putational methods B3LYPSBKJC-VDZ PBESBKJC-VDZMP2SBKJC-VDZ CCSDSBKJC-VDZ B3LYPDGDZVPPBEDGDZVP MP2DGDZVP and CCSDDGDZVP andall other atoms beside Ru atomwere treated with 6-31+G(dp)while in the MP2aug-cc-pVTZ method all the atoms weretreated with the same basis set All the computation was doneusingGaussian 09 [32] and external basis set aug-cc-pVTZ forRu atom EMSL Basis Set Library [33 34] and incorporatedinto the input file in a format that Gaussian 09 programscan readThe first hyperpolarizability tensors were calculatedfrom the Gaussian output using (119887

119894119895119896) = szligtot = (szlig119909

2+ szlig119910

2+

szlig119911

2)12 where szlig

119909= (szlig119909119909119909+ szlig119909119910119910+ szlig119909119911119911) szlig119910= (szlig119910119910119910+ szlig119910119909119909+

szlig119910119911119911) and szlig

119911= (szlig119911119909119909+ szlig119911119910119910+ szlig119911119911119911) [35 36] The atomic

units (au) of szlig in G09 were converted into electrostaticunits (esu) (1 au = 86393 times 10minus33 esu) The IR spectra ofthe molecules were assigned through the method of potentialenergy distribution (PED) contributions as implemented inVEDA package [37] and explained in the literatures [38 39]

3 Results and Discussion

Six models of ruthenium-ligand bonds (Ru-C Ru-N Ru-ORu-Cl Ru-P and Ru-S) are modelled and were optimizedusing the functionals MP2 CCSD PBE and B3LYP Many oftheir properties like their hyperpolarizabilities and isotropicand anisotropic shielding tensors are computed using thefunctionals with different basis sets like SBKJC-VDZRu6-31+G(dp) DGDZVPRu6-31+G(dp) and aug-cc-pVTZ

31 Bonds and the Thermodynamic Properties Dependent onFunctional Methods Different bond distances of ruthenium-ligands (Ru-L) which are reported in the literatures fromtheir crystal structures are shown in Table 1 From thecrystal structures of ruthenium complexes the range of theexperimental bond length for Ru-C is 1827 to 2281 that ofRu-N is 1940 to 2196 that of Ru-O is 200 to 223 that ofRu-Cl is 22971 to 24357 that of Ru-P is 22587 to 2412 thatof Ru-S is 2246 to 23737 and that of Ru-H is 1494 to 159(Table 1)The general features of the experimental Ru-L bondlengths are in the order of Ru-Cl gt Ru-P gt Ru-S gt Ru-O gtRu-N gt Ru-C gt Ru-H The Ru-L bond distances of the sixmodels which are obtained from the optimized geometriesat MP2 CCSD PBE and B3LYP level of theories are shownin Figure 1 The general features of the Ru-L bond lengths ofthe six models using different computational methods showa common order of Ru-P gt Ru-S gt Ru-Cl gt Ru-C gt Ru-O gtRu-N The observed similarity in the bond orders betweenthe experimental and theoretical is that they both rated Ru-Cl Ru-P and Ru-S higher than Ru-O Ru-N and Ru-C Thecomputed range of bond values for Ru-C is 194 to 198 in theorder of MP2 lt PBE lt B3LYP ltCCSD that of Ru-N is 183 to187 in the order of MP2 lt B3LYP lt CCSD lt PBE that of Ru-O is 185 to 187 in the order of MP2 lt CCSD lt B3LYP lt PBEthat of Ru-Cl is 217 to 221 in the order of MP2 lt CCSD ltB3LYP lt PBE that of Ru-P is 239 to 245 in the order ofMP2 lt PBE lt B3LYP lt CCSD and that of Ru-S is 221 to224 in the order of MP2 lt PBE lt B3LYP lt CCSD In bothRu-N and Ru-Cl the functional PBE overestimates the bonds

Journal of Chemistry 3

Ru-C-MP2

Ru-O-MP2

Ru-S-MP2Ru-P-MP2

Ru-Cl-MP2

Ru-N-MP2

Ru-C-CCSD Ru-N-CCSD

Ru-O-CCSD

Ru-S-CCSD

Ru-P-CCSDRu-Cl-CCSD

Ru-C-PBE0

Ru-N-PBE0 Ru-O-PBE0

Ru-S-PBE0Ru-P-PBE0

Ru-Cl-PBE0

Ru-C-B3LYP Ru-N-B3LYP

Ru-O-B3LYP

Ru-S-B3LYP

Ru-P-B3LYPRu-Cl-B3LYP

1964 1980 1949 1951 1839 1878

1834 2116 1864 1861 1850 1874

2210 2208 2171 2480 2437 2448

2397 2419 2228 2237 2216 2223

Figure 1The bond distances of the six models of Ru-L bonds obtained from the optimized geometries at MP2 CCSD PBE and B3LYP usingSBKJC VDZ basis set

Table 2 The bond distances and thermodynamic properties using MP2ECP method and the differences using other methods (energies inKJMol)

Methodbonds Distance Energy Zero energy Thermal energy Enthalpy Gibbs-free CV KJMol-K 119878 KJMol-KRu-C-MP2-ECP 19485 minus35376119864 + 05 minus35457119864 + 05 minus35455119864 + 05 minus35455119864 + 05 minus35464119864 + 05 00782 02901

Ru-N-MP2-ECP 18342 minus35376119864 + 05 minus35457119864 + 05 minus35455119864 + 05 minus35455119864 + 05 minus35464119864 + 05 00782 02901

Ru-O-MP2-ECP 18501 minus39584119864 + 05 minus39681119864 + 05 minus39679119864 + 05 minus39679119864 + 05 minus39688119864 + 05 00769 02940

Ru-Cl-MP2-ECP 21711 minus44927119864 + 05 minus45022119864 + 05 minus45021119864 + 05 minus45021119864 + 05 minus45029119864 + 05 00736 02927

Ru-P-MP2-ECP 23969 minus11493119864 + 06 minus11499119864 + 06 minus11499119864 + 06 minus11499119864 + 06 minus11500119864 + 06 00973 03293

Ru-S-MP2-ECP 22157 minus12964119864 + 06 minus12973119864 + 06 minus12972119864 + 06 minus12972119864 + 06 minus12973119864 + 06 00855 03188

Difference of the other methods fromMP2SBKJC VDZRu-C-PBE-ECP 00024 minus29890119864 + 03 minus19950119864 + 03 minus19946119864 + 03 minus19946119864 + 03 minus19955119864 + 03 00017 00032

Ru-N-PBE-ECP 00120 minus29890119864 + 03 minus19950119864 + 03 minus19946119864 + 03 minus19946119864 + 03 minus19955119864 + 03 00017 00032

Ru-O-PBE-ECP 00243 minus31318119864 + 03 minus19966119864 + 03 minus19970119864 + 03 minus19970119864 + 03 minus19959119864 + 03 minus00011 minus00037

Ru-Cl-PBE-ECP 03088 minus32116119864 + 03 minus21228119864 + 03 minus21223119864 + 03 minus21223119864 + 03 minus21231119864 + 03 00021 00027

Ru-P-PBE-ECP 00219 minus35356119864 + 03 minus27378119864 + 03 minus27373119864 + 03 minus27373119864 + 03 minus27386119864 + 03 00009 00043

Ru-S-PBE-ECP 00074 minus37839119864 + 03 minus28207119864 + 03 minus28208119864 + 03 minus28208119864 + 03 minus28202119864 + 03 00007 minus00019

Ru-C-B3LYP-ECP 00159 minus31831119864 + 03 minus21836119864 + 03 minus21828119864 + 03 minus21828119864 + 03 minus21844119864 + 03 00039 00055

Ru-N-B3LYP-ECP 00047 minus45407119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus00012 00010

Ru-O-B3LYP-ECP 00144 minus33288119864 + 03 minus21890119864 + 03 minus21893119864 + 03 minus21893119864 + 03 minus21884119864 + 03 00000 minus00028

Ru-Cl-B3LYP-ECP 00392 minus34479119864 + 03 minus23536119864 + 03 minus23531119864 + 03 minus23531119864 + 03 minus23540119864 + 03 00022 00031

Ru-P-B3LYP-ECP 00398 minus40797119864 + 03 minus32774119864 + 03 minus32764119864 + 03 minus32764119864 + 03 minus32788119864 + 03 00031 00081

Ru-S-B3LYP-ECP 00125 minus43126119864 + 03 minus33423119864 + 03 minus33431119864 + 03 minus33431119864 + 03 minus33414119864 + 03 minus00029 minus00057

Ru-C-CCSD-ECP 00316 minus21515119864 + 01 minus71138119864 + 01 minus69570119864 + 01 minus69570119864 + 01 minus72697119864 + 01 00075 00105

Ru-N-CCSD-ECP 00436 minus42095119864 + 04 minus42295119864 + 04 minus42294119864 + 04 minus42294119864 + 04 minus42295119864 + 04 00024 00047

Ru-O-CCSD-ECP 00109 minus16767119864 + 01 minus54986119864 + 01 minus54600119864 + 01 minus54600119864 + 01 minus54878119864 + 01 00037 00009

Ru-Cl-CCSD-ECP 00368 minus24604119864 + 01 minus65007119864 + 01 minus64330119864 + 01 minus64330119864 + 01 minus65559119864 + 01 00037 00041

Ru-P-CCSD-ECP 00512 minus14740119864 + 00 minus12560119864 + 02 minus12351119864 + 02 minus12351119864 + 02 minus12915119864 + 02 00066 00189

Ru-S-CCSD-ECP 00211 minus37429119864 + 01 minus98966119864 + 01 minus99562119864 + 01 minus99562119864 + 01 minus98230119864 + 01 minus00017 minus00045

above other functional methods Ru-C bond values of ourmodel are within the common experimental bond values forRu-C while the values obtained for other modelled bondsare little below the common experimental values If the bondvalues obtained using theMP2 are compared to the analyticalvalues the differences in the values of other computational

methods from MP2 are calculated using simple expression119883other minus119883MP2 and are presented in Table 2The differences inbond values obtained using PBE compared to the analyticalvalues fromMP2 are smaller inmagnitude compared to othermethods (Table 2) but the order of the bond distances in themodel was not perfectly reproduced as in B3LYP and CCSD

4 Journal of Chemistry

HH

H

H

H

H

HHH

H

H

Cl

S

OC

RuRu

Ru

RuRuRu

P

N

Figure 2 The superposition of different model of Ru-L bonds obtained using MP2 (green) CCSD (blue) PBE (yellow) and B3LYP (cyan)to determine the RMSD of the whole geometries after the optimization of their respective geometries

Table 3 The correlation of the values of energy and thermody-namics properties at MP2SBKJC VDZ with other computationalmethods

MP2-ECP PBE B3LYP CCSDRu-L-dist 100 100 100Energy 100 100 100Zero energy 100 100 100Thermal energy 100 100 100Enthalpy 100 100 100Gibbs-free 100 100 100CV 099 097 095Entropy 098 095 092

(Table 3) All the thermodynamic properties were computedat 298150 Kelvin and pressure 1 Atm The magnitude ofthe differences in thermodynamic properties (Table 2) showsthat CCSD and PBE give closer values to MP2 than B3LYPAlso considering the reproducibility of the order of bonddistances obtained from MP2 in the other methods all thecomputational methods produced a perfect order for thethermodynamic energies except PBE which gave a relativelybetter order for the CV and the entropy (Table 3) Thisis an indication that PBE performs better for geometricaloptimization and computation of thermodynamic propertieswhich agree well with the literatures that reported PBEcorrelation in combination with SBKJC VDZ ECP basis setas a good method for the optimization of metal complexes[40 41]The computed types of energies using othermethodsof computation are higher in negative values thanMP2 whiletheir bond distance CV and S are higher in positive valuesConsidering the RMSD of all the atoms in each of the modelsas shown in Table 4 and Figure 2 the optimized geometriesobtained for the models Ru-C Ru-O and Ru-S at variouscomputational methods are very similar to lower RMSDcompared to what was obtained for the models Ru-N Ru-Cl and Ru-P Also the RMSD of the optimized geometriesobtained from the functional PBE are lower than those

Table 4 The RMSD of the optimized geometries obtained fromother methods of computation from that obtained from MP2 usingSBKJC VDZ ECP basis set

B3LYP CCSD PBERu-C 0963 1347 0637Ru-N 1030 1032 1035Ru-O 0056 0072 0065Ru-Cl 1302 1030 1268Ru-P 1203 1221 1190Ru-S 0265 0266 0252

obtained from B3LYP and CCSD which further supportsPBE as a good method for the optimization of rutheniumcomplexes

32 Energy HOMO LUMO Shielding Tensors and J-Coupling The values of the energy HOMO LUMO andisotropic and anisotropic shielding computed atMP2aug-cc-pVTZ and the variations obtainedwhen computedwith othermethods are presented in Table 5 The shielding tensors werecomputed using Gauge-Independent Atomic Orbital (GIAO)method The values of the energy and the variation obtainedat different functional and basis sets show that variation in theenergy values using different functional is lower comparedto variation in the energy values using different basis setsThis is an indication that the energy values depend moreon the type of basis sets rather than on the type of thefunctional However the variation in the values of HOMOLUMO and isotropic and anisotropic shielding at differentfunctional methods shows that they depend more on thetype of the functional and the geometrical change rather thanon the type of the basis sets The difference in the valuesof HOMO LUMO and isotropic and anisotropic shieldingwithin MP2 methods at different basis set is lower comparedto changing the functional to PBE and B3LYP Also B3LYPseems to perform better than PBE as the differences obtainedat B3LYP are far lower compared to PBE Also consideringthe reproducibility of the order of these properties at different

Journal of Chemistry 5

Table 5The energy shielding tensors and 119869-coupling values usingMP2acc method and the differences using other computational methods(the energy values in Hartree)

Energy HOMO LUMO Ru-Iso Ru-Aniso X-Iso X-AnisoRu-C-MP2-acc minus440352 minus092 minus042 minus742180 1069111 minus14988 52269

Ru-N-MP2-acc minus441877 minus090 minus046 minus1176015 946597 minus82579 178860

Ru-O-MP2-acc minus443924 minus068 minus018 minus918858 846675 minus16694 119428

Ru-Cl-MP2-acc minus482319 minus062 minus020 minus1122411 1052228 29822 238476

Ru-P-MP2-acc minus470544 minus087 minus037 minus1359081 1488590 44861 4141

Ru-S-MP2-acc minus476385 minus061 minus016 minus313338 582699 minus80439 237577

000Ru-C-MP2-dv minus7849 000 000 26183 minus38901 1148 659

Ru-N-MP2-dv minus7926 000 minus001 71088 minus70110 3343 minus1344

Ru-O-MP2-dv minus7914 000 000 minus44694 minus39512 minus13768 24327

Ru-Cl-MP2-dv minus7924 000 000 minus37254 114475 minus19716 35479

Ru-P-MP2-dv minus7957 000 000 minus177917 246557 2518 minus037

Ru-S-MP2-dv minus7719 002 minus002 minus611650 135558 minus20580 35851

Ru-C-MP2-ECP 426878 000 minus001 596528 minus920085 1311 193

Ru-N-MP2- ECP 426800 000 000 960319 minus813149 7435 minus7455

Ru-O-MP2- ECP 426812 000 000 740324 minus715956 minus8299 15674

Ru-Cl-MP2- ECP 426802 000 000 914427 minus867435 minus16484 41130

Ru-P-MP2- ECP 426770 000 minus001 1093680 minus1218157 3260 minus1317

Ru-S-MP2- ECP 427007 003 minus003 149743 minus496580 13797 minus14494

Ru-C-PBE-dv minus8075 020 minus022 minus5106 minus767006 34929 minus46155

Ru-N-PBE-dv minus8156 018 minus020 629261 minus496409 52642 minus92641

Ru-O-PBE-dv minus8147 022 minus018 13816439 15984243 minus383942 413974

Ru-Cl-PBE-dv minus8176 015 minus018 10321955 13287550 minus491003 4370795

Ru-P-PBE-dv minus8201 021 minus021 16547451 37324221 374088 1446238

Ru-S-PBE-dv minus7973 018 minus019 10654331 10347455 minus659068 1230739

Ru-C-PBE-ECP 426764 021 minus021 663760 minus1027535 7597 minus17075

Ru-N-PBE-ECP 426681 018 minus020 1071404 minus884998 53035 minus93320

Ru-O-PBE-ECP 426690 022 minus018 minus3381033 38277943 minus3091812 35041247

Ru-Cl-PBE-ECP 426660 015 minus018 minus757542 2579402 27160896

Ru-P-PBE-ECP 426635 021 minus021 19109900 96261433

Ru-S-PBE-ECP 426863 018 minus019 9522596 32119344 11565209 35835334

Ru-C-B3LYP-dv minus8128 016 minus018 81227 minus588737 4860 minus12006

Ru-N-B3LYP-dv minus8211 013 minus017 431991 minus275591 45112 minus75540

Ru-O-B3LYP-dv minus8203 017 minus016 273324 minus381398 minus23391 6813

Ru-Cl-B3LYP-dv minus8246 012 minus016 254850 minus284675 minus265807 309548

Ru-P-B3LYP-dv minus8270 016 minus019 472561 minus646413 minus5451 9137

Ru-S-B3LYP-dv minus8041 014 minus017 minus225901 minus250444 30708 minus72243

Ru-C-B3LYP-ECP 426757 016 minus018 624966 minus1003953 4904 minus12301

Ru-N-B3LYP-ECP 426673 013 minus017 1040250 minus853188 45960 minus77145

Ru-O-B3LYP-ECP 426681 017 minus016 802053 minus780523 minus19773 minus244

Ru-Cl-B3LYP-ECP 426638 012 minus016 977624 minus948089 minus236464 264500

Ru-P-B3LYP-ECP 426614 016 minus018 1207902 minus1376028 minus4806 7968

Ru-S-B3LYP-ECP 426843 014 minus017 212424 minus536594 33276 minus74643

MP2-acc stands for MP2aug-cc-pVTZ MP2-dv stands for MP2DGDZVP MP2-ECP stands for MP2SBKJC VDZ PBE-dv stands for PBEDGDZVP PBE-ECP stands for PBESBKJC VDZ B3LYP-dv stands for B3LYPDGDZVP and B3LYP-ECP stands for B3LYPSBKJC VDZ

