reología de las lechadas de cemento

37
Schlumberger Private d e l o s C e m e n t o s d e E n t r e n a m i e n t o A c e l e r a d o p a r a S u p e r v i s o r e s d e P o z o

Upload: gmarper-martinez

Post on 17-Nov-2015

34 views

Category:

Documents


4 download

TRANSCRIPT

  • Sch

    lum

    berg

    er Private

    d e l o s C e m e n t o s

    d e E n t r e n a m i e n t o A c e l e r a d o p a r a

    S u p e r v i s o r e s d e P o z o

  • Sch

    lum

    berg

    er Private

    e s l a c i e n c i a q u e e s t u d i a e l f l u j o y l a d e f o r m a c i n d e l a m a t e r i a .

    e n C e m e n t a c i n :

    E v a l u a r m e z c l a y b o m b e a b i l i d a d d e l e c h a d a s D e t e r m i n a r t a s a s d e d e s p l a z a m i e n t o a p r o p i a d o s p a r a u n a r e m o c i n d e l o d o e f e c t i v a y c o l o c a c i n d e l e c h a d a

    E s t i m a r p r e s i o n e s d e f r i c c i n C a l c u l a r l o s H H P r e q u e r i d o s

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    F l u j o d e F l u i d o s e n T u b e r a s

    E n M e c n i c a d e F l u i d o s d o s t i p o s d e f l u j o s o nd e f i n i d o s :

    1 . F l u j o L a m i n a r

    2 . F l u j o T u r b u l e n t o

    F l u j o T a p n e s u n f l u j o s u b - l a m i n a r

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    F l u j o L m i n a r

    M o v i m i e n t o S u a v e , d e s l i z a n t e ( * ) V e l o c i d a d e n l a p a r e d = C e r o V e l o c i d a d e s m x i m a e n e l c e n t r o V m a x = 2 V

    A d o n d e V = V e l o c i d a d p r o m e d i a d e p a r t c u l a

    V = 0

    V = 0

    V max

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    F l u j o T u r b u l e n t o

    M o v i m i e n t o T o r t u o s o

    V e l o c i d a d p r o m e d i o d e l a p a r t c u l a e s u n i f o r m e at r a v e s d e l a t u b e r a

    DIRECTION OF FLOW

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    E L F l u j o d e l o s F l u i d o s

    d e C o r t e = FA

    V e l o c i d a d d e C o r t e d v = V 2 - V 1d r r

    V i s c o s i d a d = = E s f u e r z o d e c o r t eV e l o c i d a d d e c o r t e

    r

    V2

    F AA

    AA

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    NEWTONIAN or NON-NEWTONIAN..

    Shear rate

    LAMINARFLOW

    TURBULENTFLOW

    ShearStress

    NEWTONIAN NON-NEWTONIAN

    POWERLAW

    BINGHAMPLASTIC

    TRANSITION

    ZONE

    TRANSITION

    ZONE

    Stress

    HERSCHELBULKLEY

    d e F l u j o - C l a s i f i c a c i n d e F l u i d o s

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    M o d e l o s d e F l u j o

    P a r a r e p r e s e n t a c i n m a t e m t i c a , l o s s i g u i e n t e s m o d e l o s s o nu s a d o s :

    1 . M o d e l o N e w t o n i a n o

    2 . M o d e l o B i n g h a m p l a s t i c

    3 . M o d e l o L e y d e P o t e n c i a( P s e u d o - P l a s t i c o )

    4 . M o d e l o d e H e r s c h e l B u l k l e y

    N e w t o n i a n

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    M o d e l o N e w t o n i a n o

    F l u i d o f l u y e t a n p r o n t o u n a f u e r z a e s a p l i c a d a E s f u e r z o d e C o r t e e s p r o p o r c i o n a l a l aV e l o c i d a d d e C o r t e

