reference - shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf ·...

17
Reference 1). Acar Y. B. and Alshawabkeh A. N. (1993). ‘‘Principles of electrokinetic remediation.’’ Environ. Sci. Technol., 27-13, 2638–2647. 2). Acar Y. B. and Alshawabkeh A. N. (1996). ‘‘Electrokinetic remediation. Pilot scale tests with Pb spiked kaolinite.’’ J. Geotech. Eng., 122-3, 173–185. 3). Acar Y. B. et al. (1995). ‘‘Electrokinetic remediation: Basics and technology status.’’ J. Haz. Mat., 40, 117–137. 4). Acar Y. B., Alshawabkeh A. N. and Gale R. J. (1993). ‘‘Fundamentals of extracting species from soils by electrokinetics.’’ Waste Management, 13, 141–151. 5). Acar Y. B., Gale R. J., Hamed, J. and Putnam G. A. (1991). ‘‘Acid/base distributions in electrokinetic soil processing.’’ Transp. Res. Rec., 1288, 23–34. 6). Acar Y. B., Hamed J. T., Alshawabkeh A. N. and Gale R. J. (1994). ‘‘Removal of Cd~II from saturated kaolinite by the application of an electrical current.’’ Geotechnique, 44-2, 239–254. 7). Acar Y. B., Li H. Y. and Gale R. J. (1992). ‘‘Phenol removal from kaolinite by electrokinetics.’’ J. Geotech. Eng., 118-11, 1837–1852. 8). Agard J. B. R. (1981). ‘‘A study of electroreclamation and its application to the removal of toxic metals from contaminated soils.’’ MSc thesis, Manchester Univ., Manchester, England. 9). Ahmad et.al. (2004). “Valuation and enhancement of electrokinetic technology for remediation of chromium copper arsenic from clayey soil”. Ph.D. thesis, Florida State Univ., U.S.A. 10). Akram and Alshawabkeh A. N. (2001). “Basics and applications of Electrokinetic remediation.” Northeastern University. 11). Allen H. E. and Chen P. H. (1993). ‘‘Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA.’’ Envi. Prog., 284–293. 12). Alshawabkeh A. N. and Acar Y. B. (1996). ‘‘Electrokinetic remediation. Theoretical model.’’ J. Geotech. Eng., 186–196. 13). Alshawabkeh A. N., Gale R. J., Ozsu E. and Bricka R. M. (1999). ‘‘Optimization of 2-D electrode configuration for electrokinetic extraction.’’ J. Soil Contaminat, 8, 617–635. 14). Alshawabkeh A. N., Yeung A. T. and Bricka M. R. (1999). ‘‘Practical aspects of in- situ electrokinetic extraction.’’ J. Environ. Eng., 125-1, 27–35. 102

Upload: others

Post on 10-Jan-2020

14 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

Reference

1). Acar Y. B. and Alshawabkeh A. N. (1993). ‘‘Principles of electrokinetic remediation.’’ Environ. Sci. Technol., 27-13, 2638–2647.

2). Acar Y. B. and Alshawabkeh A. N. (1996). ‘‘Electrokinetic remediation. Pilot scale tests with Pb spiked kaolinite.’’ J. Geotech. Eng., 122-3, 173–185.

3). Acar Y. B. et al. (1995). ‘‘Electrokinetic remediation: Basics and technology status.’’ J. Haz. Mat., 40, 117–137.

4). Acar Y. B., Alshawabkeh A. N. and Gale R. J. (1993). ‘‘Fundamentals of extracting species from soils by electrokinetics.’’ Waste Management, 13, 141–151.

5). Acar Y. B., Gale R. J., Hamed, J. and Putnam G. A. (1991). ‘‘Acid/base distributions in electrokinetic soil processing.’’ Transp. Res. Rec., 1288, 23–34.

6). Acar Y. B., Hamed J. T., Alshawabkeh A. N. and Gale R. J. (1994). ‘‘Removal of Cd~II from saturated kaolinite by the application of an electrical current.’’ Geotechnique, 44-2, 239–254.

7). Acar Y. B., Li H. Y. and Gale R. J. (1992). ‘‘Phenol removal from kaolinite by electrokinetics.’’ J. Geotech. Eng., 118-11, 1837–1852.