6 Journal of Chemistry

Table 6 Correlation of othermethods of computation with theMP2acc in computing energy HOMO LUMO and isotropic and anisotropicshielding

MP2DGDZVP MP2SBKJC VDZ PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZEnergy 100 100 100 100 100 100

HOMO 100 100 099 099 099 099

LUMO 100 100 100 099 100 100

Ru-Iso 074 083 minus009 minus011 091 094

Ru-Aniso 095 097 051 050 084 082

X-Iso 098 098 067 minus051 minus016 minus012

X-Aniso 099 098 minus035 033 071 073

Table 7 119869-coupling of the Ru-L bonds at different level of computational methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZRu-C minus185119864 + 001 114119864 + 000 minus268119864 + 000 136119864 + 000

Ru-N minus146119864 + 001 753119864 minus 001 656119864 + 001 607119864 + 000

Ru-O 245119864 + 001 minus980119864 minus 001 249119864 + 001 minus117119864 + 000

Ru-Cl 472119864 + 001 563119864 + 000 476119864 + 001 590119864 + 000

Ru-P minus651119864 + 001 minus314119864 minus 001 minus714119864 + 001 minus500119864 minus 001

Ru-S minus752119864 minus 001 106119864 + 000 469119864 minus 001 135119864 + 000

Table 8 Correlation of 119869-coupling within the methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZPBE-dv 100 058 074 037PBE-ECP 058 100 042 073B3LYP-dv 074 042 100 072B3LYP-ECP 037 073 072 100

computational methods (Table 6) only the energy order isperfectly reproduced by all the methods There is a veryhigh similarity in the order of HOMO and LUMO especiallyLUMO computed using B3LYP In addition B3LYP is foundto also perform better in reproducing the shielding tensors ofRu and other atoms compared to PBE except for the orderof the isotropic shielding of other atoms besides Ru atomThe correlation obtained fromB3LYP in computing shieldingtensors further supports its reported better performance forthese properties [42]

In computation of the 119869-coupling we are only limited toB3LYP and PBE since these properties are not permitted inGaussian package at MP2 and CCSD level of theories Con-sidering the magnitude of 119869-coupling at B3LYPDGDZVP itfollows the order Ru-P gt Ru-N gt Ru-Cl gt Ru-S gt Ru-O gtRu-C (Table 7) The order is well reproduced in B3LYP withECP basis set but is poor in PBE and is even the worst whenPBE is combined with ECP basis set (Table 8) The simplereason for the variations is in support of the literature reportdemonstrating that the 119869-coupling is sensitive to bondinginteractions [43]

33 Hyperpolarizability Properties The values of the com-puted hyperpolarizabilities of the six models using differentfunctionals and basis sets are shown in Table 9 The values ofthe hyperpolarizabilities of themodels usingMP2 functionalsat different basis sets are in the order of Ru-S gt Ru-O gt Ru-Cl gt Ru-N gt Ru-P gt Ru-C which suggest the level of theirpossible modelling for NLO application The order obtained

from CCSD is Ru-O gt Ru-Cl gt Ru-S gt Ru-P gt Ru-N gt Ru-C the PBE methods give the order Ru-Cl gt Ru-C lt Ru-S gtRu-O gt Ru-P gt Ru-N and B3LYP gives the order Ru-Cl gtRu-O gt Ru-S gt Ru-P gt Ru-N gt Ru-C The MP2 rated Ru-S as the best model for NLO application while CCSD ratedmodel Ru-O as the best Also a different model Ru-Cl isindicated to have the highest hyperpolarizabilities using thefunctionals PBE and B3LYP irrespective of the basis set usedThe correlations of the hyperpolarizabilities values among themodels are shown in Table 10 The correlation table showsthat the order of the hyperpolarizabilities of the models isperfectly reproducible using the same MP2 at different basissets and also within CCSD at different basis sets Also B3LYPperforms better in reproducing its order at different basisset compared to PBE This clearly shows that the order ofthe hyperpolarizabilities depends greatly on the geometricalconfiguration and the type of the functional used rather thanon the type of the basis sets The only observed similarity inthe order of the hyperpolarizabilities computed with differentmethods is that all the methods rated the models Ru-S Ru-Cl and Ru-O among the best three except for PBE whichexcluded Ru-O from its best three

34 The IR Vibrations The IR vibrations of the modelsat different computational methods are shown in Figure 3The vibrations which are of significant interest to us aretheir Ru-ligand bonds of Ru-C Ru-N Ru-O Ru-Cl Ru-Pand Ru-S which are shown in Table 11 Also most of theprominent vibrations are assigned as shown in Table 12 In

Journal of Chemistry 7

Table9Th

efirsth

yperpo

lariz

ability(szlig)inesu(1times10minus30)v

aluesa

tdifferentcom

putatio

nalm

etho

ds

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

Ru-C

153

179

171

108

098

244

028

055

055

Ru-N

569

224

380

105

109

077

063

076

062

Ru-O

3505

1791

1860

822

548

178

160

220

205

Ru-C

l1173

1440

1325

558

547

284

289

325

313

Ru-P

177

180

213

124

151

152

147

135

137

Ru-S

28214

33591

11477

8295

315

214

182

207

165

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

2 Journal of Chemistry

Table 1 The experimental bond distances for Ru-L which are found to be common in different ruthenium complexes

Ru-C Ru-N Ru-O Ru-P Ru-S Ru-Cl Ru-H1827 [44] 1940 to 2137 [45] 200 to 201 [46] 22587 to 23141 [47] 2246 to 2266 [48] 22971 to 23680 [49] 1494 [44]

1845 to 2220 [50] 200 to 2053 [46] 20514 to 2091 [47] 2277 [50] 22777 to 23050 [51] 2327 to 3366 [51] 157 to 159[52]

1865 to 2035 [53] 20190 to 20914 [49] 2058 to 2074 [54] 2279 to 2298 [54] 23436 to 23737 [55] 2359 to 2388 [45]2083 [1] 2024 to 2114 [51] 20656 [51] 22812 to 24188 [52] 23726 to 23885 [53]2109 to 2287 [55] 2025 to 2047 [46] 2066 to 2092 [44] 231 to 2389 [47] 2407 to 2418 [37]2116 to 21777 [43] 2066 to 2196 [56] 2076 to 2109 [49] 23165 to 23679 [57] 2407 to 24511 [46]2199 to 2281 [58] 20703 to 2183 [53] 20783 to 2118 [53] 2336 [46] 2411 to 2434 [54]

20792 [58] 218 to 223 [59] 2363 to 2378 [44] 2431 to 24823 [47]2107 to 2122 [60] 2412 [56] 2434 to 24567 [51]2141 to 2196 [44] 24357 [1]

2 Computational Method

Six models of common ruthenium-ligand bonds which areH5Ru-CH

3 H5Ru-NH

2 H5Ru-OH H

5Ru-Cl H

5Ru-PH

3

and H5Ru-SH

3were built to represent common types of

bonds in ruthenium-ligand complexes and in ruthenium-receptor interactions The models were optimized with DFThybrid functional like PBE [29] and B3LYP [30] and otherhigher computational methods like MP2 and CCSD usingmixed basis sets of SBKJC VDZ [31] for Ru atom and6-31+G(dp) for other atoms Many of the properties arecomputed using DGDZVP for Ru while others were treatedwith 6-31+G(dp) Also for better simulation results themodels were treated with higher perturbation method MP2and at higher basis set aug-cc-pVTZ for all the atomsincluding ruthenium In all the methods all atoms besidesthe Ru atom are treated with 6-31+G(dp) basis set exceptwhen basis sets aug-cc-pVTZ was applied on all atomsTherefore in the methods where different basis set is appliedon Ru atom the method will be reference based on thetype of basis set applied on the Ru atom All the com-putational methods B3LYPSBKJC-VDZ PBESBKJC-VDZMP2SBKJC-VDZ CCSDSBKJC-VDZ B3LYPDGDZVPPBEDGDZVP MP2DGDZVP and CCSDDGDZVP andall other atoms beside Ru atomwere treated with 6-31+G(dp)while in the MP2aug-cc-pVTZ method all the atoms weretreated with the same basis set All the computation was doneusingGaussian 09 [32] and external basis set aug-cc-pVTZ forRu atom EMSL Basis Set Library [33 34] and incorporatedinto the input file in a format that Gaussian 09 programscan readThe first hyperpolarizability tensors were calculatedfrom the Gaussian output using (119887

119894119895119896) = szligtot = (szlig119909

2+ szlig119910

2+

szlig119911

2)12 where szlig

119909= (szlig119909119909119909+ szlig119909119910119910+ szlig119909119911119911) szlig119910= (szlig119910119910119910+ szlig119910119909119909+

szlig119910119911119911) and szlig

119911= (szlig119911119909119909+ szlig119911119910119910+ szlig119911119911119911) [35 36] The atomic

units (au) of szlig in G09 were converted into electrostaticunits (esu) (1 au = 86393 times 10minus33 esu) The IR spectra ofthe molecules were assigned through the method of potentialenergy distribution (PED) contributions as implemented inVEDA package [37] and explained in the literatures [38 39]

3 Results and Discussion

Six models of ruthenium-ligand bonds (Ru-C Ru-N Ru-ORu-Cl Ru-P and Ru-S) are modelled and were optimizedusing the functionals MP2 CCSD PBE and B3LYP Many oftheir properties like their hyperpolarizabilities and isotropicand anisotropic shielding tensors are computed using thefunctionals with different basis sets like SBKJC-VDZRu6-31+G(dp) DGDZVPRu6-31+G(dp) and aug-cc-pVTZ

31 Bonds and the Thermodynamic Properties Dependent onFunctional Methods Different bond distances of ruthenium-ligands (Ru-L) which are reported in the literatures fromtheir crystal structures are shown in Table 1 From thecrystal structures of ruthenium complexes the range of theexperimental bond length for Ru-C is 1827 to 2281 that ofRu-N is 1940 to 2196 that of Ru-O is 200 to 223 that ofRu-Cl is 22971 to 24357 that of Ru-P is 22587 to 2412 thatof Ru-S is 2246 to 23737 and that of Ru-H is 1494 to 159(Table 1)The general features of the experimental Ru-L bondlengths are in the order of Ru-Cl gt Ru-P gt Ru-S gt Ru-O gtRu-N gt Ru-C gt Ru-H The Ru-L bond distances of the sixmodels which are obtained from the optimized geometriesat MP2 CCSD PBE and B3LYP level of theories are shownin Figure 1 The general features of the Ru-L bond lengths ofthe six models using different computational methods showa common order of Ru-P gt Ru-S gt Ru-Cl gt Ru-C gt Ru-O gtRu-N The observed similarity in the bond orders betweenthe experimental and theoretical is that they both rated Ru-Cl Ru-P and Ru-S higher than Ru-O Ru-N and Ru-C Thecomputed range of bond values for Ru-C is 194 to 198 in theorder of MP2 lt PBE lt B3LYP ltCCSD that of Ru-N is 183 to187 in the order of MP2 lt B3LYP lt CCSD lt PBE that of Ru-O is 185 to 187 in the order of MP2 lt CCSD lt B3LYP lt PBEthat of Ru-Cl is 217 to 221 in the order of MP2 lt CCSD ltB3LYP lt PBE that of Ru-P is 239 to 245 in the order ofMP2 lt PBE lt B3LYP lt CCSD and that of Ru-S is 221 to224 in the order of MP2 lt PBE lt B3LYP lt CCSD In bothRu-N and Ru-Cl the functional PBE overestimates the bonds

Journal of Chemistry 3

Ru-C-MP2

Ru-O-MP2

Ru-S-MP2Ru-P-MP2

Ru-Cl-MP2

Ru-N-MP2

Ru-C-CCSD Ru-N-CCSD

Ru-O-CCSD

Ru-S-CCSD

Ru-P-CCSDRu-Cl-CCSD

Ru-C-PBE0

Ru-N-PBE0 Ru-O-PBE0

Ru-S-PBE0Ru-P-PBE0

Ru-Cl-PBE0

Ru-C-B3LYP Ru-N-B3LYP

Ru-O-B3LYP

Ru-S-B3LYP

Ru-P-B3LYPRu-Cl-B3LYP

1964 1980 1949 1951 1839 1878

1834 2116 1864 1861 1850 1874

2210 2208 2171 2480 2437 2448

2397 2419 2228 2237 2216 2223

Figure 1The bond distances of the six models of Ru-L bonds obtained from the optimized geometries at MP2 CCSD PBE and B3LYP usingSBKJC VDZ basis set

Table 2 The bond distances and thermodynamic properties using MP2ECP method and the differences using other methods (energies inKJMol)

Methodbonds Distance Energy Zero energy Thermal energy Enthalpy Gibbs-free CV KJMol-K 119878 KJMol-KRu-C-MP2-ECP 19485 minus35376119864 + 05 minus35457119864 + 05 minus35455119864 + 05 minus35455119864 + 05 minus35464119864 + 05 00782 02901

Ru-N-MP2-ECP 18342 minus35376119864 + 05 minus35457119864 + 05 minus35455119864 + 05 minus35455119864 + 05 minus35464119864 + 05 00782 02901

Ru-O-MP2-ECP 18501 minus39584119864 + 05 minus39681119864 + 05 minus39679119864 + 05 minus39679119864 + 05 minus39688119864 + 05 00769 02940

Ru-Cl-MP2-ECP 21711 minus44927119864 + 05 minus45022119864 + 05 minus45021119864 + 05 minus45021119864 + 05 minus45029119864 + 05 00736 02927

Ru-P-MP2-ECP 23969 minus11493119864 + 06 minus11499119864 + 06 minus11499119864 + 06 minus11499119864 + 06 minus11500119864 + 06 00973 03293

Ru-S-MP2-ECP 22157 minus12964119864 + 06 minus12973119864 + 06 minus12972119864 + 06 minus12972119864 + 06 minus12973119864 + 06 00855 03188

Difference of the other methods fromMP2SBKJC VDZRu-C-PBE-ECP 00024 minus29890119864 + 03 minus19950119864 + 03 minus19946119864 + 03 minus19946119864 + 03 minus19955119864 + 03 00017 00032

Ru-N-PBE-ECP 00120 minus29890119864 + 03 minus19950119864 + 03 minus19946119864 + 03 minus19946119864 + 03 minus19955119864 + 03 00017 00032

