relativistic irreversible thermodynamics

36
Relativistic thermodynamics: discrete, continuum and kinetic aspects Peter Ván KFKI, RMKI, Dep. Theoretical Physics Temperature of moving bodies the story Relativistic equilibrium kinetic theory Stability and causality hydrodynamics Temperature of moving bodies the conclusion with Tamás Biró, Etele Molnár

Upload: others

Post on 11-Nov-2021

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Relativistic irreversible thermodynamics

Relativistic thermodynamics: discrete, continuum and kinetic aspects

Peter VánKFKI, RMKI, Dep. Theoretical Physics

– Temperature of moving bodies – the story

– Relativistic equilibrium – kinetic theory

– Stability and causality – hydrodynamics

– Temperature of moving bodies – the conclusion

with Tamás Biró, Etele Molnár

Page 2: Relativistic irreversible thermodynamics

Planck and Einstein

body

vobserver

K0

K

pdVTdSdE Relativistic thermodynamics?

About the temperature of moving bodies (part 1)

Page 3: Relativistic irreversible thermodynamics

• Planck-Einstein (1907): cooler

• Ott (1963) [Blanusa (1947)] : hotter

• Landsberg (1966-67): equal

• Costa-Matsas-Landsberg (1995): direction dependent (Doppler)

0TT

)cos1(

0

v

TT

v

body

observer

K0

K

0T

T

0TT

21

1

v

Page 4: Relativistic irreversible thermodynamics

0

0

0

/

SS

VV

pp

– Lorentz

– Planck: adiabatic change

observers are equivalent

2

0

1

0 SS

21 SS

?pdVTdSdE

What are the transformations? – hidden covariance

0

00

01

1

vE

EE

v

v

G

E

vtx

cvxt

cvvtx

vxt

x

t

v

v

x

t 2

2

/

)/(1

1

)(

)(

1

1

'

'

Vector of energy-momentum

v

body

observer

K0

K

21

1,1

vc

1

0S 2

0S

1S 2S

observer

body

Page 5: Relativistic irreversible thermodynamics

0

0

0

0

0

/

vdEdG

dEdE

dSdS

dVdV

pp

vdGpdVTdSdE

translational work –

heat = momentum

00000

000

0

0

20000

dVpdSTdE

dVpTdS

dE

dEvdV

pTdSdE

vdGpdVTdSdE

vobserver

K0

K

reciprocal temperature

- vector?0T

T

21

1

v

Page 6: Relativistic irreversible thermodynamics

Rest frame arguments: Ott (1963)

v

body

reservoir

KK0

dQ

Planck-Einstein

v

body

reservoir

K

K0

dQ

Ott

Page 7: Relativistic irreversible thermodynamics

vdGpdVTdSdE

0

0

0

0

2

/

dEdE

dSdS

dVdV

pp

00000

00

2

00 /

dVpdSTdE

dVpTdSdE

pdVTdSdE

v

body

observer

KK0

0TT

No translational work

Blanusa (1947)

Einstein (1952) (letter to Laue)

temperature – vector?

Page 8: Relativistic irreversible thermodynamics

Outcome

T

pu

epxf

),(0 0T

T Einstein-Planck

(Ott?)

Relativistic statistical physics and kinetic theory:

Jüttner distribution (1911):

Historical discussion (~1963-70, Møller, von Treder, Israel,

ter Haar, Callen, …, renewed Dunkel-Talkner-Hänggi 2007, …):

new (?) arguments/ no (re)solution.

→ Doppler transformation

e.g. solar system, microwave background

→ Velocity is thermodynamic variable?

Landsberg

van Kampen

Page 9: Relativistic irreversible thermodynamics

Questions

• What is moving (flowing)?

– barion, electric, etc. charge (Eckart)

– energy (Landau-Lifshitz)

• What is a thermodynamic body?

– volume

– expansion (Hubble)

• What is the covariant form of an e.o.s.?

– S(E,V,N,…)

• Interaction: how is the temperature transforming?