8). Agard J. B. R. (1981). ‘‘A study of electroreclamation and its application to the removal of toxic metals from contaminated soils.’’ MSc thesis, Manchester Univ., Manchester, England.

9). Ahmad et.al. (2004). “Valuation and enhancement of electrokinetic technology for remediation of chromium copper arsenic from clayey soil”. Ph.D. thesis, Florida State Univ., U.S.A.

10). Akram and Alshawabkeh A. N. (2001). “Basics and applications of Electrokinetic

remediation.” Northeastern University.

11). Allen H. E. and Chen P. H. (1993). ‘‘Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA.’’ Envi. Prog., 284–293.

12). Alshawabkeh A. N. and Acar Y. B. (1996). ‘‘Electrokinetic remediation. Theoretical model.’’ J. Geotech. Eng., 186–196.

13). Alshawabkeh A. N., Gale R. J., Ozsu E. and Bricka R. M. (1999). ‘‘Optimization of 2-D electrode configuration for electrokinetic extraction.’’ J. Soil Contaminat, 8, 617–635.

14). Alshawabkeh A. N., Yeung A. T. and Bricka M. R. (1999). ‘‘Practical aspects of in-situ electrokinetic extraction.’’ J. Environ. Eng., 125-1, 27–35.

102

Page 2: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

15). Alya Elsayed Ali, Tarek. M, Fattah A. and Hanie Elsayed Ali. (2009). “Effect of initial

soil pH on copper ion transport in an electrokinetic cell.” Proc. of the 4th international

conference on energy & environment.

16). Atanassova I. D. and Okazakí M. (1997). “Adsorption-desorption characteristics of high

1evels of copper in soil clay fractions.” Water Air Soil Pollution., 98, 213-228.

17). Azzam and Oey (2000). “Application of Electroosmosis to Reduce the Adhesion of

Clay during Mechanical Tunnel Driving, Environment and Engineering Geosciences

18). Baker D. E. and Senft J. P. (1995). “Heavy metals in soils.” B.J. Blackie Academic &

Professional, Chapmann & Hall, 2nd edition, 179 –202.

19). Bamji M.S. et. al. (2000). “Risk of aluminum burden in the Indian population: contribution from

aluminum cookware”, Food Chem, 70, 57-61.

20). Banerjee (1987). ‘‘Electro-decontamination of chrome-contaminated soils.’’ Proc., 13th Annual Research Symp.: Land Disposal, Remedial Action, Incineration & Treatment of Hazardous Waste, EPA, Cincinnati, 193–200; U.S. Environmental Pro-tection Agency, Cincinnati.

21). Baraud F., Fourcade M. C., Tellier S. and Astruc M. (1998). ‘‘Modelling of decontamination rate in an electrokinetic soil processing.’’ Int. J. Environ. Anal. Chem., 68, 105–121.

22). Baraud F., Tellier S. and Astruc M. (1997). ‘‘Ion velocity in soil solution during electrokinetic remediation.’’ J. Haz. Mat., 56, 315–332.

23). Battarbee R. et.al. (1988) “Lake acidification in the United Kingdom, ENSIS,

London.

24). Bjerrum L., Moum J. and Eide O. (1967). ‘‘Application of electroosmosis to a foundation problem in a Norwegian quick clay.’’ Geotechnique, 17, 214–235.

25). British Medical Bulletin (2003). 68, 167–182

26). Bruell C. J., Segall B. A. and Walsh M. T. (1992). ‘‘Electroosmotic removal of gasoline hydrocarbons and TCE from clay.’’ J. Environ. Eng., 118-1, 68–83.

27). Bruno. (1995). “Chemical Pollution: Gujarat’s toxic corridor.” The Hindu Society of

the Environment, 163- 166.

28). Budhu M., Rutherford M., Sills G. and Rasmussen W. (1997). ‘‘Trans-port of nitrates through clay using electrokinetics.’’ J. Environ. Eng., 123-12, 1251–1253.

29). Cambefort H. and Caron C. (1961). ‘‘Electro-osmosis consolidation electrochimique des argiles.’’ Geotechnique, 11, 203–233.

103

Page 3: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

30). Casagrande L. (1947). ‘‘The application of electroosmosis to practical problems in foundations and earthworks.’’ Building Technical Paper No. 30; H.M.S.O., London.

31). Casagrande L. (1949). ‘‘Electroosmosis in soils.’’ Geotechnique, 1, 159–177.