Ru-O-PBE-ECP 00243 minus31318119864 + 03 minus19966119864 + 03 minus19970119864 + 03 minus19970119864 + 03 minus19959119864 + 03 minus00011 minus00037

Ru-Cl-PBE-ECP 03088 minus32116119864 + 03 minus21228119864 + 03 minus21223119864 + 03 minus21223119864 + 03 minus21231119864 + 03 00021 00027

Ru-P-PBE-ECP 00219 minus35356119864 + 03 minus27378119864 + 03 minus27373119864 + 03 minus27373119864 + 03 minus27386119864 + 03 00009 00043

Ru-S-PBE-ECP 00074 minus37839119864 + 03 minus28207119864 + 03 minus28208119864 + 03 minus28208119864 + 03 minus28202119864 + 03 00007 minus00019

Ru-C-B3LYP-ECP 00159 minus31831119864 + 03 minus21836119864 + 03 minus21828119864 + 03 minus21828119864 + 03 minus21844119864 + 03 00039 00055

Ru-N-B3LYP-ECP 00047 minus45407119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus00012 00010

Ru-O-B3LYP-ECP 00144 minus33288119864 + 03 minus21890119864 + 03 minus21893119864 + 03 minus21893119864 + 03 minus21884119864 + 03 00000 minus00028

Ru-Cl-B3LYP-ECP 00392 minus34479119864 + 03 minus23536119864 + 03 minus23531119864 + 03 minus23531119864 + 03 minus23540119864 + 03 00022 00031

Ru-P-B3LYP-ECP 00398 minus40797119864 + 03 minus32774119864 + 03 minus32764119864 + 03 minus32764119864 + 03 minus32788119864 + 03 00031 00081

Ru-S-B3LYP-ECP 00125 minus43126119864 + 03 minus33423119864 + 03 minus33431119864 + 03 minus33431119864 + 03 minus33414119864 + 03 minus00029 minus00057

Ru-C-CCSD-ECP 00316 minus21515119864 + 01 minus71138119864 + 01 minus69570119864 + 01 minus69570119864 + 01 minus72697119864 + 01 00075 00105

Ru-N-CCSD-ECP 00436 minus42095119864 + 04 minus42295119864 + 04 minus42294119864 + 04 minus42294119864 + 04 minus42295119864 + 04 00024 00047

Ru-O-CCSD-ECP 00109 minus16767119864 + 01 minus54986119864 + 01 minus54600119864 + 01 minus54600119864 + 01 minus54878119864 + 01 00037 00009

Ru-Cl-CCSD-ECP 00368 minus24604119864 + 01 minus65007119864 + 01 minus64330119864 + 01 minus64330119864 + 01 minus65559119864 + 01 00037 00041

Ru-P-CCSD-ECP 00512 minus14740119864 + 00 minus12560119864 + 02 minus12351119864 + 02 minus12351119864 + 02 minus12915119864 + 02 00066 00189

Ru-S-CCSD-ECP 00211 minus37429119864 + 01 minus98966119864 + 01 minus99562119864 + 01 minus99562119864 + 01 minus98230119864 + 01 minus00017 minus00045

above other functional methods Ru-C bond values of ourmodel are within the common experimental bond values forRu-C while the values obtained for other modelled bondsare little below the common experimental values If the bondvalues obtained using theMP2 are compared to the analyticalvalues the differences in the values of other computational

methods from MP2 are calculated using simple expression119883other minus119883MP2 and are presented in Table 2The differences inbond values obtained using PBE compared to the analyticalvalues fromMP2 are smaller inmagnitude compared to othermethods (Table 2) but the order of the bond distances in themodel was not perfectly reproduced as in B3LYP and CCSD

4 Journal of Chemistry

HH

H

H

H

H

HHH

H

H

Cl

S

OC

RuRu

Ru

RuRuRu

P

N

Figure 2 The superposition of different model of Ru-L bonds obtained using MP2 (green) CCSD (blue) PBE (yellow) and B3LYP (cyan)to determine the RMSD of the whole geometries after the optimization of their respective geometries

Table 3 The correlation of the values of energy and thermody-namics properties at MP2SBKJC VDZ with other computationalmethods

MP2-ECP PBE B3LYP CCSDRu-L-dist 100 100 100Energy 100 100 100Zero energy 100 100 100Thermal energy 100 100 100Enthalpy 100 100 100Gibbs-free 100 100 100CV 099 097 095Entropy 098 095 092

(Table 3) All the thermodynamic properties were computedat 298150 Kelvin and pressure 1 Atm The magnitude ofthe differences in thermodynamic properties (Table 2) showsthat CCSD and PBE give closer values to MP2 than B3LYPAlso considering the reproducibility of the order of bonddistances obtained from MP2 in the other methods all thecomputational methods produced a perfect order for thethermodynamic energies except PBE which gave a relativelybetter order for the CV and the entropy (Table 3) Thisis an indication that PBE performs better for geometricaloptimization and computation of thermodynamic propertieswhich agree well with the literatures that reported PBEcorrelation in combination with SBKJC VDZ ECP basis setas a good method for the optimization of metal complexes[40 41]The computed types of energies using othermethodsof computation are higher in negative values thanMP2 whiletheir bond distance CV and S are higher in positive valuesConsidering the RMSD of all the atoms in each of the modelsas shown in Table 4 and Figure 2 the optimized geometriesobtained for the models Ru-C Ru-O and Ru-S at variouscomputational methods are very similar to lower RMSDcompared to what was obtained for the models Ru-N Ru-Cl and Ru-P Also the RMSD of the optimized geometriesobtained from the functional PBE are lower than those

Table 4 The RMSD of the optimized geometries obtained fromother methods of computation from that obtained from MP2 usingSBKJC VDZ ECP basis set

B3LYP CCSD PBERu-C 0963 1347 0637Ru-N 1030 1032 1035Ru-O 0056 0072 0065Ru-Cl 1302 1030 1268Ru-P 1203 1221 1190Ru-S 0265 0266 0252

obtained from B3LYP and CCSD which further supportsPBE as a good method for the optimization of rutheniumcomplexes

32 Energy HOMO LUMO Shielding Tensors and J-Coupling The values of the energy HOMO LUMO andisotropic and anisotropic shielding computed atMP2aug-cc-pVTZ and the variations obtainedwhen computedwith othermethods are presented in Table 5 The shielding tensors werecomputed using Gauge-Independent Atomic Orbital (GIAO)method The values of the energy and the variation obtainedat different functional and basis sets show that variation in theenergy values using different functional is lower comparedto variation in the energy values using different basis setsThis is an indication that the energy values depend moreon the type of basis sets rather than on the type of thefunctional However the variation in the values of HOMOLUMO and isotropic and anisotropic shielding at differentfunctional methods shows that they depend more on thetype of the functional and the geometrical change rather thanon the type of the basis sets The difference in the valuesof HOMO LUMO and isotropic and anisotropic shieldingwithin MP2 methods at different basis set is lower comparedto changing the functional to PBE and B3LYP Also B3LYPseems to perform better than PBE as the differences obtainedat B3LYP are far lower compared to PBE Also consideringthe reproducibility of the order of these properties at different

Journal of Chemistry 5

Table 5The energy shielding tensors and 119869-coupling values usingMP2acc method and the differences using other computational methods(the energy values in Hartree)

Energy HOMO LUMO Ru-Iso Ru-Aniso X-Iso X-AnisoRu-C-MP2-acc minus440352 minus092 minus042 minus742180 1069111 minus14988 52269

Ru-N-MP2-acc minus441877 minus090 minus046 minus1176015 946597 minus82579 178860

Ru-O-MP2-acc minus443924 minus068 minus018 minus918858 846675 minus16694 119428

Ru-Cl-MP2-acc minus482319 minus062 minus020 minus1122411 1052228 29822 238476

Ru-P-MP2-acc minus470544 minus087 minus037 minus1359081 1488590 44861 4141

Ru-S-MP2-acc minus476385 minus061 minus016 minus313338 582699 minus80439 237577

000Ru-C-MP2-dv minus7849 000 000 26183 minus38901 1148 659

Ru-N-MP2-dv minus7926 000 minus001 71088 minus70110 3343 minus1344

Ru-O-MP2-dv minus7914 000 000 minus44694 minus39512 minus13768 24327

Ru-Cl-MP2-dv minus7924 000 000 minus37254 114475 minus19716 35479

Ru-P-MP2-dv minus7957 000 000 minus177917 246557 2518 minus037

Ru-S-MP2-dv minus7719 002 minus002 minus611650 135558 minus20580 35851

Ru-C-MP2-ECP 426878 000 minus001 596528 minus920085 1311 193

Ru-N-MP2- ECP 426800 000 000 960319 minus813149 7435 minus7455

Ru-O-MP2- ECP 426812 000 000 740324 minus715956 minus8299 15674

Ru-Cl-MP2- ECP 426802 000 000 914427 minus867435 minus16484 41130

Ru-P-MP2- ECP 426770 000 minus001 1093680 minus1218157 3260 minus1317

Ru-S-MP2- ECP 427007 003 minus003 149743 minus496580 13797 minus14494

Ru-C-PBE-dv minus8075 020 minus022 minus5106 minus767006 34929 minus46155

Ru-N-PBE-dv minus8156 018 minus020 629261 minus496409 52642 minus92641

Ru-O-PBE-dv minus8147 022 minus018 13816439 15984243 minus383942 413974

Ru-Cl-PBE-dv minus8176 015 minus018 10321955 13287550 minus491003 4370795

Ru-P-PBE-dv minus8201 021 minus021 16547451 37324221 374088 1446238

Ru-S-PBE-dv minus7973 018 minus019 10654331 10347455 minus659068 1230739

Ru-C-PBE-ECP 426764 021 minus021 663760 minus1027535 7597 minus17075

Ru-N-PBE-ECP 426681 018 minus020 1071404 minus884998 53035 minus93320

Ru-O-PBE-ECP 426690 022 minus018 minus3381033 38277943 minus3091812 35041247

Ru-Cl-PBE-ECP 426660 015 minus018 minus757542 2579402 27160896

Ru-P-PBE-ECP 426635 021 minus021 19109900 96261433

Ru-S-PBE-ECP 426863 018 minus019 9522596 32119344 11565209 35835334

Ru-C-B3LYP-dv minus8128 016 minus018 81227 minus588737 4860 minus12006

Ru-N-B3LYP-dv minus8211 013 minus017 431991 minus275591 45112 minus75540

Ru-O-B3LYP-dv minus8203 017 minus016 273324 minus381398 minus23391 6813

Ru-Cl-B3LYP-dv minus8246 012 minus016 254850 minus284675 minus265807 309548

Ru-P-B3LYP-dv minus8270 016 minus019 472561 minus646413 minus5451 9137

Ru-S-B3LYP-dv minus8041 014 minus017 minus225901 minus250444 30708 minus72243

Ru-C-B3LYP-ECP 426757 016 minus018 624966 minus1003953 4904 minus12301

Ru-N-B3LYP-ECP 426673 013 minus017 1040250 minus853188 45960 minus77145

Ru-O-B3LYP-ECP 426681 017 minus016 802053 minus780523 minus19773 minus244

Ru-Cl-B3LYP-ECP 426638 012 minus016 977624 minus948089 minus236464 264500

Ru-P-B3LYP-ECP 426614 016 minus018 1207902 minus1376028 minus4806 7968

Ru-S-B3LYP-ECP 426843 014 minus017 212424 minus536594 33276 minus74643

MP2-acc stands for MP2aug-cc-pVTZ MP2-dv stands for MP2DGDZVP MP2-ECP stands for MP2SBKJC VDZ PBE-dv stands for PBEDGDZVP PBE-ECP stands for PBESBKJC VDZ B3LYP-dv stands for B3LYPDGDZVP and B3LYP-ECP stands for B3LYPSBKJC VDZ

6 Journal of Chemistry

Table 6 Correlation of othermethods of computation with theMP2acc in computing energy HOMO LUMO and isotropic and anisotropicshielding

MP2DGDZVP MP2SBKJC VDZ PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZEnergy 100 100 100 100 100 100

HOMO 100 100 099 099 099 099

LUMO 100 100 100 099 100 100

Ru-Iso 074 083 minus009 minus011 091 094

Ru-Aniso 095 097 051 050 084 082

X-Iso 098 098 067 minus051 minus016 minus012

X-Aniso 099 098 minus035 033 071 073

Table 7 119869-coupling of the Ru-L bonds at different level of computational methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZRu-C minus185119864 + 001 114119864 + 000 minus268119864 + 000 136119864 + 000

Ru-N minus146119864 + 001 753119864 minus 001 656119864 + 001 607119864 + 000

Ru-O 245119864 + 001 minus980119864 minus 001 249119864 + 001 minus117119864 + 000

Ru-Cl 472119864 + 001 563119864 + 000 476119864 + 001 590119864 + 000

Ru-P minus651119864 + 001 minus314119864 minus 001 minus714119864 + 001 minus500119864 minus 001

Ru-S minus752119864 minus 001 106119864 + 000 469119864 minus 001 135119864 + 000

Table 8 Correlation of 119869-coupling within the methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZPBE-dv 100 058 074 037PBE-ECP 058 100 042 073B3LYP-dv 074 042 100 072B3LYP-ECP 037 073 072 100

computational methods (Table 6) only the energy order isperfectly reproduced by all the methods There is a veryhigh similarity in the order of HOMO and LUMO especiallyLUMO computed using B3LYP In addition B3LYP is foundto also perform better in reproducing the shielding tensors ofRu and other atoms compared to PBE except for the orderof the isotropic shielding of other atoms besides Ru atomThe correlation obtained fromB3LYP in computing shieldingtensors further supports its reported better performance forthese properties [42]

In computation of the 119869-coupling we are only limited toB3LYP and PBE since these properties are not permitted inGaussian package at MP2 and CCSD level of theories Con-sidering the magnitude of 119869-coupling at B3LYPDGDZVP itfollows the order Ru-P gt Ru-N gt Ru-Cl gt Ru-S gt Ru-O gtRu-C (Table 7) The order is well reproduced in B3LYP withECP basis set but is poor in PBE and is even the worst whenPBE is combined with ECP basis set (Table 8) The simplereason for the variations is in support of the literature reportdemonstrating that the 119869-coupling is sensitive to bondinginteractions [43]

33 Hyperpolarizability Properties The values of the com-puted hyperpolarizabilities of the six models using differentfunctionals and basis sets are shown in Table 9 The values ofthe hyperpolarizabilities of themodels usingMP2 functionalsat different basis sets are in the order of Ru-S gt Ru-O gt Ru-Cl gt Ru-N gt Ru-P gt Ru-C which suggest the level of theirpossible modelling for NLO application The order obtained

from CCSD is Ru-O gt Ru-Cl gt Ru-S gt Ru-P gt Ru-N gt Ru-C the PBE methods give the order Ru-Cl gt Ru-C lt Ru-S gtRu-O gt Ru-P gt Ru-N and B3LYP gives the order Ru-Cl gtRu-O gt Ru-S gt Ru-P gt Ru-N gt Ru-C The MP2 rated Ru-S as the best model for NLO application while CCSD ratedmodel Ru-O as the best Also a different model Ru-Cl isindicated to have the highest hyperpolarizabilities using thefunctionals PBE and B3LYP irrespective of the basis set usedThe correlations of the hyperpolarizabilities values among themodels are shown in Table 10 The correlation table showsthat the order of the hyperpolarizabilities of the models isperfectly reproducible using the same MP2 at different basissets and also within CCSD at different basis sets Also B3LYPperforms better in reproducing its order at different basisset compared to PBE This clearly shows that the order ofthe hyperpolarizabilities depends greatly on the geometricalconfiguration and the type of the functional used rather thanon the type of the basis sets The only observed similarity inthe order of the hyperpolarizabilities computed with differentmethods is that all the methods rated the models Ru-S Ru-Cl and Ru-O among the best three except for PBE whichexcluded Ru-O from its best three

34 The IR Vibrations The IR vibrations of the modelsat different computational methods are shown in Figure 3The vibrations which are of significant interest to us aretheir Ru-ligand bonds of Ru-C Ru-N Ru-O Ru-Cl Ru-Pand Ru-S which are shown in Table 11 Also most of theprominent vibrations are assigned as shown in Table 12 In

