replicaÇÃo de dnabioinfo.iq.ufrj.br/graduacao/eq/teoria/aulas/bl2/02 replicação.pdf · a...

47
REPLICAÇÃO DE DNA

Upload: others

Post on 27-Feb-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual o padratildeo de

replicaccedilatildeo do DNA

O experimento de Meselson-Stahl elucidou o padratildeo de

replicaccedilatildeo como sendo semi-conservativo

RESULTADO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 2: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual o padratildeo de

replicaccedilatildeo do DNA

O experimento de Meselson-Stahl elucidou o padratildeo de

replicaccedilatildeo como sendo semi-conservativo

RESULTADO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 3: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Qual o padratildeo de

replicaccedilatildeo do DNA

O experimento de Meselson-Stahl elucidou o padratildeo de

replicaccedilatildeo como sendo semi-conservativo

RESULTADO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 4: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

O experimento de Meselson-Stahl elucidou o padratildeo de

replicaccedilatildeo como sendo semi-conservativo

RESULTADO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 5: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

RESULTADO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 6: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

RESULTADO NAtildeO ENCONTRADO

RESULTADO NAtildeO ENCONTRADO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 7: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

RESULTADO NAtildeO ENCONTRADO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 8: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 9: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Adiccedilatildeo de novas bases a fita crescente de DNALigaccedilatildeo fosfodieacutester

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 10: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Adiccedilatildeo de novas bases a fita crescente de DNAReaccedilatildeo enzimaacutetica

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 11: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

DNA polimerase

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 12: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 13: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Qual a direccedilatildeo da polimerizaccedilatildeo

5rsquo rarr 3rsquo

3rsquo rarr 5rsquo

Se este raciociacutenio estiver correto precisamos de duas polimerases

para realizar a replicaccedilatildeo

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 14: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Figure 5-11

An explanation for the 5prime-to-3prime direction of DNA chain

growth Growth in the 5prime-to-3prime direction shown on the

right allows the chain to continue to be elongated when a

mistake in polymerization has been removed by

exonucleolytic proofreading (see Figure 5-9) In contrast

exonucleolytic proofreading in the hypothetical 3prime-to-5prime

polymerization scheme shown on the left would block

further chain elongation For convenience only the primer

strand of the DNA double helix is shown

A direccedilatildeo de polimerizaccedilatildeo eacute exclusivamente 5rsquo rarr 3rsquo

bull Econocircmica metabolicamente

(somente 1 polimerase)

bullViaacutevel energeticamente

bullPassiacutevel de correccedilatildeo na

ocorrecircncia de erros

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 15: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 16: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Figure 5-9

Exonucleolytic proofreading by DNA polymerase during DNA replication

In this example the mismatch is due to the incorporation of a rare transient

tautomeric form of C indicated by an asterisk But the same proofreading

mechanism applies to any misincorporation at the growing 3prime-OH end

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 17: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Correccedilatildeo de erros de polimerizaccedilatildeo devido tautomerizaccedilatildeo

Se natildeo ocorrer teremos mutaccedilotildees

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 18: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

As trecircs etapas que garantem a fidelidade

de incorporaccedilatildeo dos nucleotiacutedeos

Passo da replicaccedilatildeo Taxa de eficiecircncia acumulada

(erro acertos)

5primerarr 3prime polimerizaccedilatildeo 1105

Correccedilatildeo exonucleotiacutedica (3rsquo rarr 5rsquo) 1107

Reparo de mau pareamento

diretamente na fita (sistema de

reparo)

1109

CO-REPLICACcedilAtildeO

POacuteS-REPLICACcedilAtildeO

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 19: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 20: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Origens de replicaccedilatildeo

bullA replicaccedilatildeo do material geneacutetico se inicia em pontos especiacuteficos

denominados origens de replicaccedilatildeo

bullA duplicaccedilatildeo do cromossomo circular de E coli eacute bidirecional

bullA siacutentese de DNA eacute unidirecional (5rsquo - 3rsquo)

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 21: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Origens de replicaccedilatildeo

bullProcariotos = 1 origem Eucariotos = muacuteltiplas origens

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 22: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 23: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Quem organiza a replicaccedilatildeo no DNA molde

Um complexo multiproteacuteico iraacute cumprir vaacuterias tarefas

REPLISSOMO

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

Soluccedilatildeo para necessidade de

uma ponta 3rsquoOH

Soluccedilatildeo para abertura das fitas

Soluccedilatildeo para a processividade

Enzimas envolvidas na replicaccedilatildeo

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 24: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