32). Casagrande L. (1952). ‘‘Electroosmotic stabilization of soils.’’ J. Boston Soc. Civ. Eng. 39, 51–83.

33). Case F. N. and Cutshall N. H. (1979). ‘‘Control of radionuclide migration in soil by the application of DC electric current.’’ Proc., Symp. on the Scientific Basis for Nuclear Waste Management, Boston.

34). Chengnon H, Yeung A.T. and Menon R.M. (2011). “Electrokinetic extraction of lead

from kaolinites: II. Experimental investigation.” Springer Science+Business Media.

35). Chil Sung Jeon1, Jung Seok Yang, Kyung Jo Kim, Kitae Baek. (2010).

“Electrokinetic Removal of Petroleum Hydrocarbon from Residual Clayey Soil

Following a Washing Process.” Clean, 38 (2), 189 – 193.

36). Chung H. I. and Kang B. H. (1999). “Lead Removal from Contaminated Marine

Clay by Electrokinetic Soil Decontamination.” Engineering Geology, 53- 2, 139-

150.

37). CIRIA. (1995). ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Land, In-situ Methods of Remediation, Special Publication 109-10, 132–141.

38). Clarke R. L., Kimmel S., Lageman R. and Smedley S. (1996). ‘‘Electrokinetic remediation of soils, sludges and groundwater.’’ Proc.58th American Power Conf., Illinois Institute of Technology, Chicago, 347–352.

39). Coletta T. F., Bruell C. J., Ryan D. K. and Inyang H. I. (1997). ‘‘Cation-enhanced removal of lead from kaolinite by electrokinetics.’’ J. Environ. Eng. Div., ASCE 123-12, 1227–1233.

40). Cox C. D., Shoesmith M. A. and Ghosh M. M. (1996). ‘‘Electrokinetic remediation of mercury contaminated soils using iodine/iodide lixiviant.’’ Env. Sci. Tech., 30-6, 1933–1938.

41). CPCB. (1996). “Inventorisation of hazardous waste generation in five districts

(Ahmedabad, Vadodara, Bharuch, Surat and Valsad) of Gujarat.” Central Pollution

Control Board, Ministry of Environment & Forests, Government of India.

42). Denisov G., Hicks R. E. and Probstein R. F. (1996). ‘‘On the kinetics of charged contaminant removal from soils using electric fields.’’ J. Colloid Interface Sci., 178-1, 309–323.

43). Dzenitis J. M. (1997). ‘‘Soil chemistry effects and flow prediction in electroremediation of soil.’’ Env. Sci. Tech., 31-4, 1191 –1197.

104

Page 4: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

44). Endell K. and Hoffmann U. (1936). ‘‘Electrochemical hardening of clayey soils.’’ Proc. 1st Int. Conf. on Soil Mechanics and Foundation Engineering, Cambridge, Mass., 1, 273–275.

45). Ermolenko I. N. et. al. (1990). “Chemically modi ed carbon bres and their

application”, Germany: VCH, 6–7

46). Esrig M. I. (1968). ‘‘Pore pressures, consolidation, and electrokinetics.’’ J. Soil Mech. Found. Div., ASCE 94-SM4, 899–921.

47). Esrig M. I. (1968). “Pore pressures consolidation and electrokinetics” J. of Soil Mech. and Fdn.

Div., ASCE, 94, 899-921.

48). European Patent No. 0312174A1, 1989 and U.S. Patent No. 5,074,986, 1991.

49). Eykholt G. R. and Daniel D. E. (1994). ‘‘Impact of system chemistry on electroosmosis in contaminated soil.’’ J. Geotech. Eng., 120-5, 797– 815.

50). Eykholt G.R. (1997). ‘‘Development of pore pressures by nonuniform electroosmosis in clays.’’ J. Haz. Mat., 55, 171–186.

51). Fernandez Gonzalez R. (1966). ‘‘The process of soil water movement by electricity -electroosmosis and its application to the reclamation of a sodic soil.’’ Dissertation Abstracts, 26, 4166.

52). Francis U. U. (2009). “Conventional and new ways of remediating soils polluted with

heavy metals.” Dept of Applied biochemistry, Scholars the Nigerian publisher.

