representing the shape of the earth - personal websites · reference: smith, james r., introduction...

36
3/30/2015 1 Representing The Shape of the Earth Geoids Ellipsoids Datums Coordinate Systems Projections The Shape of the Earth 3 ways to model it Topographic surface the land/air interface complex (rivers, valleys, etc) and difficult to model Geoid a theoretical, continuous surface for the earth which is perpendicular at every point to the direction of gravity (surface to which plumb line is perpendicular) approximates mean sealevel in open ocean without tides, waves or swell satellite observation (after 1957) showed it to be quite irregular because of local variations in gravity. Spheres and spheroids (3dimensional circle and ellipse) mathematical models which can be used to approximate the geoid and provide the basis for accurate location (horizontal) and elevation (vertical) measurement sphere (3dimensional circle) with radius of 6,370,997m considered ‘close enough’ for small scale maps (1:5,000,000 and below e.g. 1:7,500,000) spheroid (3dimensional ellipse) should be used for larger scale maps of 1:1,000,000 or more (e.g. 1:24,000)

Upload: others

Post on 27-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

1

Representing The Shape of the Earth

•Geoids•Ellipsoids •Datums•Coordinate Systems•Projections

The Shape of the Earth3 ways to model it

• Topographic surface• the land/air interface

• complex (rivers, valleys, etc) and difficult to model

• Geoid• a theoretical, continuous surface  for the earth which is perpendicular at every point 

to the direction of gravity (surface to which plumb line is perpendicular)

• approximates mean sea‐level in open ocean without tides, waves or  swell

• satellite observation (after 1957) showed it to be quite irregular because of local variations in gravity.

• Spheres and spheroids (3‐dimensional circle and ellipse)• mathematical models which can be used to approximate the geoid and provide the 

basis for accurate location (horizontal) and elevation (vertical) measurement 

• sphere (3‐dimensional circle) with radius of  6,370,997m  considered ‘close enough’ for small scale maps  (1:5,000,000 and below ‐ e.g. 1:7,500,000)

• spheroid (3‐dimensional ellipse) should be used for larger scale maps of 1:1,000,000 or more (e.g. 1:24,000)

Page 2: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

2

Spheroid, Ellipsoid, and Geoid

• Spheroid is a solid generated by rotating an ellipse about either the major or minor axis

• Ellipsoid is a solid for which all plane sections through one axis are ellipses   and through the other are ellipses or circles

– If any two of the three axes of that ellipsoid are equal, the figure becomes a spheroid (ellipsoid of revolution)

– If all three are equal, it becomes a sphere

• Geoid is the equipotential gravity surface of the earth at mean sea level. At any point it is perpendicular to the direction of gravity

Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

What is an Oblate Ellipsoid (Spheroid)?

Page 3: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

3

Which Spheroid to use?

Hundreds have been defined depending upon: • Available measurement technology

• Area of the globe – e.g North America, Africa

• Map extent – country, continent or global

• Political issues – e.g Warsaw pact versus NATO

• ArcGIS supports 26 different 

spheroids! – conversions via math formulae

Most commonly encountered are:

• Clarke  1866  for North America• basis for USGS 7.5 Quads

• a=6,378,206.4m  b=6,356,583.8m  

• GRS80 (Geodetic Ref. System, 1980)• current North America mapping

• a=6,378,137m   b=6,356,752.31414m  

• WGS84 (World Geodetic Survey, 1984)• current global choice

• a=6,378,137  b=6,356,752.31  

Latitude and Longitude: location on the spheroid

Longitude meridiansPrime meridian is zero: Greenwich, U.K.International Date Line is 180° E&W

1 degree=69.17 mi at Equator53.06 mi at 40N/S

0 mi at 90N/S

Latitude parallels equator is zero

1 degree=68.70 mi at equator69.41 mi at poles

(1 mile=1.60934km=5280 feet)

Lat / long coordinates for a location change dependingon spheroid chosen!