Journal of Chemistry 7

Table9Th

efirsth

yperpo

lariz

ability(szlig)inesu(1times10minus30)v

aluesa

tdifferentcom

putatio

nalm

etho

ds

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

Ru-C

153

179

171

108

098

244

028

055

055

Ru-N

569

224

380

105

109

077

063

076

062

Ru-O

3505

1791

1860

822

548

178

160

220

205

Ru-C

l1173

1440

1325

558

547

284

289

325

313

Ru-P

177

180

213

124

151

152

147

135

137

Ru-S

28214

33591

11477

8295

315

214

182

207

165

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Journal of Chemistry 3

Ru-C-MP2

Ru-O-MP2

Ru-S-MP2Ru-P-MP2

Ru-Cl-MP2

Ru-N-MP2

Ru-C-CCSD Ru-N-CCSD

Ru-O-CCSD

Ru-S-CCSD

Ru-P-CCSDRu-Cl-CCSD

Ru-C-PBE0

Ru-N-PBE0 Ru-O-PBE0

Ru-S-PBE0Ru-P-PBE0

Ru-Cl-PBE0

Ru-C-B3LYP Ru-N-B3LYP

Ru-O-B3LYP

Ru-S-B3LYP

Ru-P-B3LYPRu-Cl-B3LYP

1964 1980 1949 1951 1839 1878

1834 2116 1864 1861 1850 1874

2210 2208 2171 2480 2437 2448

2397 2419 2228 2237 2216 2223

Figure 1The bond distances of the six models of Ru-L bonds obtained from the optimized geometries at MP2 CCSD PBE and B3LYP usingSBKJC VDZ basis set

Table 2 The bond distances and thermodynamic properties using MP2ECP method and the differences using other methods (energies inKJMol)

Methodbonds Distance Energy Zero energy Thermal energy Enthalpy Gibbs-free CV KJMol-K 119878 KJMol-KRu-C-MP2-ECP 19485 minus35376119864 + 05 minus35457119864 + 05 minus35455119864 + 05 minus35455119864 + 05 minus35464119864 + 05 00782 02901

Ru-N-MP2-ECP 18342 minus35376119864 + 05 minus35457119864 + 05 minus35455119864 + 05 minus35455119864 + 05 minus35464119864 + 05 00782 02901

Ru-O-MP2-ECP 18501 minus39584119864 + 05 minus39681119864 + 05 minus39679119864 + 05 minus39679119864 + 05 minus39688119864 + 05 00769 02940

Ru-Cl-MP2-ECP 21711 minus44927119864 + 05 minus45022119864 + 05 minus45021119864 + 05 minus45021119864 + 05 minus45029119864 + 05 00736 02927

Ru-P-MP2-ECP 23969 minus11493119864 + 06 minus11499119864 + 06 minus11499119864 + 06 minus11499119864 + 06 minus11500119864 + 06 00973 03293

Ru-S-MP2-ECP 22157 minus12964119864 + 06 minus12973119864 + 06 minus12972119864 + 06 minus12972119864 + 06 minus12973119864 + 06 00855 03188

Difference of the other methods fromMP2SBKJC VDZRu-C-PBE-ECP 00024 minus29890119864 + 03 minus19950119864 + 03 minus19946119864 + 03 minus19946119864 + 03 minus19955119864 + 03 00017 00032

Ru-N-PBE-ECP 00120 minus29890119864 + 03 minus19950119864 + 03 minus19946119864 + 03 minus19946119864 + 03 minus19955119864 + 03 00017 00032

Ru-O-PBE-ECP 00243 minus31318119864 + 03 minus19966119864 + 03 minus19970119864 + 03 minus19970119864 + 03 minus19959119864 + 03 minus00011 minus00037

Ru-Cl-PBE-ECP 03088 minus32116119864 + 03 minus21228119864 + 03 minus21223119864 + 03 minus21223119864 + 03 minus21231119864 + 03 00021 00027

Ru-P-PBE-ECP 00219 minus35356119864 + 03 minus27378119864 + 03 minus27373119864 + 03 minus27373119864 + 03 minus27386119864 + 03 00009 00043

Ru-S-PBE-ECP 00074 minus37839119864 + 03 minus28207119864 + 03 minus28208119864 + 03 minus28208119864 + 03 minus28202119864 + 03 00007 minus00019

Ru-C-B3LYP-ECP 00159 minus31831119864 + 03 minus21836119864 + 03 minus21828119864 + 03 minus21828119864 + 03 minus21844119864 + 03 00039 00055

Ru-N-B3LYP-ECP 00047 minus45407119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus44429119864 + 04 minus00012 00010

Ru-O-B3LYP-ECP 00144 minus33288119864 + 03 minus21890119864 + 03 minus21893119864 + 03 minus21893119864 + 03 minus21884119864 + 03 00000 minus00028

Ru-Cl-B3LYP-ECP 00392 minus34479119864 + 03 minus23536119864 + 03 minus23531119864 + 03 minus23531119864 + 03 minus23540119864 + 03 00022 00031

Ru-P-B3LYP-ECP 00398 minus40797119864 + 03 minus32774119864 + 03 minus32764119864 + 03 minus32764119864 + 03 minus32788119864 + 03 00031 00081

Ru-S-B3LYP-ECP 00125 minus43126119864 + 03 minus33423119864 + 03 minus33431119864 + 03 minus33431119864 + 03 minus33414119864 + 03 minus00029 minus00057

Ru-C-CCSD-ECP 00316 minus21515119864 + 01 minus71138119864 + 01 minus69570119864 + 01 minus69570119864 + 01 minus72697119864 + 01 00075 00105

Ru-N-CCSD-ECP 00436 minus42095119864 + 04 minus42295119864 + 04 minus42294119864 + 04 minus42294119864 + 04 minus42295119864 + 04 00024 00047

Ru-O-CCSD-ECP 00109 minus16767119864 + 01 minus54986119864 + 01 minus54600119864 + 01 minus54600119864 + 01 minus54878119864 + 01 00037 00009

Ru-Cl-CCSD-ECP 00368 minus24604119864 + 01 minus65007119864 + 01 minus64330119864 + 01 minus64330119864 + 01 minus65559119864 + 01 00037 00041

Ru-P-CCSD-ECP 00512 minus14740119864 + 00 minus12560119864 + 02 minus12351119864 + 02 minus12351119864 + 02 minus12915119864 + 02 00066 00189

Ru-S-CCSD-ECP 00211 minus37429119864 + 01 minus98966119864 + 01 minus99562119864 + 01 minus99562119864 + 01 minus98230119864 + 01 minus00017 minus00045

above other functional methods Ru-C bond values of ourmodel are within the common experimental bond values forRu-C while the values obtained for other modelled bondsare little below the common experimental values If the bondvalues obtained using theMP2 are compared to the analyticalvalues the differences in the values of other computational

methods from MP2 are calculated using simple expression119883other minus119883MP2 and are presented in Table 2The differences inbond values obtained using PBE compared to the analyticalvalues fromMP2 are smaller inmagnitude compared to othermethods (Table 2) but the order of the bond distances in themodel was not perfectly reproduced as in B3LYP and CCSD

4 Journal of Chemistry

HH

H

H

H

H

HHH

H

H

Cl

S

OC

RuRu

Ru

RuRuRu

P

N

Figure 2 The superposition of different model of Ru-L bonds obtained using MP2 (green) CCSD (blue) PBE (yellow) and B3LYP (cyan)to determine the RMSD of the whole geometries after the optimization of their respective geometries

Table 3 The correlation of the values of energy and thermody-namics properties at MP2SBKJC VDZ with other computationalmethods

MP2-ECP PBE B3LYP CCSDRu-L-dist 100 100 100Energy 100 100 100Zero energy 100 100 100Thermal energy 100 100 100Enthalpy 100 100 100Gibbs-free 100 100 100CV 099 097 095Entropy 098 095 092

(Table 3) All the thermodynamic properties were computedat 298150 Kelvin and pressure 1 Atm The magnitude ofthe differences in thermodynamic properties (Table 2) showsthat CCSD and PBE give closer values to MP2 than B3LYPAlso considering the reproducibility of the order of bonddistances obtained from MP2 in the other methods all thecomputational methods produced a perfect order for thethermodynamic energies except PBE which gave a relativelybetter order for the CV and the entropy (Table 3) Thisis an indication that PBE performs better for geometricaloptimization and computation of thermodynamic propertieswhich agree well with the literatures that reported PBEcorrelation in combination with SBKJC VDZ ECP basis setas a good method for the optimization of metal complexes[40 41]The computed types of energies using othermethodsof computation are higher in negative values thanMP2 whiletheir bond distance CV and S are higher in positive valuesConsidering the RMSD of all the atoms in each of the modelsas shown in Table 4 and Figure 2 the optimized geometriesobtained for the models Ru-C Ru-O and Ru-S at variouscomputational methods are very similar to lower RMSDcompared to what was obtained for the models Ru-N Ru-Cl and Ru-P Also the RMSD of the optimized geometriesobtained from the functional PBE are lower than those

Table 4 The RMSD of the optimized geometries obtained fromother methods of computation from that obtained from MP2 usingSBKJC VDZ ECP basis set

B3LYP CCSD PBERu-C 0963 1347 0637Ru-N 1030 1032 1035Ru-O 0056 0072 0065Ru-Cl 1302 1030 1268Ru-P 1203 1221 1190Ru-S 0265 0266 0252

obtained from B3LYP and CCSD which further supportsPBE as a good method for the optimization of rutheniumcomplexes

32 Energy HOMO LUMO Shielding Tensors and J-Coupling The values of the energy HOMO LUMO andisotropic and anisotropic shielding computed atMP2aug-cc-pVTZ and the variations obtainedwhen computedwith othermethods are presented in Table 5 The shielding tensors werecomputed using Gauge-Independent Atomic Orbital (GIAO)method The values of the energy and the variation obtainedat different functional and basis sets show that variation in theenergy values using different functional is lower comparedto variation in the energy values using different basis setsThis is an indication that the energy values depend moreon the type of basis sets rather than on the type of thefunctional However the variation in the values of HOMOLUMO and isotropic and anisotropic shielding at differentfunctional methods shows that they depend more on thetype of the functional and the geometrical change rather thanon the type of the basis sets The difference in the valuesof HOMO LUMO and isotropic and anisotropic shieldingwithin MP2 methods at different basis set is lower comparedto changing the functional to PBE and B3LYP Also B3LYPseems to perform better than PBE as the differences obtainedat B3LYP are far lower compared to PBE Also consideringthe reproducibility of the order of these properties at different

Journal of Chemistry 5

Table 5The energy shielding tensors and 119869-coupling values usingMP2acc method and the differences using other computational methods(the energy values in Hartree)

Energy HOMO LUMO Ru-Iso Ru-Aniso X-Iso X-AnisoRu-C-MP2-acc minus440352 minus092 minus042 minus742180 1069111 minus14988 52269

Ru-N-MP2-acc minus441877 minus090 minus046 minus1176015 946597 minus82579 178860

Ru-O-MP2-acc minus443924 minus068 minus018 minus918858 846675 minus16694 119428

Ru-Cl-MP2-acc minus482319 minus062 minus020 minus1122411 1052228 29822 238476

Ru-P-MP2-acc minus470544 minus087 minus037 minus1359081 1488590 44861 4141

Ru-S-MP2-acc minus476385 minus061 minus016 minus313338 582699 minus80439 237577

000Ru-C-MP2-dv minus7849 000 000 26183 minus38901 1148 659

Ru-N-MP2-dv minus7926 000 minus001 71088 minus70110 3343 minus1344

Ru-O-MP2-dv minus7914 000 000 minus44694 minus39512 minus13768 24327

Ru-Cl-MP2-dv minus7924 000 000 minus37254 114475 minus19716 35479

Ru-P-MP2-dv minus7957 000 000 minus177917 246557 2518 minus037

Ru-S-MP2-dv minus7719 002 minus002 minus611650 135558 minus20580 35851

Ru-C-MP2-ECP 426878 000 minus001 596528 minus920085 1311 193

Ru-N-MP2- ECP 426800 000 000 960319 minus813149 7435 minus7455

Ru-O-MP2- ECP 426812 000 000 740324 minus715956 minus8299 15674

Ru-Cl-MP2- ECP 426802 000 000 914427 minus867435 minus16484 41130

Ru-P-MP2- ECP 426770 000 minus001 1093680 minus1218157 3260 minus1317

Ru-S-MP2- ECP 427007 003 minus003 149743 minus496580 13797 minus14494

Ru-C-PBE-dv minus8075 020 minus022 minus5106 minus767006 34929 minus46155

Ru-N-PBE-dv minus8156 018 minus020 629261 minus496409 52642 minus92641

Ru-O-PBE-dv minus8147 022 minus018 13816439 15984243 minus383942 413974

Ru-Cl-PBE-dv minus8176 015 minus018 10321955 13287550 minus491003 4370795

Ru-P-PBE-dv minus8201 021 minus021 16547451 37324221 374088 1446238

Ru-S-PBE-dv minus7973 018 minus019 10654331 10347455 minus659068 1230739

Ru-C-PBE-ECP 426764 021 minus021 663760 minus1027535 7597 minus17075

Ru-N-PBE-ECP 426681 018 minus020 1071404 minus884998 53035 minus93320

Ru-O-PBE-ECP 426690 022 minus018 minus3381033 38277943 minus3091812 35041247

Ru-Cl-PBE-ECP 426660 015 minus018 minus757542 2579402 27160896

Ru-P-PBE-ECP 426635 021 minus021 19109900 96261433

Ru-S-PBE-ECP 426863 018 minus019 9522596 32119344 11565209 35835334

Ru-C-B3LYP-dv minus8128 016 minus018 81227 minus588737 4860 minus12006

Ru-N-B3LYP-dv minus8211 013 minus017 431991 minus275591 45112 minus75540

Ru-O-B3LYP-dv minus8203 017 minus016 273324 minus381398 minus23391 6813

Ru-Cl-B3LYP-dv minus8246 012 minus016 254850 minus284675 minus265807 309548

Ru-P-B3LYP-dv minus8270 016 minus019 472561 minus646413 minus5451 9137

Ru-S-B3LYP-dv minus8041 014 minus017 minus225901 minus250444 30708 minus72243

Ru-C-B3LYP-ECP 426757 016 minus018 624966 minus1003953 4904 minus12301

Ru-N-B3LYP-ECP 426673 013 minus017 1040250 minus853188 45960 minus77145

Ru-O-B3LYP-ECP 426681 017 minus016 802053 minus780523 minus19773 minus244

Ru-Cl-B3LYP-ECP 426638 012 minus016 977624 minus948089 minus236464 264500

Ru-P-B3LYP-ECP 426614 016 minus018 1207902 minus1376028 minus4806 7968

Ru-S-B3LYP-ECP 426843 014 minus017 212424 minus536594 33276 minus74643

MP2-acc stands for MP2aug-cc-pVTZ MP2-dv stands for MP2DGDZVP MP2-ECP stands for MP2SBKJC VDZ PBE-dv stands for PBEDGDZVP PBE-ECP stands for PBESBKJC VDZ B3LYP-dv stands for B3LYPDGDZVP and B3LYP-ECP stands for B3LYPSBKJC VDZ

6 Journal of Chemistry

Table 6 Correlation of othermethods of computation with theMP2acc in computing energy HOMO LUMO and isotropic and anisotropicshielding

MP2DGDZVP MP2SBKJC VDZ PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZEnergy 100 100 100 100 100 100

HOMO 100 100 099 099 099 099

LUMO 100 100 100 099 100 100

Ru-Iso 074 083 minus009 minus011 091 094

Ru-Aniso 095 097 051 050 084 082

X-Iso 098 098 067 minus051 minus016 minus012

X-Aniso 099 098 minus035 033 071 073

Table 7 119869-coupling of the Ru-L bonds at different level of computational methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZRu-C minus185119864 + 001 114119864 + 000 minus268119864 + 000 136119864 + 000

Ru-N minus146119864 + 001 753119864 minus 001 656119864 + 001 607119864 + 000

Ru-O 245119864 + 001 minus980119864 minus 001 249119864 + 001 minus117119864 + 000

Ru-Cl 472119864 + 001 563119864 + 000 476119864 + 001 590119864 + 000

Ru-P minus651119864 + 001 minus314119864 minus 001 minus714119864 + 001 minus500119864 minus 001