→ kinetic theory and/or hydrodynamics

Page 10: Relativistic irreversible thermodynamics

Boltzmann equation)( fCfp

Kinetic theory → thermodynamics

'' 11 ffff

pxx

epxf)()(

0 ),(

(local) equilibrium distribution

)1(ln

0

3

ffpp

pdS

Thermodynamic equilibrium = no dissipation:

2mpp

Boltzmann gas

01ln4

1|0

3

0

3

0

3

,,,0

3

klijji

ji

lk

ji

lk

l

l

k

k

j

j

lkji i

i Wffff

ff

ff

ff

p

pd

p

pd

p

pd

p

pd

Page 11: Relativistic irreversible thermodynamics

T

pu

epxf

),(0T

u

T

,

Thermodynamic relations - normalization

Jüttner distribution?

pxx

epxf)()(

0 ),(

00 fpN

00 fppT

ppfpffpN 0000

000 TNN

000 )1(: TNS

000 TNS

Legendre transformation

Page 12: Relativistic irreversible thermodynamics

0000

TNS

0

TNS

covariant Gibbs relation?

(Israel,1963)

Lagrange multipliers – non-equilibrium

Constrained inequality – A. Cimmelli

qeuE

PuqEuT

jnuN

JsuS

Rest frame is required:

.0,0

;0,0

;,1

uPPuqu

juJu

uuuu

Remark:

0,

wu

T

wu

Page 13: Relativistic irreversible thermodynamics

0)()(

)(

000

pEwunTsT

wu

upwEwunsTT

wu

TNS

a

aa

a

a duqwpedqwde

dupwdEwudnTds

))((

)(

pEwunTs )(

Thermodynamics:

qeuE

Page 14: Relativistic irreversible thermodynamics

Summary of kinetic equilibrium:

- Gibbs relation:

- Spacelike parts in equilibrium:

nwnuN 0

pe

wwpwuuwpeueuT

)(0

dednTds

a

aa

a

a duqwpedqwdednTds ))((

Page 15: Relativistic irreversible thermodynamics

• What is dissipative?

– dissipative and non-dissipative parts

• Free choice of flow frames?

– QGP - effective hydrodynamics.

• Kinetic theory → hydrodynamics

– local equilibrium in the moment series expansion

• What is the role and manifestation of local

thermodynamic equilibrium? – generic stability and causality

Questions

Page 16: Relativistic irreversible thermodynamics

Nonrelativistic Relativistic

Local equilibrium Fourier+Navier-Stokes Eckart (1940),

(1st order) Tsumura-Kunihiro

Beyond local equilibrium Cattaneo-Vernotte, Israel-Stewart (1969-72),

(2nd order) gen. Navier-Stokes Pavón, Müller-Ruggieri-Liu,

Geroch, Öttinger, Carter,

conformal, Rishke-Betz,

etc…Eckart:

Extended (Israel–Stewart – Pavón–Jou–Casas-Vázquez):

T

jqunesNTS

),(),(

qqjqT

uT

qqTT

nesNTS

10

2120

1

222),(),(

(+ order estimates)

Thermodynamics → hydrodynamics (which one?)

Page 17: Relativistic irreversible thermodynamics

Causality and stability:

Symmetric hyperbolic equations ~ causality

– The extended theories are not proved to be symmetric hyperbolic (exception:

Müller-Ruggeri-Liu).

– In Israel-Stewart theory the symmetric hyperbolicity conditions of the perturbation

equations follow from the stability conditions.

– Generic stable parabolic theories can be extended later.

– Stability of the homogeneous equilibrium (generic stability) is related to

thermodynamics.