    L a V i s c o s i d a d e s c o n s t a n t e = . d v

    d r = v i s c o s i d a d = C o n s t a n t e

    dvdvdrdr

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    M o d e l o P l s t i c o d e B i n g h a m F l u i d o P l s t i c o d e B i n g h a m e s c a r a c t e r i z a d o p o r :

    y : P u n t o C e d e n t e ( B i n g h a m y i e l d )

    p : V i s c o s i d a d P l s t i c a

    = y + p d vd r

    = + pd v / d r

    y

    dvdr

    a

    p

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    dvdr

    RELACION EXPONENCIAL

    dvdr

    nK

    Escala LOG-LOG :

    El Fluido se caracteriza por:Indice de Comportamiento, nIndice de Consistencia, K

    M o d e l o L e y d e P o t e n c i a

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    M e d i c i o n e s d e l a s P r o p i e d a d e s d e l o s F l u i d o s

    P R O P I E D A D E S M E D I D A S :

    E s f u e r z o d e C o r t e

    V e l o c i d a d d e c o r t e

    F u e r z a d e G e l

    E Q U I P O U S A D O :

    F a n n V G 3 5 ( 6 v e l o c i d a d e s o 1 2 v e l o c i d a d e s )

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    d e C i l i n d r o s C o a x i a l e s

    Cilindro Interno

    Eje

    Rotor

    Bob

    Taza de Muestra

    Resorte de Torsion

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    V i s c o s i m e t r o F A N N

    C a s i t o d o s t i e n e n 6 r o t a c i o n e s .

    3 , 6 , 1 0 0 , 2 0 0 , 3 0 0 a n d 6 0 0 r p m .

    L e c t u r a s 3 , 6 y 6 0 0 r p m , y a n o s o n u s a d o s e n l a s p r u e b a s A P I .

    V e l o c i d a d r o t a c i o n a l e s p r o p o r c i o n a l a l a V e l o c i d a d e C o r t e

    D e f l e c c i n d e l B o b e s p r o p o r c i o n a l a l E s f u e r z o d e C o r t e

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    R e s i s t e n c i a d e G e lEl comportamiento reologico de los fluidos es tiempo-dependiente

    )

    Y i e l d p o i n t ( l b / 1 0 0 f t 2 )DECREASINGSHEARRATE

    DECREASINGSHEARRATE

    INCREASINGSHEARRATE

    INCREASINGSHEARRATE

    GELSTRENGTHGELSTRENGTH

    YIELD POINTYIELD POINT

    SHEARSTRESSSHEARSTRESS

    SHEAR RATESHEAR RATE

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    P r o c e d i m i e n t o s p a r a d e t e r m i n a r l a s P r o p i e d a d e sd e l o s f l u i d o s

    R o t a r F a n n 3 5 a 3 0 0 r p m , 2 0 0 r p m y 1 0 0 r p m p o r 2 0 s e g c a d a l e c t u r a .

    R e g i s t r a r d e f l e c c i n d e l B o b ( ) e n g r a d o s .

    G r a f i c a r d e f l e c c i n v s r p m .

    C o m p a r a r r e p r e s e n t a c i n g r f i c a c o n t e r i c a y d e t e r m i n a r e lm o d e l o r e o l o g i c o :

    a . N e w t o n i a n

    b . B i n g h a m P l a s t i c

    c . L e y d e P o t e n c i a ( S i e s L e y d e P o t e n c i a , h a c e r g r f i c a L o g - L o g ) .

    C a l c u l a r l o s p a r m e t r o s d e f l u i d o

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    C o r r e c c i o n e s d e l e s f u e r z o y v e l o c i d a d d e C o r t e

    = x SCF x 1002 )

    dvdr

    = rpm x

    RBR =

    22 260

    .. RBR

    -1

    2 )n'

    (

    2 )n'

    (n'R B R = R O T O R , B O B R A T I O

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    F a c t o r C o r r e c c i n d e l R e s o r t e ( S C F )

    0.2

    0.5

    1

    2

    3

    4

    5

    10

    0.002121

    0.005302

    0.0106

    0.02121

    0.03181

    0.04241

    0.05302

    0.106

    0.004181

    0.01045

    0.02091

    0.04181

    0.06272

    0.08363

    0.1045

    0.2091

    0.00848

    0.0212

    0.0424

    0.0848

    0.1272

    0.1696

    0.212

    0.424

    0.01831

    0.04578

    0.09156

    0.1831

    0.2747

    0.3662

    0.4578

    0.9156

    SPRING No.SPRING No.