Ru-S minus752119864 minus 001 106119864 + 000 469119864 minus 001 135119864 + 000

Table 8 Correlation of 119869-coupling within the methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZPBE-dv 100 058 074 037PBE-ECP 058 100 042 073B3LYP-dv 074 042 100 072B3LYP-ECP 037 073 072 100

computational methods (Table 6) only the energy order isperfectly reproduced by all the methods There is a veryhigh similarity in the order of HOMO and LUMO especiallyLUMO computed using B3LYP In addition B3LYP is foundto also perform better in reproducing the shielding tensors ofRu and other atoms compared to PBE except for the orderof the isotropic shielding of other atoms besides Ru atomThe correlation obtained fromB3LYP in computing shieldingtensors further supports its reported better performance forthese properties [42]

In computation of the 119869-coupling we are only limited toB3LYP and PBE since these properties are not permitted inGaussian package at MP2 and CCSD level of theories Con-sidering the magnitude of 119869-coupling at B3LYPDGDZVP itfollows the order Ru-P gt Ru-N gt Ru-Cl gt Ru-S gt Ru-O gtRu-C (Table 7) The order is well reproduced in B3LYP withECP basis set but is poor in PBE and is even the worst whenPBE is combined with ECP basis set (Table 8) The simplereason for the variations is in support of the literature reportdemonstrating that the 119869-coupling is sensitive to bondinginteractions [43]

33 Hyperpolarizability Properties The values of the com-puted hyperpolarizabilities of the six models using differentfunctionals and basis sets are shown in Table 9 The values ofthe hyperpolarizabilities of themodels usingMP2 functionalsat different basis sets are in the order of Ru-S gt Ru-O gt Ru-Cl gt Ru-N gt Ru-P gt Ru-C which suggest the level of theirpossible modelling for NLO application The order obtained

from CCSD is Ru-O gt Ru-Cl gt Ru-S gt Ru-P gt Ru-N gt Ru-C the PBE methods give the order Ru-Cl gt Ru-C lt Ru-S gtRu-O gt Ru-P gt Ru-N and B3LYP gives the order Ru-Cl gtRu-O gt Ru-S gt Ru-P gt Ru-N gt Ru-C The MP2 rated Ru-S as the best model for NLO application while CCSD ratedmodel Ru-O as the best Also a different model Ru-Cl isindicated to have the highest hyperpolarizabilities using thefunctionals PBE and B3LYP irrespective of the basis set usedThe correlations of the hyperpolarizabilities values among themodels are shown in Table 10 The correlation table showsthat the order of the hyperpolarizabilities of the models isperfectly reproducible using the same MP2 at different basissets and also within CCSD at different basis sets Also B3LYPperforms better in reproducing its order at different basisset compared to PBE This clearly shows that the order ofthe hyperpolarizabilities depends greatly on the geometricalconfiguration and the type of the functional used rather thanon the type of the basis sets The only observed similarity inthe order of the hyperpolarizabilities computed with differentmethods is that all the methods rated the models Ru-S Ru-Cl and Ru-O among the best three except for PBE whichexcluded Ru-O from its best three

34 The IR Vibrations The IR vibrations of the modelsat different computational methods are shown in Figure 3The vibrations which are of significant interest to us aretheir Ru-ligand bonds of Ru-C Ru-N Ru-O Ru-Cl Ru-Pand Ru-S which are shown in Table 11 Also most of theprominent vibrations are assigned as shown in Table 12 In

Journal of Chemistry 7

Table9Th

efirsth

yperpo

lariz

ability(szlig)inesu(1times10minus30)v

aluesa

tdifferentcom

putatio

nalm

etho

ds

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

Ru-C

153

179

171

108

098

244

028

055

055

Ru-N

569

224

380

105

109

077

063

076

062

Ru-O

3505

1791

1860

822

548

178

160

220

205

Ru-C

l1173

1440

1325

558

547

284

289

325

313

Ru-P

177

180

213

124

151

152

147

135

137

Ru-S

28214

33591

11477

8295

315

214

182

207

165

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

4 Journal of Chemistry

HH

H

H

H

H

HHH

H

H

Cl

S

OC

RuRu

Ru

RuRuRu

P

N

Figure 2 The superposition of different model of Ru-L bonds obtained using MP2 (green) CCSD (blue) PBE (yellow) and B3LYP (cyan)to determine the RMSD of the whole geometries after the optimization of their respective geometries

Table 3 The correlation of the values of energy and thermody-namics properties at MP2SBKJC VDZ with other computationalmethods

MP2-ECP PBE B3LYP CCSDRu-L-dist 100 100 100Energy 100 100 100Zero energy 100 100 100Thermal energy 100 100 100Enthalpy 100 100 100Gibbs-free 100 100 100CV 099 097 095Entropy 098 095 092

(Table 3) All the thermodynamic properties were computedat 298150 Kelvin and pressure 1 Atm The magnitude ofthe differences in thermodynamic properties (Table 2) showsthat CCSD and PBE give closer values to MP2 than B3LYPAlso considering the reproducibility of the order of bonddistances obtained from MP2 in the other methods all thecomputational methods produced a perfect order for thethermodynamic energies except PBE which gave a relativelybetter order for the CV and the entropy (Table 3) Thisis an indication that PBE performs better for geometricaloptimization and computation of thermodynamic propertieswhich agree well with the literatures that reported PBEcorrelation in combination with SBKJC VDZ ECP basis setas a good method for the optimization of metal complexes[40 41]The computed types of energies using othermethodsof computation are higher in negative values thanMP2 whiletheir bond distance CV and S are higher in positive valuesConsidering the RMSD of all the atoms in each of the modelsas shown in Table 4 and Figure 2 the optimized geometriesobtained for the models Ru-C Ru-O and Ru-S at variouscomputational methods are very similar to lower RMSDcompared to what was obtained for the models Ru-N Ru-Cl and Ru-P Also the RMSD of the optimized geometriesobtained from the functional PBE are lower than those

Table 4 The RMSD of the optimized geometries obtained fromother methods of computation from that obtained from MP2 usingSBKJC VDZ ECP basis set

B3LYP CCSD PBERu-C 0963 1347 0637Ru-N 1030 1032 1035Ru-O 0056 0072 0065Ru-Cl 1302 1030 1268Ru-P 1203 1221 1190Ru-S 0265 0266 0252

obtained from B3LYP and CCSD which further supportsPBE as a good method for the optimization of rutheniumcomplexes

32 Energy HOMO LUMO Shielding Tensors and J-Coupling The values of the energy HOMO LUMO andisotropic and anisotropic shielding computed atMP2aug-cc-pVTZ and the variations obtainedwhen computedwith othermethods are presented in Table 5 The shielding tensors werecomputed using Gauge-Independent Atomic Orbital (GIAO)method The values of the energy and the variation obtainedat different functional and basis sets show that variation in theenergy values using different functional is lower comparedto variation in the energy values using different basis setsThis is an indication that the energy values depend moreon the type of basis sets rather than on the type of thefunctional However the variation in the values of HOMOLUMO and isotropic and anisotropic shielding at differentfunctional methods shows that they depend more on thetype of the functional and the geometrical change rather thanon the type of the basis sets The difference in the valuesof HOMO LUMO and isotropic and anisotropic shieldingwithin MP2 methods at different basis set is lower comparedto changing the functional to PBE and B3LYP Also B3LYPseems to perform better than PBE as the differences obtainedat B3LYP are far lower compared to PBE Also consideringthe reproducibility of the order of these properties at different

Journal of Chemistry 5

Table 5The energy shielding tensors and 119869-coupling values usingMP2acc method and the differences using other computational methods(the energy values in Hartree)

Energy HOMO LUMO Ru-Iso Ru-Aniso X-Iso X-AnisoRu-C-MP2-acc minus440352 minus092 minus042 minus742180 1069111 minus14988 52269

Ru-N-MP2-acc minus441877 minus090 minus046 minus1176015 946597 minus82579 178860

Ru-O-MP2-acc minus443924 minus068 minus018 minus918858 846675 minus16694 119428

Ru-Cl-MP2-acc minus482319 minus062 minus020 minus1122411 1052228 29822 238476

Ru-P-MP2-acc minus470544 minus087 minus037 minus1359081 1488590 44861 4141

Ru-S-MP2-acc minus476385 minus061 minus016 minus313338 582699 minus80439 237577

000Ru-C-MP2-dv minus7849 000 000 26183 minus38901 1148 659

Ru-N-MP2-dv minus7926 000 minus001 71088 minus70110 3343 minus1344

Ru-O-MP2-dv minus7914 000 000 minus44694 minus39512 minus13768 24327

Ru-Cl-MP2-dv minus7924 000 000 minus37254 114475 minus19716 35479

Ru-P-MP2-dv minus7957 000 000 minus177917 246557 2518 minus037

Ru-S-MP2-dv minus7719 002 minus002 minus611650 135558 minus20580 35851

Ru-C-MP2-ECP 426878 000 minus001 596528 minus920085 1311 193

Ru-N-MP2- ECP 426800 000 000 960319 minus813149 7435 minus7455

Ru-O-MP2- ECP 426812 000 000 740324 minus715956 minus8299 15674

Ru-Cl-MP2- ECP 426802 000 000 914427 minus867435 minus16484 41130

Ru-P-MP2- ECP 426770 000 minus001 1093680 minus1218157 3260 minus1317

Ru-S-MP2- ECP 427007 003 minus003 149743 minus496580 13797 minus14494

Ru-C-PBE-dv minus8075 020 minus022 minus5106 minus767006 34929 minus46155

Ru-N-PBE-dv minus8156 018 minus020 629261 minus496409 52642 minus92641

Ru-O-PBE-dv minus8147 022 minus018 13816439 15984243 minus383942 413974

Ru-Cl-PBE-dv minus8176 015 minus018 10321955 13287550 minus491003 4370795

Ru-P-PBE-dv minus8201 021 minus021 16547451 37324221 374088 1446238

Ru-S-PBE-dv minus7973 018 minus019 10654331 10347455 minus659068 1230739

Ru-C-PBE-ECP 426764 021 minus021 663760 minus1027535 7597 minus17075

Ru-N-PBE-ECP 426681 018 minus020 1071404 minus884998 53035 minus93320

Ru-O-PBE-ECP 426690 022 minus018 minus3381033 38277943 minus3091812 35041247

Ru-Cl-PBE-ECP 426660 015 minus018 minus757542 2579402 27160896

Ru-P-PBE-ECP 426635 021 minus021 19109900 96261433

Ru-S-PBE-ECP 426863 018 minus019 9522596 32119344 11565209 35835334

Ru-C-B3LYP-dv minus8128 016 minus018 81227 minus588737 4860 minus12006

Ru-N-B3LYP-dv minus8211 013 minus017 431991 minus275591 45112 minus75540

Ru-O-B3LYP-dv minus8203 017 minus016 273324 minus381398 minus23391 6813

Ru-Cl-B3LYP-dv minus8246 012 minus016 254850 minus284675 minus265807 309548

Ru-P-B3LYP-dv minus8270 016 minus019 472561 minus646413 minus5451 9137

Ru-S-B3LYP-dv minus8041 014 minus017 minus225901 minus250444 30708 minus72243

Ru-C-B3LYP-ECP 426757 016 minus018 624966 minus1003953 4904 minus12301

Ru-N-B3LYP-ECP 426673 013 minus017 1040250 minus853188 45960 minus77145

Ru-O-B3LYP-ECP 426681 017 minus016 802053 minus780523 minus19773 minus244

Ru-Cl-B3LYP-ECP 426638 012 minus016 977624 minus948089 minus236464 264500

Ru-P-B3LYP-ECP 426614 016 minus018 1207902 minus1376028 minus4806 7968

Ru-S-B3LYP-ECP 426843 014 minus017 212424 minus536594 33276 minus74643

MP2-acc stands for MP2aug-cc-pVTZ MP2-dv stands for MP2DGDZVP MP2-ECP stands for MP2SBKJC VDZ PBE-dv stands for PBEDGDZVP PBE-ECP stands for PBESBKJC VDZ B3LYP-dv stands for B3LYPDGDZVP and B3LYP-ECP stands for B3LYPSBKJC VDZ

6 Journal of Chemistry

Table 6 Correlation of othermethods of computation with theMP2acc in computing energy HOMO LUMO and isotropic and anisotropicshielding

MP2DGDZVP MP2SBKJC VDZ PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZEnergy 100 100 100 100 100 100

HOMO 100 100 099 099 099 099

LUMO 100 100 100 099 100 100

Ru-Iso 074 083 minus009 minus011 091 094

Ru-Aniso 095 097 051 050 084 082

X-Iso 098 098 067 minus051 minus016 minus012

X-Aniso 099 098 minus035 033 071 073

Table 7 119869-coupling of the Ru-L bonds at different level of computational methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZRu-C minus185119864 + 001 114119864 + 000 minus268119864 + 000 136119864 + 000

Ru-N minus146119864 + 001 753119864 minus 001 656119864 + 001 607119864 + 000

Ru-O 245119864 + 001 minus980119864 minus 001 249119864 + 001 minus117119864 + 000

Ru-Cl 472119864 + 001 563119864 + 000 476119864 + 001 590119864 + 000

Ru-P minus651119864 + 001 minus314119864 minus 001 minus714119864 + 001 minus500119864 minus 001

Ru-S minus752119864 minus 001 106119864 + 000 469119864 minus 001 135119864 + 000

Table 8 Correlation of 119869-coupling within the methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZPBE-dv 100 058 074 037PBE-ECP 058 100 042 073B3LYP-dv 074 042 100 072B3LYP-ECP 037 073 072 100

computational methods (Table 6) only the energy order isperfectly reproduced by all the methods There is a veryhigh similarity in the order of HOMO and LUMO especiallyLUMO computed using B3LYP In addition B3LYP is foundto also perform better in reproducing the shielding tensors ofRu and other atoms compared to PBE except for the orderof the isotropic shielding of other atoms besides Ru atomThe correlation obtained fromB3LYP in computing shieldingtensors further supports its reported better performance forthese properties [42]

In computation of the 119869-coupling we are only limited toB3LYP and PBE since these properties are not permitted inGaussian package at MP2 and CCSD level of theories Con-sidering the magnitude of 119869-coupling at B3LYPDGDZVP itfollows the order Ru-P gt Ru-N gt Ru-Cl gt Ru-S gt Ru-O gtRu-C (Table 7) The order is well reproduced in B3LYP withECP basis set but is poor in PBE and is even the worst whenPBE is combined with ECP basis set (Table 8) The simplereason for the variations is in support of the literature reportdemonstrating that the 119869-coupling is sensitive to bondinginteractions [43]

33 Hyperpolarizability Properties The values of the com-puted hyperpolarizabilities of the six models using differentfunctionals and basis sets are shown in Table 9 The values ofthe hyperpolarizabilities of themodels usingMP2 functionalsat different basis sets are in the order of Ru-S gt Ru-O gt Ru-Cl gt Ru-N gt Ru-P gt Ru-C which suggest the level of theirpossible modelling for NLO application The order obtained

from CCSD is Ru-O gt Ru-Cl gt Ru-S gt Ru-P gt Ru-N gt Ru-C the PBE methods give the order Ru-Cl gt Ru-C lt Ru-S gtRu-O gt Ru-P gt Ru-N and B3LYP gives the order Ru-Cl gtRu-O gt Ru-S gt Ru-P gt Ru-N gt Ru-C The MP2 rated Ru-S as the best model for NLO application while CCSD ratedmodel Ru-O as the best Also a different model Ru-Cl isindicated to have the highest hyperpolarizabilities using thefunctionals PBE and B3LYP irrespective of the basis set usedThe correlations of the hyperpolarizabilities values among themodels are shown in Table 10 The correlation table showsthat the order of the hyperpolarizabilities of the models isperfectly reproducible using the same MP2 at different basissets and also within CCSD at different basis sets Also B3LYPperforms better in reproducing its order at different basisset compared to PBE This clearly shows that the order ofthe hyperpolarizabilities depends greatly on the geometricalconfiguration and the type of the functional used rather thanon the type of the basis sets The only observed similarity inthe order of the hyperpolarizabilities computed with differentmethods is that all the methods rated the models Ru-S Ru-Cl and Ru-O among the best three except for PBE whichexcluded Ru-O from its best three