Page 4: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

4

graticule: network of lines on globe or map representing latitude and longitude.Origin is at Equator/Prime Meridian intersection (0,0)

grid: set of uniformly spaced straight lines intersecting at right angles.(XY Cartesian coordinate system)

Latitude normally listed first (lat,long), the reverse of the convention for X,Y Cartesian coordinates

Latitude and Longitude Graticule

Latitude and Longitude

• The most comprehensive and powerful method of georeferencing

– Metric, standard, stable, unique

• Uses a well‐defined and fixed reference frame

– Based on the Earth’s rotation and center of mass, and the Greenwich Meridian

Page 5: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

5

Definition of longitude. The Earth is seen here from above the North Pole, looking along the Axis, with the Equator forming the outer circle. The location of Greenwich defines the Prime Meridian. The longitude of the point at the center of the red cross is determined by drawing a plane through it and the axis, and measuring the angle between this plane and the Prime Meridian.

Definition of Latitude

• Requires a model of the Earth’s shape

• The Earth is somewhat elliptical– The N‐S diameter is roughly 1/300 less than the E‐W diameter

– More accurately modeled as an ellipsoid than a sphere

– An ellipsoid is formed by rotating an ellipse about its shorter axis (the Earth’s axis in this case)

Page 6: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

6

The Public Land Survey System (PLSS)

Page 7: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

7

Page 8: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

8

Page 9: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

9

Page 10: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

10

Page 11: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

11

The (Brief) History of Ellipsoids

• Because the Earth is not shaped precisely as an ellipsoid, initially each country felt free to adopt its own as the most accurate approximation to its own part of the Earth

• Today an international standard has been adopted known as WGS 84– Its US implementation is the North American Datum of 1983 (NAD 83)

– Many US maps and data sets still use the North American Datum of 1927 (NAD 27)

– Differences can be as much as 200 m

Page 12: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

12

Latitude and the Ellipsoid

• Latitude (of the red point) is the angle between a perpendicular to the surface and the plane of the Equator

• WGS 84

– Radius of the Earth at the Equator 6378.137 km

– Flattening 1 part in 298.257

Geoid

• A geoid is a representation of the Earth which would coincide exactly with the mean ocean surface of the Earth, if the oceans were to be extended through the continents 

• A smooth but highly irregular surface that corresponds but to a surface which can only be known through extensive gravitational measurements and calculations,  not to the actual surface of the Earth's crust

Page 13: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

13

Geoid

Geoid vs. an Ellipsoid

1. Ocean2. Ellipsoid3. Local plumb4. Continent5. Geoid

Page 14: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

14

Datums:all location measurement is relative to a specific datum

For the Geodesist• a set of parameters defining a coordinate system, including:

– the spheroid (earth model)

– a point of origin (ties spheroid to earth)

For the Local Surveyor• a set of points whose precise location  and /or elevation  has been determined, 

which serve as reference points from which other point’s locations can be determined (horizontal datum)

• a surface to which elevations are referenced, usually ‘mean sea level’ (vertical datum)

• points usually marked with brass plates called survey markers or monuments whose identification codes and precise locations (usually in lat/long) are published

North American Datums

• NAD27– Clark 1866 spheroid

– Meades Ranch origin

– visual triangulation

– 25,000 stations  • (250,000  by 1970)

– NAVD29 (North American Vertical Datum, 1929) provided elevation

– basis for most USGS 7.5 minute quads 

NAD83– satellite  (since 1957) and laser distance  data 

showed inaccuracy of NAD27

– 1971 National Academy of Sciences report recommended new datum

– used GRS80 spheroid 

(functionally equivalent to WGS84)

– origin: Mass‐center of Earth

– 275,000 stations

– “Helmert blocking” least squares technique fitted  2.5 million other fed, state and local agency points.

– NAVD88 provides vertical datum

– points can differ up to 160m from NAD27, but seldom more than 30m, and data from digit. map more inaccurate than datum diff.