    BOB NoBOB No

    11 22 33 44

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    R o t o r - B o b R a t i o ( R B R )

    1

    2

    3

    BOB NoBOB No11 22 33

    ROTOR NoROTOR No

    1.068

    1.5

    2.136

    1.022

    1.544

    2.04

    1.5

    3.107 3

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    C a l c u l o s d e P r o p i e d a d e s d e F l u i d o s : N e w t o n i a n o

    1. NEWTONIAN:

    VISCOSITY =SHEAR STRESS

    SHEAR RATE

    = = x scf x 47880rpm x

    (cp)

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    E j e m p l o 1

    C o n l o s s i g u i e n t e s d a t o s :

    R P M L e c t u r a d e l D i a l ( )3 0 0 1 0 02 0 0 6 61 0 0 3 3

    G r a f i c a r ( ) v e r s u s R P M y d e t e r m i n a r e l t i p o d e f l u i d o H a c e r u n a g r f i c a d e s h e a r r a t e C a l c u l a r l a v i s c o s i d a d d e l f l u i d o T o m a r S p r i n g N o 1 , B o b N o 1 a n d R o t o r N o 1

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    S o l u c i n E j e m p l o 1

    RPM

    300

    200

    100

    RPM

    300

    200

    100

    dv/dr

    511

    340

    170

    dv/dr

    511

    340

    170

    100

    66

    33

    100

    66

    33

    106

    70

    35

    106

    70

    35

    120120

    100100

    8080

    6060

    4040

    2020

    100100 200200 300300

    xx

    xx

    xx

    Newtonian: = dvdr

    , = dv/dr

    = x scf x 47880rpm x = 100 x 0.0106 x 47880

    300 x 1.6991= 99.5 cp

    or = dv/dr

    = 106511

    x 47880100

    = 99.3 cp

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    C a l c u l o s P r o p i e d a d e s d e F l u i d o : P l s t i c o d e B i n g h a m

    2. BINGHAM PLASTIC:

    (a) y = (intercept) x scf x 100

    Plastic viscosity =(1 - ) x scf x 47880

    rpm1- rpm

    where slope of straight line curve

    (b)

    rpm1- rpm

    ( )( 1 - )==

    (cp)(

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    M e t o d o S i m p l i f i c a d oa. BINGHAM PLASTIC

    p = (300 - 100) 1.5

    y = 300 - p

    b. POWER LAW

    n' = 2.16 Log (300 / 100)

    K'= scf x 300 x 1.068(511) n'

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    E j e m p l o I I

    D a d o l a s s i g u i e n t e s l e c t u r a s :

    F A N N R P M L e c t u r a d e l D i a l ( )3 0 0 1 3 0

    2 0 0 9 6

    1 0 0 6 3

    G r a f i c a r ( ) v e r s u s r p m y d e t e r m i n a r e l t i p o d e f l u i d o ( m o d e l o ) H a g a u n a g r f i c a d e l a v e l o c i d a d d e c o r t e v s E s f u e r z o d e C o r t e

    C a l c u l a r l a s p r o p i e d a d e s d e l f l u i d o

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    S o l u c i o n E j e m p l o I I

    100100

    120120

    140140

    2020

    4040

    6060

    8080

    100100 200200 300300

    X

    X

    X

    = x scf x 100

    (300 100

    x 1.5 = 130 - 63 x 1.5 = 100.5 cp- ))

    = y + p x dv/drdv/dr = rpm x =

    (300 100 ) scf x 47880(p =

    (300 - 100) x 1.6991

    S x scf x 47880==

    1.6991

    2 POINT METHOD:

    S = slope

    ...... y = 30 x 0.0106 x 100 = 31.8 lbf/100ft22

    SLOPE = 130 - 63

    300 - 100= 0.335 = 100.06 cp

    0.335 X 0.0106 x 47880

    1.6991... p =..