34 The IR Vibrations The IR vibrations of the modelsat different computational methods are shown in Figure 3The vibrations which are of significant interest to us aretheir Ru-ligand bonds of Ru-C Ru-N Ru-O Ru-Cl Ru-Pand Ru-S which are shown in Table 11 Also most of theprominent vibrations are assigned as shown in Table 12 In

Journal of Chemistry 7

Table9Th

efirsth

yperpo

lariz

ability(szlig)inesu(1times10minus30)v

aluesa

tdifferentcom

putatio

nalm

etho

ds

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

Ru-C

153

179

171

108

098

244

028

055

055

Ru-N

569

224

380

105

109

077

063

076

062

Ru-O

3505

1791

1860

822

548

178

160

220

205

Ru-C

l1173

1440

1325

558

547

284

289

325

313

Ru-P

177

180

213

124

151

152

147

135

137

Ru-S

28214

33591

11477

8295

315

214

182

207

165

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Journal of Chemistry 5

Table 5The energy shielding tensors and 119869-coupling values usingMP2acc method and the differences using other computational methods(the energy values in Hartree)

Energy HOMO LUMO Ru-Iso Ru-Aniso X-Iso X-AnisoRu-C-MP2-acc minus440352 minus092 minus042 minus742180 1069111 minus14988 52269

Ru-N-MP2-acc minus441877 minus090 minus046 minus1176015 946597 minus82579 178860

Ru-O-MP2-acc minus443924 minus068 minus018 minus918858 846675 minus16694 119428

Ru-Cl-MP2-acc minus482319 minus062 minus020 minus1122411 1052228 29822 238476

Ru-P-MP2-acc minus470544 minus087 minus037 minus1359081 1488590 44861 4141

Ru-S-MP2-acc minus476385 minus061 minus016 minus313338 582699 minus80439 237577

000Ru-C-MP2-dv minus7849 000 000 26183 minus38901 1148 659

Ru-N-MP2-dv minus7926 000 minus001 71088 minus70110 3343 minus1344

Ru-O-MP2-dv minus7914 000 000 minus44694 minus39512 minus13768 24327

Ru-Cl-MP2-dv minus7924 000 000 minus37254 114475 minus19716 35479

Ru-P-MP2-dv minus7957 000 000 minus177917 246557 2518 minus037

Ru-S-MP2-dv minus7719 002 minus002 minus611650 135558 minus20580 35851

Ru-C-MP2-ECP 426878 000 minus001 596528 minus920085 1311 193

Ru-N-MP2- ECP 426800 000 000 960319 minus813149 7435 minus7455

Ru-O-MP2- ECP 426812 000 000 740324 minus715956 minus8299 15674

Ru-Cl-MP2- ECP 426802 000 000 914427 minus867435 minus16484 41130

Ru-P-MP2- ECP 426770 000 minus001 1093680 minus1218157 3260 minus1317

Ru-S-MP2- ECP 427007 003 minus003 149743 minus496580 13797 minus14494

Ru-C-PBE-dv minus8075 020 minus022 minus5106 minus767006 34929 minus46155

Ru-N-PBE-dv minus8156 018 minus020 629261 minus496409 52642 minus92641

Ru-O-PBE-dv minus8147 022 minus018 13816439 15984243 minus383942 413974

Ru-Cl-PBE-dv minus8176 015 minus018 10321955 13287550 minus491003 4370795

Ru-P-PBE-dv minus8201 021 minus021 16547451 37324221 374088 1446238

Ru-S-PBE-dv minus7973 018 minus019 10654331 10347455 minus659068 1230739

Ru-C-PBE-ECP 426764 021 minus021 663760 minus1027535 7597 minus17075

Ru-N-PBE-ECP 426681 018 minus020 1071404 minus884998 53035 minus93320

Ru-O-PBE-ECP 426690 022 minus018 minus3381033 38277943 minus3091812 35041247

Ru-Cl-PBE-ECP 426660 015 minus018 minus757542 2579402 27160896

Ru-P-PBE-ECP 426635 021 minus021 19109900 96261433

Ru-S-PBE-ECP 426863 018 minus019 9522596 32119344 11565209 35835334

Ru-C-B3LYP-dv minus8128 016 minus018 81227 minus588737 4860 minus12006

Ru-N-B3LYP-dv minus8211 013 minus017 431991 minus275591 45112 minus75540

Ru-O-B3LYP-dv minus8203 017 minus016 273324 minus381398 minus23391 6813

Ru-Cl-B3LYP-dv minus8246 012 minus016 254850 minus284675 minus265807 309548

Ru-P-B3LYP-dv minus8270 016 minus019 472561 minus646413 minus5451 9137

Ru-S-B3LYP-dv minus8041 014 minus017 minus225901 minus250444 30708 minus72243

Ru-C-B3LYP-ECP 426757 016 minus018 624966 minus1003953 4904 minus12301

Ru-N-B3LYP-ECP 426673 013 minus017 1040250 minus853188 45960 minus77145

Ru-O-B3LYP-ECP 426681 017 minus016 802053 minus780523 minus19773 minus244

Ru-Cl-B3LYP-ECP 426638 012 minus016 977624 minus948089 minus236464 264500

Ru-P-B3LYP-ECP 426614 016 minus018 1207902 minus1376028 minus4806 7968

Ru-S-B3LYP-ECP 426843 014 minus017 212424 minus536594 33276 minus74643

MP2-acc stands for MP2aug-cc-pVTZ MP2-dv stands for MP2DGDZVP MP2-ECP stands for MP2SBKJC VDZ PBE-dv stands for PBEDGDZVP PBE-ECP stands for PBESBKJC VDZ B3LYP-dv stands for B3LYPDGDZVP and B3LYP-ECP stands for B3LYPSBKJC VDZ

6 Journal of Chemistry

Table 6 Correlation of othermethods of computation with theMP2acc in computing energy HOMO LUMO and isotropic and anisotropicshielding

MP2DGDZVP MP2SBKJC VDZ PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZEnergy 100 100 100 100 100 100

HOMO 100 100 099 099 099 099

LUMO 100 100 100 099 100 100

Ru-Iso 074 083 minus009 minus011 091 094

Ru-Aniso 095 097 051 050 084 082

X-Iso 098 098 067 minus051 minus016 minus012

X-Aniso 099 098 minus035 033 071 073

Table 7 119869-coupling of the Ru-L bonds at different level of computational methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZRu-C minus185119864 + 001 114119864 + 000 minus268119864 + 000 136119864 + 000

Ru-N minus146119864 + 001 753119864 minus 001 656119864 + 001 607119864 + 000

Ru-O 245119864 + 001 minus980119864 minus 001 249119864 + 001 minus117119864 + 000

Ru-Cl 472119864 + 001 563119864 + 000 476119864 + 001 590119864 + 000

Ru-P minus651119864 + 001 minus314119864 minus 001 minus714119864 + 001 minus500119864 minus 001

Ru-S minus752119864 minus 001 106119864 + 000 469119864 minus 001 135119864 + 000

Table 8 Correlation of 119869-coupling within the methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZPBE-dv 100 058 074 037PBE-ECP 058 100 042 073B3LYP-dv 074 042 100 072B3LYP-ECP 037 073 072 100

computational methods (Table 6) only the energy order isperfectly reproduced by all the methods There is a veryhigh similarity in the order of HOMO and LUMO especiallyLUMO computed using B3LYP In addition B3LYP is foundto also perform better in reproducing the shielding tensors ofRu and other atoms compared to PBE except for the orderof the isotropic shielding of other atoms besides Ru atomThe correlation obtained fromB3LYP in computing shieldingtensors further supports its reported better performance forthese properties [42]

In computation of the 119869-coupling we are only limited toB3LYP and PBE since these properties are not permitted inGaussian package at MP2 and CCSD level of theories Con-sidering the magnitude of 119869-coupling at B3LYPDGDZVP itfollows the order Ru-P gt Ru-N gt Ru-Cl gt Ru-S gt Ru-O gtRu-C (Table 7) The order is well reproduced in B3LYP withECP basis set but is poor in PBE and is even the worst whenPBE is combined with ECP basis set (Table 8) The simplereason for the variations is in support of the literature reportdemonstrating that the 119869-coupling is sensitive to bondinginteractions [43]

33 Hyperpolarizability Properties The values of the com-puted hyperpolarizabilities of the six models using differentfunctionals and basis sets are shown in Table 9 The values ofthe hyperpolarizabilities of themodels usingMP2 functionalsat different basis sets are in the order of Ru-S gt Ru-O gt Ru-Cl gt Ru-N gt Ru-P gt Ru-C which suggest the level of theirpossible modelling for NLO application The order obtained

from CCSD is Ru-O gt Ru-Cl gt Ru-S gt Ru-P gt Ru-N gt Ru-C the PBE methods give the order Ru-Cl gt Ru-C lt Ru-S gtRu-O gt Ru-P gt Ru-N and B3LYP gives the order Ru-Cl gtRu-O gt Ru-S gt Ru-P gt Ru-N gt Ru-C The MP2 rated Ru-S as the best model for NLO application while CCSD ratedmodel Ru-O as the best Also a different model Ru-Cl isindicated to have the highest hyperpolarizabilities using thefunctionals PBE and B3LYP irrespective of the basis set usedThe correlations of the hyperpolarizabilities values among themodels are shown in Table 10 The correlation table showsthat the order of the hyperpolarizabilities of the models isperfectly reproducible using the same MP2 at different basissets and also within CCSD at different basis sets Also B3LYPperforms better in reproducing its order at different basisset compared to PBE This clearly shows that the order ofthe hyperpolarizabilities depends greatly on the geometricalconfiguration and the type of the functional used rather thanon the type of the basis sets The only observed similarity inthe order of the hyperpolarizabilities computed with differentmethods is that all the methods rated the models Ru-S Ru-Cl and Ru-O among the best three except for PBE whichexcluded Ru-O from its best three

34 The IR Vibrations The IR vibrations of the modelsat different computational methods are shown in Figure 3The vibrations which are of significant interest to us aretheir Ru-ligand bonds of Ru-C Ru-N Ru-O Ru-Cl Ru-Pand Ru-S which are shown in Table 11 Also most of theprominent vibrations are assigned as shown in Table 12 In

Journal of Chemistry 7

Table9Th

efirsth

yperpo

lariz

ability(szlig)inesu(1times10minus30)v

aluesa

tdifferentcom

putatio

nalm

etho

ds

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

Ru-C

153

179

171

108

098

244

028

055

055

Ru-N

569

224

380

105

109

077

063

076

062

Ru-O

3505

1791

1860

822

548

178

160

220

205

Ru-C

l1173

1440

1325

558

547

284

289

325

313

Ru-P

177

180

213

124

151

152

147

135

137

Ru-S

28214

33591

11477

8295

315

214

182

207

165

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

6 Journal of Chemistry

Table 6 Correlation of othermethods of computation with theMP2acc in computing energy HOMO LUMO and isotropic and anisotropicshielding

MP2DGDZVP MP2SBKJC VDZ PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZEnergy 100 100 100 100 100 100

HOMO 100 100 099 099 099 099

LUMO 100 100 100 099 100 100

Ru-Iso 074 083 minus009 minus011 091 094

Ru-Aniso 095 097 051 050 084 082

X-Iso 098 098 067 minus051 minus016 minus012

X-Aniso 099 098 minus035 033 071 073

Table 7 119869-coupling of the Ru-L bonds at different level of computational methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZRu-C minus185119864 + 001 114119864 + 000 minus268119864 + 000 136119864 + 000

Ru-N minus146119864 + 001 753119864 minus 001 656119864 + 001 607119864 + 000

Ru-O 245119864 + 001 minus980119864 minus 001 249119864 + 001 minus117119864 + 000

Ru-Cl 472119864 + 001 563119864 + 000 476119864 + 001 590119864 + 000

Ru-P minus651119864 + 001 minus314119864 minus 001 minus714119864 + 001 minus500119864 minus 001

Ru-S minus752119864 minus 001 106119864 + 000 469119864 minus 001 135119864 + 000

Table 8 Correlation of 119869-coupling within the methods

PBEDGDZVP PBESBKJC VDZ B3LYPDGDZVP B3LYPSBKJC VDZPBE-dv 100 058 074 037PBE-ECP 058 100 042 073B3LYP-dv 074 042 100 072B3LYP-ECP 037 073 072 100

computational methods (Table 6) only the energy order isperfectly reproduced by all the methods There is a veryhigh similarity in the order of HOMO and LUMO especiallyLUMO computed using B3LYP In addition B3LYP is foundto also perform better in reproducing the shielding tensors ofRu and other atoms compared to PBE except for the orderof the isotropic shielding of other atoms besides Ru atomThe correlation obtained fromB3LYP in computing shieldingtensors further supports its reported better performance forthese properties [42]

In computation of the 119869-coupling we are only limited toB3LYP and PBE since these properties are not permitted inGaussian package at MP2 and CCSD level of theories Con-sidering the magnitude of 119869-coupling at B3LYPDGDZVP itfollows the order Ru-P gt Ru-N gt Ru-Cl gt Ru-S gt Ru-O gtRu-C (Table 7) The order is well reproduced in B3LYP withECP basis set but is poor in PBE and is even the worst whenPBE is combined with ECP basis set (Table 8) The simplereason for the variations is in support of the literature reportdemonstrating that the 119869-coupling is sensitive to bondinginteractions [43]

33 Hyperpolarizability Properties The values of the com-puted hyperpolarizabilities of the six models using differentfunctionals and basis sets are shown in Table 9 The values ofthe hyperpolarizabilities of themodels usingMP2 functionalsat different basis sets are in the order of Ru-S gt Ru-O gt Ru-Cl gt Ru-N gt Ru-P gt Ru-C which suggest the level of theirpossible modelling for NLO application The order obtained

from CCSD is Ru-O gt Ru-Cl gt Ru-S gt Ru-P gt Ru-N gt Ru-C the PBE methods give the order Ru-Cl gt Ru-C lt Ru-S gtRu-O gt Ru-P gt Ru-N and B3LYP gives the order Ru-Cl gtRu-O gt Ru-S gt Ru-P gt Ru-N gt Ru-C The MP2 rated Ru-S as the best model for NLO application while CCSD ratedmodel Ru-O as the best Also a different model Ru-Cl isindicated to have the highest hyperpolarizabilities using thefunctionals PBE and B3LYP irrespective of the basis set usedThe correlations of the hyperpolarizabilities values among themodels are shown in Table 10 The correlation table showsthat the order of the hyperpolarizabilities of the models isperfectly reproducible using the same MP2 at different basissets and also within CCSD at different basis sets Also B3LYPperforms better in reproducing its order at different basisset compared to PBE This clearly shows that the order ofthe hyperpolarizabilities depends greatly on the geometricalconfiguration and the type of the functional used rather thanon the type of the basis sets The only observed similarity inthe order of the hyperpolarizabilities computed with differentmethods is that all the methods rated the models Ru-S Ru-Cl and Ru-O among the best three except for PBE whichexcluded Ru-O from its best three

34 The IR Vibrations The IR vibrations of the modelsat different computational methods are shown in Figure 3The vibrations which are of significant interest to us aretheir Ru-ligand bonds of Ru-C Ru-N Ru-O Ru-Cl Ru-Pand Ru-S which are shown in Table 11 Also most of theprominent vibrations are assigned as shown in Table 12 In