Thermodynamics → generic stability → causality

02)(

,0

~~4

2

~~2

~~~~

Tc

v

c

vTv

TT

tttxxxxt

xxt

Page 18: Relativistic irreversible thermodynamics

Conditions of generic stability in extended thermodynamics:Israel–Stewart - conditional suppression (Hiscock and Lindblom, 1985):

qqjqT

uT

qqTT

nesNTS

10

2120

1

222),(),(

,0

)(

11

en

n

s

n

pn

e

ppe

T

p

e

pe,0...

)/()/(

12

nTp

ns

p

ns

e

pe

,02

,0,02

2

1172805

,0)/(

1

3

22

2

2

1

0

2

016

nns

T

Tn

,0

2

222

121

1124

pe

,03

211)(

6

2

20

3

K

e

ppe

n

s .0

3

21

/2

1

0

0

nsn

T

T

nK

Page 19: Relativistic irreversible thermodynamics

j

TT

qJ

0),(

JusnesS

junnN

PuququeeTu

0

Special relativistic fluids (Eckart):

0)()(1

2

uTT

T

qupP

TTj

Eckart term

., jnuNPuququeuT

011

TqvpP

Ti

i

ji

ijij

qa – momentum density or energy flux?

ijj

i

Pq

qeT

dednTds

Page 20: Relativistic irreversible thermodynamics

Bouras, I. et. al., PRC PRC 82, 024910, 2010 (arxiv:1006.0387v2)

Heat flow problem –

kinetic theory versus Israel-Stewart hydro in Riemann shocks:

Page 21: Relativistic irreversible thermodynamics

0),,(

JusnqesS

Improved Eckart theory:

junnN

PuququeeTu

0

hwwpeq )(Special choice:

0)(

1

2

1

uquqqupepe

TT

T

q

uqqhpPTT

j

j

TT

qJ

Simple version: Ván and Bíró, EPJ, (2008), 155, 201. (arXiv:0704.2039v2),

duqwpedqwdedupwdEwudnTds ))(()(

Page 22: Relativistic irreversible thermodynamics

Summary of hydrodynamics:

Modified Gibbs relation restores generic stability.

In the acceleration independent case:

linear stability of homogeneous equilibrium

Conditions: thermodynamic stability, nothing more. Ván P.: J. Stat. Mech. (2009) P02054

Israel-Stewart like relaxational (quasi-causal) extensionBiró T.S. et. al.: PRC (2008) 78, 014909

Page 23: Relativistic irreversible thermodynamics

integrating multiplier

Hydrodynamics → thermodynamics

}3,2,1,0{,

,,,1

GuEE

dVqGeVedVEdVuV

u

QdAquVupGuE

HH H

H

H(2)

H(1)

Volume integrals: work, heat, internal energy

Change of heat and entropy:

pdVAA

uAdG

AA

AdE

AA

uAdS

VESSGuEE

ASVupEQ

),(,

pdVdEgTdS

temperature1

ug

integrating multiplier

Page 24: Relativistic irreversible thermodynamics

• there are four different velocities

• only one of them can be eliminated

• the motion of the body and the energy-momentum currents are slower than light

dEwuTdS )( 1)(

uwu

Interaction

v2

observer

w2

v1

w1

w spacelike, but |w|<1 -- velocity of the heat current

About the temperature of moving bodies (part 2)

Page 25: Relativistic irreversible thermodynamics

v2

w2

v1

w1

2

222

1

111

2

222

1

111

T

)wv(

T

)wv(

T

)wv1(

T

)wv1(

2

2

2

1

2

1

22

22

11

11

T

w1

T

w1

wv1

wv

wv1

wv

2

22

1

11 )()()(

T

wu

T

wudEwuTdS

1+1 dimensions:

),(),,( wvwwvu

Page 26: Relativistic irreversible thermodynamics

2

2

2

1

1

1

vw

v

T

T

Four velocities: v1, v2, w1, w2

Transformation of temperatures

2

2

2

1

2

1

22

22

11

1111

,11 T

w

T

w

wv

wv

wv

wv

v

w2w1Relative velocity

(Lorentz transformation) 21

12

1 vv

vvv

general Doppler-like form!