    PLASTIC VISCOSITY: yp =dv/dr

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    C a l c u l o s P r o p i e d a d e s d e F l u i d o : L e y d e P o t e n c i a

    3 . L E Y D E P O T E N C I A :( a ) n = p e n d i e n t e h o r i z o n t a l d e l a c u r v a

    ( b ) k = 1 0 x s c f

    D O N D E I = I n t e r c e p t c u a n d o l o g r p m = 0

    P a r a c a l c u l o s d e F l u j o u n K m o d i f i c a d o e s u s a d o , q u e e s K m u l t i p l i c a d o p o r u n f a c t o r d e c o r r e c c i o n d e a c u e r d o a S a v i n s .

    ))K'(pipe) = K'K'(pipe) = K'(3n' + 1)(3n' + 1)

    4n'4n'

    n'n'

    ((

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    D e r i v a c i o n d e K = K' dv

    drn'

    = x scf , dvdr

    = rpm x

    x scf = K' (rpm x )n'

    I = Log K' + n' log - Log scf

    K' = 10I x scfn'

    10 I = K' x n'scf

    K' = 10Log I x scf

    n'

    Log + log scf = Log K' + n' log rpm + n' Log

    Note: If plot is made on Log-log paper,

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    E j e m p l o I I I

    D a d o e l s i g u i e n t e :

    F A N N R P M D I A L L E C T U R A

    3 0 0 5 6

    2 0 0 4 7

    1 0 0 3 5

    U s a n d o e l m e t o d o g r f i c o , d e t e r m i n e e l t i p o d e f l u i d o y c a l c u l a r l o s p a r m e t r o s r e o l o g i c o s d e l f l u i d o .

    B o b N o 1 , R o t o r N o 1 , S p r i n g N o 1

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    S o l u c i n E j e m p l o I I I

    6060

    5050

    4040

    3030

    2020

    1010

    100100 200200 300300

    xx

    xxxx

    rpm11 22 33

    11

    22

    0.610.61

    xxxxxx

    Log

    Log rpm

    Log

    1.75

    1.67

    1.54

    Log

    1.75

    1.67

    1.54

    RPM

    300

    200

    100

    RPM

    300

    200

    100

    Logrpm

    2.47

    2.30

    2.0

    Logrpm

    2.47

    2.30

    2.0

    56

    47

    35

    56

    47

    35

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    S o l u c i n E j e m p l o I I I

    0.033 lbf sec /ft

    INTERCEPT = 0.61

    n' = 0.46 BEHAVIOUR INDEX

    10I x scfIK' =

    ()'( '

    ==2 2

    60

    = 1.84=

    0.46 -1-1

    .. ..1.068 0.460.46

    22(( ))

    0.460.4622(( ))

    1.068

    Consistency Index, K' =10 0.61 x 0.0106

    1.840.46

    = n'n 2

    GRADIENT = 0.46

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    S o l u c i n E j e m p l o I I I

    K' (pipe) = K' 3n' + 14n'

    n'

    = 0.033 3 x 0.464 x 0.46

    0.46

    = 0.037 lb f sec n'/ft2

    1+

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    U n i d a d e s d e c a m p o