Journal of Chemistry 7

Table9Th

efirsth

yperpo

lariz

ability(szlig)inesu(1times10minus30)v

aluesa

tdifferentcom

putatio

nalm

etho

ds

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

Ru-C

153

179

171

108

098

244

028

055

055

Ru-N

569

224

380

105

109

077

063

076

062

Ru-O

3505

1791

1860

822

548

178

160

220

205

Ru-C

l1173

1440

1325

558

547

284

289

325

313

Ru-P

177

180

213

124

151

152

147

135

137

Ru-S

28214

33591

11477

8295

315

214

182

207

165

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Journal of Chemistry 7

Table9Th

efirsth

yperpo

lariz

ability(szlig)inesu(1times10minus30)v

aluesa

tdifferentcom

putatio

nalm

etho

ds

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

Ru-C

153

179

171

108

098

244

028

055

055

Ru-N

569

224

380

105

109

077

063

076

062

Ru-O

3505

1791

1860

822

548

178

160

220

205

Ru-C

l1173

1440

1325

558

547

284

289

325

313

Ru-P

177

180

213

124

151

152

147

135

137

Ru-S

28214

33591

11477

8295

315

214

182

207

165

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

8 Journal of Chemistry

Table10Th

ecorrelationwith

inthed

ifferentm

etho

dsused

incompu

tingthefi

rsth

yperpo

lariz

abilitie

s

MP2

aug-cc-pV

TZMP2

DGDZV

PMP2

SBK

JCVDZ

CCSD

DGDZV

PCC

SDSBK

JCVDZ

PBEDGDZV

PPB

ESB

KJCVDZ

B3LY

PDGDZV

PB3

LYPSB

KJCVDZ

MP2

-acc

100

100

100

004

014

019

030

024

010

MP2

-dv

100

100

100

minus001

010

020

029

022

009

MP2

-ecp

100

100

100

minus005

006

019

027

019

006

CCSD

-dv

004

minus001

minus005

100

095

031

062

075

075

CCSD

-ECP

014

010

006

095

100

045

081

092

091

PBE-dv

019

020

019

031

045

100

042

051

053

PBE-EC

P030

029

027

062

081

042

100

097

095

B3LY

P-dv

024

022

019

075

092

051

097

100

099

B3LY

P-EC

P010

009

006

075

091

053

095

099

100

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Journal of Chemistry 9

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

200 300 400 500 600 700200 300 400 500 600 700

Ru-C-MP2Ru-C-CCSD

Ru-C-PBE0Ru-C-B3LYP

Ru-N-MP2Ru-N-CCSD

Ru-N-PBE0Ru-N-B3LYP

Ru-O-MP2Ru-O-CCSD

Ru-O-PBE0Ru-O-B3LYP

Ru-Cl-MP2Ru-Cl-CCSD

Ru-Cl-PBE0Ru-Cl-B3LYP

Ru-P-MP2Ru-P-CCSD

Ru-P-PBE0Ru-P-B3LYP

Ru-S-MP2Ru-S-CCSD

Ru-S-PBE0Ru-S-B3LYP

Figure 3 The IR vibrations of the six models computed using MP2 (black) CCSD (red) PBE (green) and B3LYP (blue)

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

10 Journal of Chemistry

Table11Th

eIRvibrations

oftheR

u-Lbo

ndsa

tdifferentcom

putatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

6077

72349120573(H

RuH)120592(Ru-C)

5872

73346120592(Ru-C)

68224

195

120592(Ru-C)

63297

226

120573(H

RuH)120592(Ru-C)

50222

238

120591(H

RuCH

)120592(Ru-C)

53062

71120573(H

RuH)120592(Ru-C)

Ru-N

71899

977

120592(Ru-N)120592(Ru-H)

62352

1636120592(Ru-N)

66265

2879120573(H

RuH)120592(Ru-N)

71495

1013

120592(Ru-N)

48235

101120592(Ru-N)

49539

738

120592(Ru-N)

65608

137

120573(H

RuH)120592(Ru-N)

Ru-O

7178

11371

120592(Ru-O)

63412

1586120592(Ru-O)

70574

75120592(Ru-O)

68889

2395

120592(Ru-O)

Ru-C

l43529

2195

120592(Ru-Cl)

5913

3644

120592(Ru-Cl)

65732

376

120592(Ru-Cl)

32331

1022

120592(Ru-Cl)

4478

43433

120592(Ru-Cl)

Ru-P

28203

171

120592(Ru-P)

2393

9395

120592(Ru-P)

44535

232

120592(Ru-P)

2793

71025

o(Ru

HPH

)120592(Ru-P)

23442

711

o(Ru

HPH

)120592(Ru-P)

Ru-S

4119

4401

120592(Ru-S)

32619

424

120592(Ru-S)

3574

92496

o(Ru

HSH

)120592(Ru-S)

40866

311

120592(Ru-S)

37311

597

o(Ru

HSH

)120592(Ru-S)

38596

1999

120592(Ru-S)

120592isstr

etching120573isbend

ing120591istorsionalandoisou

t-of-p

lane

torsional

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 11: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Journal of Chemistry 11

Table12Th

eassignm

ento

fthe

prom

inentIRvibrations

ofthem

odels

atdifferent

compu

tatio

nalm

etho

ds

B3LY

PCC

SDMP2

PBE

Ru-C

346783

9624120573(H

RuH)120592(Ru-H)

386628

124120573(H

RuH)120573(H

RuH)

120592(C

H)120592(Ru-H)

381759

1510

1120573(H

RuH)120573(H

RuH)

120591(H

RuHC)

30511

103120592(C

H)o(Ru

HCH

)120592(C

H)

313241

8772

120592(C

H)120592(C

H)

344585

6003

120592(Ru-H)

326534

582120573(H

CH)120592(C

H)120592(Ru-H)

3044

61

5191120592(C

H)o(Ru

HCH

)120592(Ru-H)

306501

5614120573(H

RuH)120573(H

RuH)

o(Ru

HCH

)323718

7402120573(H

CH)120573(H

RuH)120592(C

H)

310576

7913

120573(H

RuH)120592(Ru-H)

29104116677

120592(C

H)120592(C

H)

299873

14381

120592(C

H)120592(C

H)

310607

10481120573(H

RuC)

120591(H

CRuH

)o(Ru

HCH

)230969

6851120573(H

RuH)120591(H

RuHC)

120592(Ru-H)

247128

4498120573(H

RuH)o(Ru

HCH

)120592(Ru-H)

240085

1095

1120592(C

H)

231944

1014

7120573(H

RuC)

o(RuH

CH)

207553

969120573(H

RuH)120573(H

RuH)

120592(Ru-H)120592(Ru-H)

232314

1296

8120592(C

H)

Ru-N

38020714205120573(H

RuH)120573(H

RuH)

120573(H

RuH)

401043

1231120573(H

RuH)120591(H

RuHN)

120592(N

H)

403478

11428120591(H

RuNH)o(Ru

HNH)

120592(N

H)

353289

10673120573(H

RuH)120573(H

RuH)

339019

20019

120592(N

H)120592(N

H)

347897

18119120573(H

RuH)120573(H

RuH)

120591(H

RuHN)120592(Ru-H)

347497

1866120573(H

RuH)120573(H

RuH)

120592(Ru-H)

331504

19282

120592(N

H)120592(N

H)

32687139839

120592(N

H)120592(N

H)

336728

2897

5120592(Ru-H)

332695

1499

5120573(H

RuH)o(Ru

HNH)

318372

37524

120592(N

H)120592(N

H)

293151

4214120592(Ru-H)120592(Ru-H)120592(N

H)

120592(N

H)

327085

3514120573(H

RuH)120591(H

RuHN)

120592(Ru-H)

2746

17455

o(Ru

HNH)120592(Ru-H)

120592(Ru-H)

238961

4007120573(H

RuH)120592(Ru-H)

207916

6108

120592(Ru-H)

199979

4338

120573(H

NH)

210524

6443

o(Ru

HNH)120592(N

H)

120592(Ru-H)

203734

6557

120592(Ru-H)

Ru-O

372613

2694

9120592(O

H)

380749

28041

o(Ru

HOH)120592(Ru-H)

389061

1005

o(Ru

HOH)120573(H

RuH)

3608772399

3120592(O

H)

275932

1407120573(H

RuH)o(Ru

HOH)

o(Ru

HOH)120592(Ru-H)

31079

1921120573(H

RuO)120573(H

RuH)

o(Ru

HOH)

370979

51891120573(H

RuO)120573(H

RuO)

327956

2992120573(H

RuH)120573(H

RuH)

18598

2333

120592(Ru-H)120592(Ru-H)

179443

2374120573(H

RuH)o(Ru

HOH)

120592(Ru-H)

291506

5502

o(Ru

HOH)120592(Ru-H)

120592(Ru-H)

220079

1599120573(H

RuH)o(Ru

HOH)

120592(Ru-H)120592(Ru-H)

1346

08

2894120592(Ru-H)120592(Ru-H)

125632

2895120592(Ru-H)120573(H

ORu

)260461

4569120592(O

H)120573(H

ORu

)203014

1588

120592(Ru-H)

112741

9479120573(H

RuH)120592(Ru-H)

120592(Ru-H)

109235

7374

120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

205106

3383120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

147934

29120592(Ru-H)120592(Ru-H)

Ru-C

l185546

2458

120592(Ru-H)

308667

1411120573(H

RuH)o(Ru

HClH)

120592(Ru-H)

30365123653

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

22088

2242

120592(Ru-H)

131751

3288

120592(Ru-H)

179947

2511

o(Ru

HClH)120592(Ru-H)

120592(Ru-H)

261179

3015

120592(Ru-H)120573(H

RuH)

210816

1124

120592(Ru-H)

114581

9421

120592(Ru-H)

121159

3269120573(H

RuH)120573(H

RuH)

120573(H

RuCl)

20399

3006120573(H

RuH)120592(Ru-H)

120592(Ru-H)120573(H

RuH)

203112

1687

120592(Ru-H)

84759

3157

120592(Ru-H)

110861

7222

o(Ru

HClH)o(Ru

HClH)

120592(Ru-H)120573(H

RuCl)

131224

3565

o(Ru

HClH)120592(Ru-H)

120573(H

RuH)

147293

3151

120592(Ru-H)

79488

381

120573(H

RuH)

7687

2483120573(H

RuH)120592(Ru-H)

120592(Ru-H)120592(Ru-H)

109164

1501120592(Ru-H)120573(H

RuH)

11346

9195

3120573(H

RuH)

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 12: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

12 Journal of Chemistry

Table12C

ontin

ued

B3LY

PCC

SDMP2

PBE

Ru-P

384575

1547

120573(H

RuH)

40856716207120573(H

RuH)120591(H

RuPH

)o(Ru

HPH

)410148

11361120573(H

RuH)120573(H

RuH)

3509879645120573(H

RuH)120592(Ru-H)

296363

1457120573(H

RuH)120592(Ru-H)

328227

1508120573(H

RuH)120573(H

RuH)

120591(H

PRuH

)264975

4273

120573(H

RuP)120592(Ru-H)

246259

4871

120592(PH)120592(PH)

253628

4006

120592(PH)120592(PH)

261721

3138

120592(Ru-H)

262336

4752

120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

24307

5689

120592(PH)120592(PH)

250603

4624

120592(PH)120592(PH)

259379

3579

120573(H

RuP)

256933

4865120573(H

RuP)120573

(HRu

H)

238468

1306120573(H

RuH)120591(H

RuPH

)120592(Ru-H)

245899

7096

120592(PH)120592(PH)

255419

4427120573(H

RuH)120591(H

PRuH

)120591(H

PRuH

)228633

8692

120573(H

RuH)120592(PH)

237354

92120592(PH)

Ru-S

265041

1308

120592(SH)

290793

378120573(H

RuH)120591(H

SRuH

)120592(Ru-H)120573(H

RuS)

417199

15487

o(Ru

HSH

)o(Ru

HSH

)120573(H

RuH)

34606

2384120573(H

RuH)120573(H

RuH)

120573(H

RuH)o(Ru

HSH

)

26342

1916

120573(H

RuH)120592(Ru-H)

188073

1685120573(H

RuH)120573(H

RuH)

120592(Ru-H)

28041

199265120573(H

RuS)120573

(HRu

H)

120573(H

RuH)120592(Ru-H)

258225

1254

120592(SH)

1913

1699

120592(Ru-H)

114853

2967120591(H

SRuH

)120592(SH)

120592(Ru-H)

2385442392374

120573(H

RuS)

21675

2604

120592(Ru-H)

121642

3386120592(Ru-H)120592(Ru-H)

109859

10132120573(H

RuH)120591(H

SRuH

)o(Ru

HSH

)120592(Ru-H)

225761

44894

120592(Ru-H)120573(H

RuH)

132047

3699120592(Ru-H)120592(Ru-H)

11086

11006120573(H

RuH)120592(Ru-H)

82534

331120591(H

SRuH

)120592(Ru-H)

120592(Ru-H)

210643

5205

120592(Ru-H)

8835

5098

o(Ru

HSH

)o(Ru

HSH

)120592(Ru-H)120592(Ru-H)

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 13: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Journal of Chemistry 13

all the methods Ru-C Ru-N and Ru-O vibrations are withinthe range of 500 to 720 which is far higher than the rangeof vibrations of Ru-Cl Ru-P and Ru-S which are foundwithin the range of 224 to 658 Generally the order of Ru-L vibrations can be assumed as Ru-N gt Ru-O gt Ru-C gtRu-Cl gt Ru-S gt Ru-P (Table 11) The wavenumbers of thevibrations computed from the different methods appear to besignificantly different from each other in values and positions(Figure 3) The features of the IR spectra using MP2 andCCSD are very similar in the models Some vibration around291506 in model Ru-O 303651 in Ru-Cl and 238544 inRu-S are very prominent in MP2 methods compared to inany other methods or even absent in other methods Forinstance the bending of the angle of HRuS which is found tobe prominent in MP2 method is completely absent in othermethods (see Figure 3 and Table 12) The MP2 and CCSDshow strong vibrations within the range of 3800 to 4100 inmany of the models which are obviously absent in manyof the PBE and B3LYP methods Using the PED methodas implemented in VEDA package most of these vibrationsat high frequencies are a result of the torsional and out-of-plane vibration of H-Ru-X-H where X represents the typeof the model as shown in Table 12 In addition most of thebending vibrations which are determined by PBE and B3LYPfrom 2800 to 3800 in the models are also determined byMP2 and CCSD though some cases are at lower wavenumbercompared to PBE and B3LYP (Table 12) In the models Ru-Oand Ru-Cl PBE and B3LYP give priority to the OH and RuHvibrations respectively whileMP2 andCCSD give priority tothe torsional stretching and angle bending of their atoms

4 Conclusions

Six models of Ru-L bonds Ru-C Ru-N Ru-O Ru-Cl Ru-P and Ru-S are built to represent common rutheniumcomplexes and possible ruthenium-receptor interactionsThe reproducibility of their geometrical electronic spec-troscopic and conductive properties was investigated usingMP2 CCSD PBE and B3LYP functionals with differentcombination of basis sets Generally we observed that thereproducibility of most of the properties is much easier usingdifferent basis sets compared to using different functionalmethods as a result of significant geometrical changes whichis possible especially if there are many light atoms likehydrogen atoms as in themodelsThe order of the energy andthe thermodynamic properties are found to be reproducibleusing different functionalmethods and basis sets butHOMOLUMO 119869-coupling hyperpolarizabilities and isotropic andanisotropic shielding are found to depend more on the typeof the functional used rather than on the type of the basis setThe only significant similarity observed among the methodsapplied in computing hyperpolarizabilities is that they allrated models Ru-S Ru-Cl and Ru-O among their best threeThe optimized geometries and the thermodynamic proper-ties obtained from the functional PBE are found to be verysimilar to MP2 and perform better than B3LYP and CCSDwhich further give insight into many literaturesrsquo preferencefor PBE in optimizing metal complexes In computation ofthe isotropic and anisotropic shielding tensors B3LYP gives

values similar to MP2 and performs better than PBE The IRvibrations and assignment clearly show that the vibrationsobtained from the MP2 and CCSD methods are very similarand give preference to the torsional and bending vibrationsof the molecules over their stretching The order of the IRvibrations of the ruthenium-ligand bonds can be assumed asRu-N gt Ru-O gt Ru-C gt Ru-Cl gt Ru-S gt Ru-P

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

The authors gracefully acknowledged the financial support ofGovan Mbeki Research and Development Centre Universityof Fort Hare South Africa The CHPC in Republic ofSouth Africa is gracefully acknowledged for providing thecomputing facilities and some of the software used for thecomputation

References

[1] B Dutta R Scopelliti and K Severin ldquoSynthesis structure andreactivity of the methoxy-bridged dimer [CpandRu(120583-OMe)]

2

(Cpand = 1205785-1-methoxy-24-di-tert-butyl-3-neopentylcyclopenta-dienyl)rdquo Organometallics vol 27 no 3 pp 423ndash429 2008

[2] M A Furrer F Schmitt M Wiederkehr L Juillerat-Jeanneretand B Therrien ldquoCellular delivery of pyrenyl-arene rutheniumcomplexes by a water-soluble arene ruthenium metalla-cagerdquoDalton Transactions vol 41 no 24 pp 7201ndash7211 2012