– no universal mathematical formulae for conversion from NAD27: See USGS Survey Bulletin # 1875 for conversion tables (in ARC/INFO).  Transformations are preformed to local coordinates

– http://www.ngs.noaa.gov/cgi‐bin/nadcon.prl

Page 15: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

15

Ground‐zero for Geo‐nerds everywhere

Meades Ranch, KS (12 miles north of Lucas, KS) is the designated geodedetic base point for the North American Datum 1927 (NAD 27)

Owner of ranch is now Mr. Kyle Brant•access with permission only

http://www.scottosphere.com/history/meades-ranch.html

The NGS data sheet is here:http://www.ngs.noaa.gov/cgi-bin/ds2.prl?retrieval_type=by_pid&PID=KG0640

State Plane & the NAD 27Calculations for map projections are performed using the parameters of the ellipsoid

Page 16: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

16

Roadside Marker for the Geodetic Center of North America

Meades Ranch, KS (12 miles north of Lucas, KS) is the designated geodedetic base point for the North American Datum 1927 (NAD 27)

http://www.worldslargestthings.com/kansas/geodetic.htm

Page 17: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

17

Page 18: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

18

Map Projections: the concept

A method by which the curved 3‐D surface of the earth is represented on a flat 2‐D map surface

a two dimensional representation, using  a plane coordinate system,  of the earth’s three dimensional  sphere/spheroid 

location on the 3‐D earth is measured by latitude and longitude

location on the 2‐D map is measured by x,y Cartesian coordinates

unlike choice of spheroid, choice of map projection does not change a location’s lat/long coords, only its XY coords.

Map projections

• Earth spherical ‐maps flat! 

• Thus all maps have distortions

• A good map has distortions that are predictableand systematic

Page 19: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

19

Map projection

Why is it called a ‘projection’?

Because we ‘project’ the earth’s spherical surface on a flat surface‐

As if we were shining a light from center of earth:

Maps can be:

1.  Conformal: Shape correct

2.  Equivalent (Equal area): Area correct

3.  Azimuthal: Direction correct

Page 20: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

20

Physical Surface

Use a physical surface to project the sphere

1. Plane2. Cone3. Cylinder

Note differences between projections by comparing distortions of the lines of latitude and longitude.

1.  Plane projection

Hold plane against the surface of the globe (typically the pole)

Lines of longitude straight, radiating

Lines of latitudes are circles

Page 21: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

21

1.  Plane projection

4. Distortion increases away from the center ("principal point") 

5. Good for polar regions

6. But can't show more than half the world.

2.  Conic projection

• Hold cone over pole

Page 22: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

22

2.  Conic projection

2. Lines of latitude curve

3. Line of longitude are straight, and convergetowards top

4. Distortion increases away from standard parallel

5. Good for Mid‐latitudes

3.  Cylindrical projection

1. Wrap cylinder around the earth

2. Lines of latitude and longitude are straight, intersect at 90°

3. Distortion greatest at poles

Page 23: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

23

3.  Cylindrical projection

4. Good for low‐latitude areas

5. Poor representation of poles 

Good for navigation

Mercator’s Projection

Other ‐mathematical

• Condensed and interrupted projections.

Page 24: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

24

Projections and Coordinates

• There are many reasons for wanting to project the Earth’s surface onto a plane, rather than deal with the curved surface

– The paper used to output GIS maps is flat

– Flat maps are scanned and digitized to create GIS databases

– Rasters are flat, it’s impossible to create a raster on a curved surface

– The Earth has to be projected to see all of it at once

– It’s much easier to measure distance on a plane

Map Projections:the inevitability of distortion

• because we are trying to represent a 3‐D sphere on a 2‐D plane, distortion is inevitable

• thus, every two dimensional map is inaccurate with respect to  at least one of the following:– area

– shape

– distance 

– direction

We are trying to represent this amount of the earth on

this amount of map space.

Page 25: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

25

Distortions

• Any projection must distort the Earth in some way

• Two types of projections are important in GIS

– Conformal property: Shapes of small features are preserved: anywhere on the projection the distortion is the same in all directions

– Equal area property: Shapes are distorted, but features have the correct area

– Both types of projections will generally distort distances!

Map Projections: classifications ‐ or How can we think about map projections?

Property Preserved• Equal area projections preserve the 

area of features (popular in GIS)• Conformal projections preserve the 

shape of small features (good for presentations) , and show localdirections  (bearings) correctly  (useful for coastal navigation)

• Equidistant projections preserve distances (scale) to places from one point, or along a one or more lines

• True direction projections preserve bearings (azimuths) either locally (in which case they are also conformal) or  from center of map.