    1. Shear ratedv

    drDifference of vel. b/w 2 platelets

    ==( )) Distance b/w 2 platelets1

    1sec -1-1 (Reciprocal second)==

    2. Shear StressForce causing the shearSurface area of the platelet

    = lbf/100ft 22

    ==

    3. Apparent viscosity = Shear StressShear rate = lbf/100ft 2

    Note: 1 poise = 100 centipoise = 0.2089 lbfsec/100ft22

    4. Spring Correction factor scf = lbf/ft2

    5. Bob Deflection = = degrees

    6. Power Law Index = n' (dimensionless

    7. Consistency Index = K' = lbfsn/ft2

    2

    n/ft

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    C e m C A D E

    A c t u a l m e n t e , s e u s a e l C e m C A D E p a r a :- D e t e r m i n a r e l m o d e l o i d e a l - C o n s t r u i r l o s g r a f i c o s r e o l o g i c o s

    N u e v o m o d e l o r e o l o g i c o : H e r s h e l l B u k l e y

    > > > = + k ( ) n

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    D e f i n i c i o n e s . E s f u e r z o d e C o r t e ( S h e a r S t r e s s ) F u e r z a p o r u n i d a d d e r e a ( p r e s i n d e b o m b e o o c a d a d e l ap r e s i n e n e l f l u j o ) C a u s a q u e e l f l u i d o f l u y a a u n a v e l o c i d a d V 1 , c u a n d o l a V 2 = 0 . E l e s f u e r z o d e c o r t e e s u n i f o r m e a t r a v e s d e l f l u i d o y p u e d e ns e r e x p r e s a d o c o m o l i b r a s f u e r z a p o r p i e s c u a d r a d o s od i n a s p o r c e n t i m e t r o c u d r a d o .

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    D e f i n i c i o n e s . V e l o c i d a d d e C o r t e ( S h e a r R a t e ) G r a d i e n t e d e v e l o c i d a d ( m e d i d a d e l a v e l o c i d a d r e l a t i v a e n t r e l a s d o s p l a c a s E x p r e s a d a e n s e g u n d o s r e c p r o c o s ( s e g - 1 ) . S i n e m b a r g o l a v e r d a d e r a v e l o c i d a d d e c o r t e s e p u e d e e s t i m a r p o r a r r i b ad e u n 2 0 % u s a n d o l a v e l o c i d a d d e c o r t e d e u n f l u i d o n e w t o n i a n o .

  • M a r c h 1 0 , 2 0 0 4 J B

    Sch

    lum

    berg

    er Private

    D e f i n i c i o n e s . V i s c o s i d a d A p a r e n t e . E s l a r e l a c i n e n t r e e l e s f u e r z o d e c o r t e y l a v e l o c i d a d d e c o r t e d e e lf l u i d o U n a p r o p i e d a d q u e d a l a f u e r z a n e c e s a r i a p a r a m o v e r e l f l u i d o d e t e r m i n a d o . E s u n a m e d i d a d e l a r e s i s t e n c i a i n t e r n a q u e o f r e c e e l f l u i d o a l f l u j o d e b i d oa s u s f u e r z a s i n t e r n a ( f r i c c i o n a l y e l e c t r o s t a t i c a ) . P a r a l o s f l u i d o s n e w t o n i a n o s d o n d e l a r e l a c i o n e n t r e e l e s f u e r z o yv e l o c i d a d d e c o r t e e s c o n s t a n t e , l a v i s c o s i d a e s a b s o l u t a . P a r a l o s f l u i d o s n o N e w t o n i a n o s e l e s f u e r z o y l a v e l o c i d a d d e c o r t e n o e s c o n s t a n t e y l a v i s c o s i d a d e s l l a m a d a v s i c o s i d a d a p a r e n t e y e s v l i d a s o l op a r a l a v e l o c i d a d d e c o r t e m e d i d a . L a v i s c o s i d a d p l s t i c a e s l a p e n d i e n t e d e l a p o r c i n d e l n e a r e c t a d e le s f u e r z o d e c o r t e y l a v e l o c i d a d d e c o r t e o b s e r v a d a c o n l o s f l u d o s p l s t i c o s d e B i n g h a n y e s c o n s t a n t e .