[3] Q ZhouW Lei YChen et al ldquoRuthenium(II)-arene complexeswith strong fluorescence insight into the underlying mecha-nismrdquoChemistrymdashA European Journal vol 18 no 28 pp 8617ndash8621 2012

[4] L Bıro E Farkas and P Buglyo ldquoHydrolytic behaviour andchloride ion binding capability of [Ru(1205786 minus119901minus cym)(H

2O)3]2+

a solution equilibrium studyrdquoDalton Transactions vol 41 no 1pp 285ndash291 2012

[5] Y Boutadla D L Davies R C Jones and K Singh ldquoThescope of ambiphilic acetate-assisted cyclometallation with half-sandwich complexes of iridium rhodium and rutheniumrdquoChemistrymdashA European Journal vol 17 no 12 pp 3438ndash34482011

[6] Y F Han H Li Y Fei Y J Lin W Z Zhang and GX Jin ldquoSynthesis and structural characterization of binuclearhalf-sandwich iridium rhodium and ruthenium complexescontaining 441015840-dipyridyldisulfide (4DPDS) ligandsrdquo DaltonTransactions vol 39 no 30 pp 7119ndash7124 2010

[7] B Dutta B F Curchod P Campomanes et al ldquoReactions ofalkynes with [RuCl(cyclopentadienyl)] complexes the impor-tant first stepsrdquo ChemistrymdashA European Journal vol 16 no 28pp 8400ndash8409 2010

[8] M Jimenez-Tenorio M C Puerta P Valerga S MonchoG Ujaque and A Lledos ldquoProton-transfer reactions to half-sandwich ruthenium trihydride complexes bearing hemilabilePN ligands experimental and density functional theory stud-iesrdquo Inorganic Chemistry vol 49 no 13 pp 6035ndash6057 2010

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 14: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

14 Journal of Chemistry

[9] B Dutta C Scolaro R Scopelliti P J Dyson and K Sev-erin ldquoImportance of the 120587-ligand remarkable effect of thecyclopentadienyl ring on the cytotoxicity of ruthenium PTAcompoundsrdquoOrganometallics vol 27 no 7 pp 1355ndash1357 2008

[10] T Bugarcic A Habtemariam J Stepankova et al ldquoThe con-trasting chemistry and cancer cell cytotoxicity of bipyridineand bipyridinediol ruthenium(II) arene complexesrdquo InorganicChemistry vol 47 no 24 pp 11470ndash11486 2008

[11] M Castellano-Castillo H Kostrhunova V Marini et al ldquoBind-ing ofmismatch repair proteinMutS tomispairedDNA adductsof intercalating ruthenium(II) arene complexesrdquo Journal ofBiological Inorganic Chemistry vol 13 no 6 pp 993ndash999 2008

[12] S J Dougan A Habtemariam S E McHale S Parsons andP J Sadler ldquoCatalytic organometallic anticancer complexesrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 105 no 33 pp 11628ndash11633 2008

[13] S J Dougan M Melchart A Habtemariam S Parsons and PJ Sadler ldquoPhenylazo-pyridine and phenylazo-pyrazole chloridoruthenium(II) arene complexes arene loss aquation and can-cer cell cytotoxicityrdquo Inorganic Chemistry vol 45 no 26 pp10882ndash10894 2006

[14] V Ritleng P Bertani M Pfeffer C Sirlin and J HirschingerldquoOptically active ortho-metalated half-sandwich rutheniumcomplexes solid-state NMR as a convenient tool to analyzemixtures of diastereomersrdquo Inorganic Chemistry vol 40 no 20pp 5117ndash5122 2001

[15] Y Sunada Y Hayashi H Kawaguchi and K TatsumildquoAlkynethiolato and alkyneselenolato rutheniumhalf-sandwichcomplexes Synthesis structures and reactions with (1205785ndashC5H5)2Zrrdquo Inorganic Chemistry vol 40 no 27 pp 7072ndash70782001

[16] K Yamanari R Ito S Yamamoto et al ldquoCyclic tetramerscomposed of rhodium(III) iridium(III) or ruthenium(II) half-sandwich and6-purinethionesrdquo Inorganic Chemistry vol 41 no25 pp 6824ndash6830 2002

[17] F Caruso M Rossi A Benson et al ldquoRuthenium-arenecomplexes of curcumin X-ray and density functional the-ory structure synthesis and spectroscopic characterizationin vitro antitumor activity and DNA docking studies of (p-cymene)Ru(curcuminato)chlorordquo Journal of Medicinal Chem-istry vol 55 no 3 pp 1072ndash1081 2012

[18] C Gossens I Tavernelli and U Rothlisberger ldquoBinding oforganometallic ruthenium(II) anticancer compounds to nucle-obases a computational studyrdquo Journal of Physical Chemistry Avol 113 no 43 pp 11888ndash11897 2009

[19] A M Pizarro A Habtemariam and P J Sadler ldquoActiva-tion mechanisms for organometallic anticancer complexesrdquoin Medicinal Organometallic Chemistry vol 32 of Topics inOrganometallic Chemistry pp 21ndash56 Springer Berlin Ger-many 2010

[20] I Turel and J Kljun ldquoInteractions of metal ions with DNAits constituents and derivatives which may be relevant foranticancer researchrdquoCurrent Topics inMedicinal Chemistry vol11 no 21 pp 2661ndash2687 2011

[21] G Gasser I Ott and N Metzler-Nolte ldquoOrganometallic anti-cancer compoundsrdquo Journal of Medicinal Chemistry vol 54 no1 pp 3ndash25 2011

[22] K J Kilpin S Crot T Riedel J A Kitchen and P JDyson ldquoRuthenium(II) and osmium(II) 123-triazolylideneorganometallics a preliminary investigation into the biologicalactivity of rsquoclickrsquo carbene complexesrdquo Dalton Transactions vol43 no 3 pp 1443ndash1448 2014

[23] A F A Peacock S Parsons and P J Sadler ldquoTuning thehydrolytic aqueous chemistry of osmium arene complexeswith NO-chelating ligands to achieve cancer cell cytotoxicityrdquoJournal of the American Chemical Society vol 129 no 11 pp3348ndash3357 2007

[24] A F A Peacock M Melchart R J Deeth A Habtemariam SParsons and P J Sadler ldquoOsmium(II) and ruthenium(II) arenemaltolato complexes rapid hydrolysis and nucleobase bindingrdquoChemistrymdashA European Journal vol 13 no 9 pp 2601ndash26132007

[25] F Pelletier V Comte A Massard et al ldquoDevelopment ofbimetallic titanoceneminusrutheniumminusarene complexes as anti-cancer agents relationships between structural and biologicalpropertiesrdquo Journal of Medicinal Chemistry vol 53 no 19 pp6923ndash6933 2010

[26] K J Kilpin and P J Dyson ldquoEnzyme inhibition by metalcomplexes concepts strategies and applicationsrdquo ChemicalScience vol 4 no 4 pp 1410ndash1419 2013

[27] G Gasser andNMetzler-Nolte ldquoThe potential of organometal-lic complexes in medicinal chemistryrdquo Current Opinion inChemical Biology vol 16 no 1-2 pp 84ndash91 2012

[28] I Turel J Kljun F Perdih et al ldquoFirst ruthenium organometal-lic complex of antibacterial agent ofloxacin Crystal structureand interactions with DNArdquo Inorganic Chemistry vol 49 no23 pp 10750ndash10752 2010

[29] C Adamo and V Barone ldquoToward reliable density functionalmethods without adjustable parameters the PBE0 modelrdquoJournal of Chemical Physics vol 110 no 13 pp 6158ndash6170 1999

[30] A D Becke ldquoDensity-functional thermochemistry IIIThe roleof exact exchangerdquoThe Journal of Chemical Physics vol 98 no7 article 5648 1993

[31] W J Stevens M Krauss H Basch and P G Jasien ldquoRelativisticcompact effective potentials and efficient shared-exponentbasis sets for the third- fourth- and fifth-row atomsrdquoCanadianJournal of Chemistry vol 70 no 2 pp 612ndash630 1992

[32] M J Frisch GW Trucks H B Schlegel et alOfficial Gaussian09 Literature Citation Gaussian Wallingford UK 2009

[33] D J Feller ldquoThe role of databases in support of computationalchemistry calculationsrdquo Journal of Computational Chemistryvol 17 no 13 pp 1571ndash1586 1996

[34] K L Schuchardt B T Didier T Elsethagen et al ldquoBasis setexchange a community database for computational sciencesrdquoJournal of Chemical Information andModeling vol 47 no 3 pp1045ndash1052 2007

[35] Y Liu C-G Liu S-L Sun G-C Yang and Y-Q QiuldquoRedox-switching second-order nonlinear optical responses ofNandNandN ruthenium complexesrdquo Computational and TheoreticalChemistry vol 979 pp 112ndash118 2012

[36] P S Liyanage R M de Silva and K M N de Silva ldquoNonlinearoptical (NLO) properties of novel organometallic complexeshigh accuracy density functional theory (DFT) calculationsrdquoJournal of Molecular Structure THEOCHEM vol 639 pp 195ndash201 2003

[37] MH Jamroz ldquoVibrational EnergyDistributionAnalysis VEDA4 ProgramrdquoWarsaw Poland 2004ndash2010 httpwwwsmmgpl

[38] M H Jamroz J C Dobrowolski and R Brzozowski ldquoVibra-tional modes of 26- 27- and 23-diisopropylnaphthalene ADFT studyrdquo Journal of Molecular Structure vol 787 no 1ndash3 pp172ndash183 2006

[39] M H Jamroz ldquoVibrational Energy Distribution Analysis(VEDA) scopes and limitationsrdquo Spectrochimica Acta AMolec-ular and Biomolecular Spectroscopy vol 114 pp 220ndash230 2013

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 15: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Journal of Chemistry 15

[40] R Marchal P Carbonniere D Begue and C Pouchan ldquoStruc-tural and vibrational determination of small galliumndasharsenideclusters fromCCSD(T) andDFT calculationsrdquoChemical PhysicsLetters vol 453 no 1ndash3 pp 49ndash54 2008

[41] R Marchal P Carbonniere and C Pouchan ldquoStructural andvibrational properties prediction of Sn

119899Te119899clusters (n = 2ndash

8) using the GSAM approachrdquo Computational and TheoreticalChemistry vol 990 pp 100ndash105 2012

[42] T Helgaker M Jaszunski and M Pecul ldquoThe quantum-chemical calculation of NMR indirect spin-spin coupling con-stantsrdquo Progress in Nuclear Magnetic Resonance Spectroscopyvol 53 no 4 pp 249ndash268 2008

[43] F A Perras andD L Bryce ldquoTheoretical study of homonuclear Jcoupling between quadrupolar spins single-crystal DOR andJ-resolved NMRrdquo Journal of Magnetic Resonance vol 242 pp23ndash32 2014

[44] I D Burns A F Hill A J P White D J Williams and J DE T Wilton-Ely ldquoPolyazolyl chelate chemistry 61 bidentatecoordination of HB(pz)

3(pz = Pyrazol-1-yl) to ruthenium and

osmium crystal structure of [RuH(CO)(PPh3)2k2-HB(pz)

3]rdquo

Organometallics vol 17 no 8 pp 1552ndash1557 1998[45] M Al-Noaimi and M A AlDamen ldquoRuthenium complexes

incorporating azoimine and 120572-diamine based ligands synthe-sis crystal structure electrochemistry and DFT calculationrdquoInorganica Chimica Acta vol 387 pp 45ndash51 2012

[46] K Nakajima Y Ando H Mano and M Kojima ldquoPhotosub-stitution reactivity crystal structures and electrochemistry ofruthenium(II) (III) complexes containing tetradentate (O

2N2

S2N2 and P

2N2) Schiff base ligandsrdquo Inorganica Chimica Acta

vol 274 no 2 pp 184ndash191 1998[47] Z-L Lu K Eichele I Warad et al ldquoSupported organometal-

lic complexes XXXVIII [1] Bis(methoxyethyldimethlphos-phine)ruthenium(II) complexes as transfer hydrogenation cat-alystsrdquo Zeitschrift fur Anorganische und Allgemeine Chemie vol629 no 7-8 pp 1308ndash1315 2003

[48] R Gaur and L Mishra ldquoSynthesis and characterization ofRu(II)ndashDMSOndashClndashchalcone complexes DNA binding nucle-ase and topoisomerase II inhibitory activityrdquo Inorganic Chem-istry vol 51 no 5 pp 3059ndash3070 2012

[49] B Cebrian-Losantos E Reisner C R Kowol et al ldquoSynthesisand reactivity of the aquation product of the antitumor complextrans-[Ru IIICI

4(indazole)

2] minusrdquo Inorganic Chemistry vol 47 no

14 pp 6513ndash6523 2008[50] B T Rasley M Rapta and R J Kulawiec ldquoDiastereoselectivity

in enolate coordination in a new class of chiral rutheniumenolate complexesrdquo Organometallics vol 15 no 13 pp 2852ndash2854 1996

[51] S David R S Perkins F R Fronczek S Kasiri S S MandalandR S Srivastava ldquoSynthesis characterization and anticanceractivity of ruthenium-pyrazole complexesrdquo Journal of InorganicBiochemistry vol 111 pp 33ndash39 2012

[52] B Dutta E Solari S Gauthier R Scopelliti and K SeverinldquoRuthenium half-sandwich complexes with sterically demand-ing cyclopentadienyl ligandsrdquo Organometallics vol 26 no 19pp 4791ndash4799 2007

[53] G Turkoglu S Tampier F Strinitz F W Heinemann E Hub-ner and N Burzlaff ldquoRuthenium carbonyl complexes bearingbis(pyrazol-1-yl)carboxylato ligandsrdquo Organometallics vol 31no 6 pp 2166ndash2174 2012

[54] A K Renfrew A D Phillips E Tapavicza R ScopellitiU Rothlisberger and P J Dyson ldquoTuning the efficacy of

ruthenium(II)-arene (RAPTA) antitumor compounds with flu-orinated arene ligandsrdquo Organometallics vol 28 no 17 pp5061ndash5071 2009

[55] P M Jeffries R E Ellenwood and G S Girolami ldquoAnionicruthenium(II) alkyls with ancillary diene and dienyl ligandssynthesis and structures of [(12057821205782-C

7H8)RuMe

4]2minus and [(12057831205782-

C8H11)RuMe

3]2minusrdquo Inorganica Chimica Acta vol 361 no 1 pp

3165ndash3170 2008[56] B R James D Dolphin T W Leung F W B Einstein

and A C Willis ldquoPreparation and characterization of someruthenium(III) porphyrins including the crystal structure ofbromo(octaethylporphinato)(triphenylphosphine)ruthenium(III)rdquoCanadian Journal of Chemistry vol 62 no 7 pp 1238ndash12451984

[57] M Plois R Wolf W Hujo and S Grimme ldquoTowards reagentsfor bimetallic activation reactions polyhydride complexes withRu2H3 Ru2ZnH6 and Cu

2Ru2H6coresrdquo European Journal of

Inorganic Chemistry vol 2013 no 17 pp 3039ndash3048 2013[58] L Hintermann L Xiao A Labonne and U Englert

ldquo[CpRu(1205786-naphthalene)]PF6as precursor in complex synthesis

and catalysis with the cyclopentadienyl-ruthenium(II) cationrdquoOrganometallics vol 28 no 19 pp 5739ndash5748 2009

[59] I W Wyman K N Robertson T S Cameron J C SwartsandM A S Aquino ldquoSynthesis structure and electrochemistryof (ferrocene-2-propenoato-OO1015840)bis[12-bis(diphenylphosphi-no)ethane-PP1015840]ruthenium(II) hexafluorophosphaterdquo Inorgan-ica Chimica Acta vol 359 no 9 pp 3092ndash3096 2006

[60] C A Vock C Scolaro A D Phillips R Scopelliti G Sava andP J Dyson ldquoSynthesis characterization and in vitro evaluationof novel ruthenium(II) 1205786-arene imidazole complexesrdquo Journalof Medicinal Chemistry vol 49 no 18 pp 5552ndash5561 2006

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 16: Research Article Exploring the Ruthenium-Ligands Bond and ...downloads.hindawi.com/journals/jchem/2016/3672062.pdf · Research Article Exploring the Ruthenium-Ligands Bond and Their

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of