Geometric Model Used• Planar/Azimuthal/Zenithal: image of 

spherical globe is projected onto a map plane which is tangent to (touches) globe at single point

• Conical: image of spherical globe is projected onto a cone which is tangent along a line(s) (usually a parallel of latitude)‐‐ cone is then unfolded to create “flat map”

• Cylindrical: image of spherical globe is projected onto a cylinder which also is tangent along a line(s)‐‐again, cylinder is unfolded to create a “flat map”

Classified by Property Preserved or by Geometrical Model

Page 26: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

26

Geometric Model

Choosing a Map Projection

• Issues to Consider:• Extent of area to map: city, state, country, world?

• Location: polar, mid‐latitude, equatorial?

• Predominant extent of area to map: E‐W, N‐S, oblique?

• Rules of thumb• Always record  lat/long coords not projected X,Y coords in the GIS database if 

possible

• Check project specifications; does it specify a required projection?   

• State Plane or UTM often specified for US gov. work.

• Use equal‐area projections for thematic or distribution maps, and as a general choice for GIS work

• Use conformal projections in presentations

• For navigational applications, need true distance or direction

Page 27: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

27

Commonly Encountered Map Projections in GIS

• Albers Conic Equal‐Area– often used for US base maps showing all of the “lower 48” states

– standard parallels set at 29 1/2N and  45 1/2N

• Lambert Conformal Conic– often used for US Base map of all 50 states (including Alaska and Hawaii), with 

standard parallels set at  37N and 65N

– also for State Base Map series,  with standard parallels at 33N and 45N

– also used in State Plane Coordinate System (SPCS) 

• Transverse Mercator– used in SPCS for States with major N/S extent

– Universal Transverse Mercator (UTM) used for world wide military (and other) large scale mapping

Most commonly, you encounter these 3 projections, along with the SPCS and UTM projections systems which use them.

Cylindrical Projections

NormalMercator

TransverseTransverse Mercator

ObliqueOblique Mercator

Parallels are line of tangency

Meridians are line of tangency

Page 28: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

28

Conformal Projections

• Preserve local shape

• Misrepresent areas

• Graticule lines (lat and long) on globe are perpendicular

• Best used  for large‐scale reference maps

• Preserve angles and shapes at points

Do not use for data distribution maps – will distort area, and therefore, misrepresent densities

Better for showing routes and locations

Lambert Conformal ConicConterminous U.S.

http://howdyyall.com/Texas/Members/Bob/GPS/Projectn.htm

Page 29: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

29

Equal Area Projections• Preserve the area of displayed features

• Graticule lines (lat and long) on globe may not intersect at right angles

• In some instances (especially maps of smaller regions) it will not be obvious that shape has been distorted

• Thus, it will not be obvious that shape has been distorted and distinguishing from an equal‐area projection from a conformal projection is difficult (unless documented)

Choose equal area when making thematic maps

Remember – if you are mapping data distributions, choose an equal area projection!

Albers Equal Area is customized for the continental United States

Albers Equal‐Area ConicConterminous U.S.

http://howdyyall.com/Texas/Members/Bob/GPS/Projectn.htm

Has two lines of standard parallel(two lines that are ‘true’)

Page 30: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

30

The “Unprojected” Projection

• Assign latitude to the y axis and longitude to the x axis

– A type of cylindrical projection

– Is neither conformal nor equal area

– As latitude increases, lines of longitude are much closer together on the Earth, but are the same distance apart on the projection

– Also known as the Plate Carrée or Cylindrical Equidistant Projection

The Universal Transverse Mercator (UTM) Projection

• A type of cylindrical projection

• Implemented as an internationally standard coordinate system• Initially devised as a military standard

• Uses a system of 60 zones• Maximum distortion is 0.04%

• TransverseMercator because the cylinder is wrapped around the Poles, not the Equator

Page 31: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

31

Zones are each six degrees of longitude, numbered as shown at the top, from W to E

Universal Transverse Mercator (UTM)

• First adopted by US Army in 1947 for large scale maps worldwide

• Used from lat.  84°N to  80°S; Universal Polar Stereographic (UPS) used for polar areas