RNA primer synthesis A schematic view of the reaction catalyzed

by DNA primase the enzyme that synthesizes the short RNA primers

made on the lagging strand using DNA as a template Unlike DNA

polymerase this enzyme can start a new polynucleotide chain by

joining two nucleoside triphosphates together The primase

synthesizes a short polynucleotide in the 5prime-to-3prime direction and then

stops making the 3prime end of this primer available for the DNA

polymerase

ENZIMAS DO REPLISSOMO RNA Primase

Soluccedilatildeo para necessidade de uma ponta 3rsquoOH

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 25: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Figure 5-16 The structure of a DNA helicase (A) A schematic diagram of the protein as a hexameric ring (B) Schematic

diagram showing a DNA replication fork and helicase to scale (C) Detailed structure of the bacteriophage T7 replicative

helicase as determined by x-ray diffraction Six identical subunits bind and hydrolyze ATP in an ordered fashion to propel

this molecule along a DNA single strand that passes through the central hole Red indicates bound ATP molecules in the

structure (B courtesy of Edward H Egelman C from MR Singleton et al Cell 101589ndash600 2000 copy Elsevier)

ENZIMAS DO REPLISSOMO DNA Helicase

Procariotos (primase + helicase = primossomo)

Soluccedilatildeo para abertura das fitas Com quebra de ATP

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 26: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Figure 5-17 The effect of single-strand DNA-binding

proteins (SSB proteins) on the structure of single-stranded

DNA Because each protein molecule prefers to bind next to a

previously bound molecule long rows of this protein form on a

DNA single strand This cooperative binding straightens out the

DNA template and facilitates the DNA polymerization process

The ldquohairpin helicesrdquo shown in the bare single-stranded DNA

result from a chance matching of short regions of

complementary nucleotide sequence they are similar to the

short helices that typically form in RNA molecules (see Figure

1-6)

Figure 5-18 The structure of the single-strand binding protein

from humans bound to DNA (A) A front view of the two DNA

binding domains of RPA protein which cover a total of eight

nucleotides Note that the DNA bases remain exposed in this proteinndash

DNA complex (B) A diagram showing the three-dimensional structure

with the DNA strand (red) viewed end-on (B from A Bochkarev et

al Nature 385176ndash181 1997 copy Macmillan Magazines Ltd)

ENZIMAS DO REPLISSOMO Proteiacutenas ligadoras de fita simples (SSB)

Soluccedilatildeo para impedir a renaturaccedilatildeo da fita molde

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 27: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

ENZIMA DISTRIBUTIVA OU ENZIMA PROCESSIVA

DISSOCIACcedilAtildeO E REASSOCIACcedilAtildeO A CADA INCORPORACcedilAtildeO

LIMITARIA A POLIMERIZACcedilAtildeO PELA DNA POL

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 28: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

The regulated sliding clamp that holds DNA polymerase on the DNA (A) The structure of the clamp protein from E coli as

determined by x-ray crystallography with a DNA helix added to indicate how the protein fits around DNA (B) A similar protein is

present in eucaryotes as illustrated by this comparison of the E coli sliding clamp (left) with the PCNA protein from humans (right)

(C) Schematic illustration showing how the clamp is assembled to hold a moving DNA polymerase molecule on the DNA In the

simplified reaction shown here the clamp loader dissociates into solution once the clamp has been assembled At a true replication

fork the clamp loader remains close to the lagging-strand polymerase ready to assemble a new clamp at the start of each new

Okazaki fragment (see Figure 5-22) (A and B from X-P Kong et al Cell 69425ndash437 1992 copy Elsevier)

ENZIMAS DO REPLISSOMO Cinta deslizante dimeacuterica e montador da cinta

Soluccedilatildeo para processividade da polimerizaccedilatildeo

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 29: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 30: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

The structure of a DNA replication fork Because both daughter DNA

strands are polymerized in the 5prime-to-3prime direction the DNA synthesized on

the lagging strand must be made initially as a series of short DNA

molecules called Okazaki fragments

A polimerizaccedilatildeo exclusiva no sentido 5rsquo rarr 3rsquo cria um problema espacial para

siacutentese de uma das fitas

1 Segmentos transitoacuterios chamados de fragmentos de Okasaki foram descobertos em bacteacuterias

apoacutes incubaccedilatildeo por alguns segundos com timidina triciada [3H]

2 Esse arranjo de replicaccedilatildeo cria uma fita contiacutenua (liacuteder) e uma fita descontiacutenua (retardada)

Coacutepia da fita Retardada

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 31: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

In eucaryotes RNA

primers are made at

intervals spaced by

about 200

nucleotides on the

lagging strand and

each RNA primer is

approximately 10

nucleotides long

Coacutepia da fita retardada ndash Siacutentese de primers de RNA

bullPrimase

(procariotos)

bullDNA polimerase

(eucariotos)

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 32: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Coacutepia da fita retardada ndash Siacutentese dos fragmentos de okasaki

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 33: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

This primer is erased

by a special DNA

repair enzyme (an

RNAse H) that

recognizes an RNA

strand in an

RNADNA helix and

fragments it this

leaves gaps that are

filled in by DNA

polymerase and DNA

ligase

Coacutepia da fita retardada ndash Remoccedilatildeo do primer de RNA

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 34: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Coacutepia da fita retardada ndash Fechamento de nicks

nick

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 35: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

The proteins at a bacterial DNA replication fork The major types of proteins that act at a DNA replication fork

are illustrated showing their approximate positions on the DNA

E em movimento Como ocorre

Modelo para o replissomo procarioacutetico

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 36: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Modelo para o replissomo procarioacutetico