2

21

1 vw

wvw

Page 27: Relativistic irreversible thermodynamics

0

2

0 1

1

vw

v

T

T

Special:

w0 = 0 T = T0 / γ Planck-Einstein

w = 0 T = γ T0 Ott

w0 = 1, v > 0 T = T0 • red Doppler

w0 = 1, v < 0 T = T0 • blue Doppler

w0 + w = 0 T= T0 Landsberg

v

w0w

K K0thermometer

T T0

Biró T.S. and Ván P.: EPL, 89 (2010) 30001

Page 28: Relativistic irreversible thermodynamics

V=0.6, c=1

Page 29: Relativistic irreversible thermodynamics

Summary

Generalized Gibbs relation:

– consistent kinetic equilibrium

– improves hydrodynamics

– explains temperature of moving bodies

Outlook: what is the local lest frame/flow?(Eckart or Landau-Lifshitz)!?

is dissipation frame independent?

non-relativistic (Brenner)

dupwdEwudnTds )(

Thermodynamics

Hydrodynamics Kinetic

theory

homogeneity equilibrium

local

equilibrium

Page 30: Relativistic irreversible thermodynamics

Thank you for the attention!

Biró-Ván, EPL, 89, 30001, 2010

u1

u2

w1

w2

g1

g2

Blue shifted doppler

u1

u2

w1 w2

g1

g2

Planck-Einstein

u1

u2

w1

w2

g1 g2

Landsberg

u2

w1

w2

g1 u1g2

Ott-Blanusa

u1

u2

w1

w2

g1

g2

Red shifted doppler

wug

Page 31: Relativistic irreversible thermodynamics

Energy-momentum density:

T

pu

T

pwu

peeepxf

ˆ

ˆˆ)(

0 ),(

21

ˆw

wuu

,1

ˆ,1

ˆ22 w

T

w

TT

nwnuunfpN ˆˆ00

TeT

mKTmwnn

ˆˆ41ˆ

2

22

00ˆˆˆˆˆ fpppuueT

T

mK

T

mK

nmTne

ˆ

ˆˆˆˆ3ˆ

2

1

pe

qqpquuqueuT

0

wpeqw

wpeepp )(,

1

ˆˆ,ˆ

2

2

Heat flux:0

w

n

peqI

Page 32: Relativistic irreversible thermodynamics

.2

,

j

i

ijk

k

ij

ii

vv

Tq

Isotropic linear constitutive relations,

<> is symmetric, traceless part

Equilibrium:

.),(.,),(.,),( consttxvconsttxconsttxn i

i

ii

Linearization, …, Routh-Hurwitz criteria:

00)(

,0

,0,0,0

TT

TTpnpp

T

nnn

,0

,0

,0

iij

j

j

j

ii

ji

iji

i

i

i

i

i

Pvkk

vPqv

vnn

Hydrodynamic stability)( 22 sDetT

Thermodynamic stability

(concave entropy)

Fourier-Navier-Stokes

0)(11

ji

ijij

i

i vnTsPTT

q

p

Page 33: Relativistic irreversible thermodynamics

Remarks on stability and Second Law:

Non-equilibrium thermodynamics:

basic variables Second Law

evolution equations (basic balances)Stability of homogeneous equilibrium

Entropy ~ Lyapunov function

Homogeneous systems (equilibrium thermodynamics):

dynamic reinterpretation – ordinary differential equations

clear, mathematically strict

See e.g. Matolcsi, T.: Ordinary thermodynamics, Academic Publishers, 2005

partial differential equations – Lyapunov theorem is more technical

Continuum systems (irreversible thermodynamics):

Linear stability (of homogeneous equilibrium)

Page 34: Relativistic irreversible thermodynamics

u1

u2

w1

w2

g1

g2

Blue shifted doppler

u1

u2

w1 w2

g1

g2

Planck-Einstein

u1

u2

w1

w2

g1 g2

Landsberg

u2

w1

w2

g1 u1g2

Ott-Blanusa

u1

u2

w1

w2

g1

g2

Red shifted doppler

Page 35: Relativistic irreversible thermodynamics

Thermodynamics

Hydrodynamics Kinetic

theory

homogeneity equilibrium

moment series

general balances

concepts

concepts dissipation

Page 36: Relativistic irreversible thermodynamics