• Globe divided into 60 N/S zones, each 6° wide; – these are numbered from one to sixty going east from 180th meridian

• Each zone divided into 20 E/W belts, each 8° high  lettered from the south pole using C thru X (O and I omitted)

• The meridian halfway between the two boundary meridians for each zone is designated as the central meridian and a cylindrical projection is done for each zone 

Page 32: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

32

Universal Transverse Mercator (UTM)

• Coordinate origins are at the intersection of the equator and the zone’s central meridian;  

• This origin given a value of 0 meters north, 500,000m east, thus no negative values

– a false origin at 10,000,000 meters south used for southern hemishere

• Military uses a different system for coordinate location dividing each UTM primary grid zone into 10km by 10km squares and designates each by a double letter

UTM in Pennsylvania:2 zones: Zone 17 (84W-78W), Zone 18 (78W-72W)

Universal Transverse Mercator (UTM)

Page 33: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

33

Implications of the Zone System

• Each zone defines a different projection

• Two maps of adjacent zones will not fit along their common border

• Jurisdictions that span two zones must make special arrangements– Use only one of the two projections, and accept the greater‐than‐normal distortions in the other zone

– Use a third projection spanning the jurisdiction

– E.g. Italy is spans UTM zones 32 and 33

UTM Coordinates

• In the N Hemisphere define the Equator as 0 mN

• The central meridian of the zone is given a false easting of 500,000 mE

• Eastings and northings are both in meters allowing easy estimation of distance on the projection

• A UTM georeference consists of a zone number, a hemisphere, a six‐digit easting and a seven‐digit northing

– E.g., 14, N, 468324E, 5362789N

Page 34: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

34

State Plane Coordinates

• Defined in the US by each state

– Some states use multiple zones

– Several different types of projections are used by the system

• Provides less distortion than UTM

– Preferred for applications needing very high accuracy, such as surveying

State Plane Coordinate System (SPCS)• Began in 1930s for public works projects; popular with interstate designers

• States divided into 1 or more zones (~130 total  for US)• each zone designed to maintain scale distortion to less than 1 part per 10,000

• Pennsylvania has 2 zones running E/W: north (3701), south (3702)

• Different projections used:• transverse mercator  (conformal) for States with large N/S extent

• Lambert conformal conic for rest (incl. Pennsylvania)

• some states use both projections (NY, FL, AK)

• oblique mercator used for Alaska panhandle

• Each zone also has:• unique standard parallels (2 for Lambert) or central meridian (1 for mercator) 

• false coordinate origins which  differ between zones,  and use feet for NAD27 and meters for NAD83 

• (1m=39.37 in. exact  used for conversion)• See Snyder, 1982 USGS Bulletin # 1532, p. 56‐63 for details  

Page 35: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

35

State Plane Coordinate System (SPCS)

State Plane Coordinate System (SPCS)

Page 36: Representing The Shape of the Earth - Personal Websites · Reference: Smith, James R., Introduction to Geodesy: The history and concepts of modern geodesy. John Wiley & Sons, 1997

3/30/2015

36

North American Datums

• NAD27– Clark 1866 spheroid

– Meades Ranch origin

– visual triangulation

– 25,000 stations  • (250,000  by 1970)

– NAVD29 (North American Vertical Datum, 1929) provided elevation

– basis for most USGS 7.5 minute quads 

NAD83– satellite  (since 1957) and laser distance  data 

showed inaccuracy of NAD27

– 1971 National Academy of Sciences report recommended new datum

– used GRS80 spheroid 

(functionally equivalent to WGS84)

– origin: Mass‐center of Earth

– 275,000 stations

– “Helmert blocking” least squares technique fitted  2.5 million other fed, state and local agency points.

– NAVD88 provides vertical datum

– points can differ up to 160m from NAD27, but seldom more than 30m, and data from digit. map more inaccurate than datum diff.

– no universal mathematical formulae for conversion from NAD27: See USGS Survey Bulletin # 1875 for conversion tables (in ARC/INFO).  Transformations are preformed to local coordinates

– http://www.ngs.noaa.gov/cgi‐bin/nadcon.prl

NAD27 and NAD83 Ellipsoids (Canadian Spacial Reference System, 2006)