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 37: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

A mammalian replication fork The fork is drawn to emphasize its similarity to the bacterial replication fork depicted in Figure 5-21

Although both forks use the same basic components the mammalian fork differs in at least two important respects First it uses two

different DNA polymerases on the lagging strand Second the mammalian DNA primase is a subunit of one of the lagging-strand DNA

polymerases DNA polymerase α while that of bacteria is associated with a DNA helicase in the primosome The polymerase α (with its

associated primase) begins chains with RNA extends them with DNA and then hands the chains over to the second polymerase (δ)

which elongates them It is not known why eucaryotic DNA replication requires two different polymerases on the lagging strand The

major mammalian DNA helicase seems to be based on a ring formed from six different Mcm proteins this ring may move along the

leading strand rather than along the lagging-strand template shown here

Modelo para o replissomo eucarioacutetico

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 38: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bullTelocircmeros e replicaccedilatildeo

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 39: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

A replicaccedilatildeo gera um problema de supertorccedilatildeo positiva que se acumula na frente da

forquilha de replicaccedilatildeo na medida que os filamentos parentais se separam para replicaccedilatildeo

Natildeo importa se o replissomo eacute procarioacutetico ou eucarioacutetico o problema vai existir

Super-torccedilatildeo do DNA X Replicaccedilatildeo

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 40: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Super-torccedilatildeo do DNA X Replicaccedilatildeo

A separaccedilatildeo das duas fitas do DNA provoca a

formaccedilatildeo de super-heacutelices

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 41: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

The ldquowinding problemrdquo that arises during DNA replication For a bacterial replication fork moving at 500 nucleotides per second the

parental DNA helix ahead of the fork must rotate at 50 revolutions per second

O problema gerado pela replicaccedilatildeo torccedilatildeo

positiva na moleacutecula

As topoisomerases

resolvem

Topoisomerase tipo I

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 42: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

A model for topoisomerase II action As indicated ATP binding to the two

ATPase domains causes them to dimerize and drives the reactions shown

Because a single cycle of this reaction can occur in the presence of a non-

hydrolyzable ATP analog ATP hydrolysis is thought to be needed only to reset

the enzyme for each new reaction cycle This model is based on structural and

mechanistic studies of the enzyme (Modified from JM Berger Curr Opin

Struct Biol 826ndash32 1998)

The DNA-helix-passing reaction catalyzed by DNA topoisomerase II Identical

reactions are used to untangle DNA inside the cell Unlike type I topoisomerases type

II enzymes use ATP hydrolysis and some of the bacterial versions can introduce

superhelical tension into DNA Type II topoisomerases are largely confined to

proliferating cells in eucaryotes partly for that reason they have been popular targets

for anticancer drugs

Topoisomerase tipo II

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 43: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

REPLICACcedilAtildeO DE DNA

bull Replicaccedilatildeo eacute Semiconservativa

bull Polimerase liga e copia uma fita simples

bull Coacutepia da fita de DNA eacute Unidirecional (5rsquo ndash 3rsquo)

bull Coacutepia possui sistema de correccedilatildeo de erros

bull Origens de replicaccedilatildeo

bull Enzimas envolvidas na replicaccedilatildeo

bull Coacutepia da fita liacuteder e retardada

bull Super-torccedilatildeo de DNA e replicaccedilatildeo

bull Telocircmeros e replicaccedilatildeo

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 44: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

Telocircmeros e replicaccedilatildeo

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 45: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial

The structure of telomerase The telomerase is a proteinndash

RNA complex that carries an RNA template for synthesizing a

repeating G-rich telomere DNA sequence Only the part of the

telomerase protein homologous to reverse transcriptase is

shown here (green) A reverse transcriptase is a special form

of polymerase enzyme that uses an RNA template to make a

DNA strand telomerase is unique in carrying its own RNA

template with it at all times (Modified from J Lingner and TR

Cech Curr Opin Genet Dev 8226ndash232 1998)

Figure 5-43 Telomere replication Shown here are the reactions

involved in synthesizing the repeating G-rich sequences that form the

ends of the chromosomes (telomeres) of diverse eucaryotic organisms

The 3prime end of the parental DNA strand is extended by RNA-templated

DNA synthesis this allows the incomplete daughter DNA strand that is

paired with it to be extended in its 5prime direction This incomplete lagging

strand is presumed to be completed by DNA polymerase α which

carries a DNA primase as one of its subunits (see Figure 5-28) The

telomere sequence illustrated is that of the ciliate Tetrahymena in which

these reactions were first discovered The telomere repeats are

GGGTTG in the ciliate Tetrahymena GGGTTA in humans and G1ndash3A

in the yeast S cerevisiae

Extensatildeo de telocircmeros

Page 46: REPLICAÇÃO DE DNAbioinfo.iq.ufrj.br/graduacao/EQ/teoria/aulas/bl2/02 Replicação.pdf · A mammalian replication fork. The fork is drawn to emphasize its similarity to the bacterial