53). Frederiksberg K et al. (2001). “ Kobenhavn kommune, Fredriksborg amt, Kobenhavn

amt, Roskilde amt, Storstroms amt og Vestsjaelland amt Vejledning i Handtering af

forurenet jord pa Sjaelland” (in Danish)

54). Friberg L., Elinder C. G., Kjellstrom T., and Norberg G. F. (1985) “Cadmium and Health:

Toxicological and Epidemiological Appraisal.” 1 & 2, CRC Press.

55). Garbarino J. R. et.al. (1995) “Contaminants in the Mississippi River” U.S.G.S., 

Circular 1133, Virginia, U.S.A. 

56). Gibbs H. J. (1966). “Research on electroreclamation of saline alkali soils”, Transactions of the

ASAE, 9, 164-169

57). Gladwell J. K. (1965). “Practical application of electroosmosis.” New Zealand Eng, 20-2, 66-

72.

105

Page 5: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

58). Govil P. K. and Krishna A. K. (1985). “Soil Contamination Due to Heavy Metals from

an Industrial Area of Surat, Gujarat, Western India.” National Geophysical Research

Institute.

59). GPCB Comprehensive Environmental Pollution Abatement Action Plan Ankleshwar

Industrial Cluster ‐ Gujarat, 2010

60). Gray D. H. and Mitchell J. K. (1967). ‘‘Fundamental aspects of electroosmosis in soils.’’ J. Soil Mech. Found. Div., ASCE 93, 209–236.

61). Gray D. H. and Schlocker J. G. (1969). ‘‘Electrochemical alteration of clay soils.’’ Clays Clay Miner, 17, 309–322.

62). Gray, D. H. and Somogyi, E. (1977). “Electroosmotic Dewatering with Polarity Reversals" J.

Geotech. Eng. Div. ASCE 103, 51-54.

63). Grim R. E. (1968). “Clay mineralogy” McGraw Hill, New York.

64). Grundl T. and Reese C. (1997). ‘‘Laboratory study of electrokinetic effects in complex natural sediments.’’ J. Haz. Mat., 55, 187–201.

65). Hadjivassilis I., Tebai L. and Nicolaou M. (1994). “Joint treatment of industrial

effluent: case study of Limassol Industrial Estate.” Water Science and Technology 29-9,

99-104.

66). Hamed J. T. and Bhadra A. (1997). ‘‘Influence of current density and pH on electrokinetics.’’ J. Haz. Mat., 55, 279–294.

67). Hamed J. T., Acar Y. B. and Gale R. J. (1991). ‘‘Pb-II removal from kaolinite by electrokinetics.’’ J. Geotech. Eng., 117-2, 241–271.

68). Hamnett R. (1980). ‘‘A study of the process involved in electroreclamation of contaminated soils.’’ MSc thesis, Manchester Univ., Manchester, England.

69). Haran B. S., Popov B. N., Zheng G. and White R. E. (1996). ‘‘Development of a new electrochemical technique for decontamination of hexavalent chromium from low surface charged soils.’’ Env. Prog., 15-3:, 166–172.

70). Haran B. S., Popov B. N., Zheng G., and White R. E. (1997). ‘‘Mathematical modeling of hexavalent chromium decontamination from low surface charged soils.’’ J. Haz. Mat., 55, 93–107.

71). Harton J. H., Hamid S., Abi Chedid E. and Chilingar G. V. (1967). ‘‘Effects of electrochemical treatment on selected physical properties of a clayey silt.’’ Eng. Geol. (Amsterdam), 2, 191–196.

72). Hawkes J. S. (1997) “Heavy Metals.” J. Chem. Educ., 74-11

106

Page 6: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

73). Hellstrom L., Elinder C. G., Dahlberg B., Lundberg M., Jarup L., Persson B. and Axelson O.

(2001) “Cadmium exposure and end-stage renal disease.” 38-5, 1001–1008.

74). Hicks R. E. and Tondorf S. (1994). ‘‘Electrorestoration of metal contaminated soils.’’ Env. Sci. Tech., 28-12, 2203–2210.

75). Ho S. V. et al. (1999a). ‘‘The Lasagna technology for in situ soil remediation. 1. Small field test.’’ Env. Sci. Tech., 33-7, 1086–1091.

76). Ho S. V. et al. (1999b). ‘‘The Lasagna technology for in situ soil remediation. 2. Large field test.’’ Env. Sci. Tech., 33-7, 1092–1099.

77). Ho S. V., Athmer C. J., Sheridan P. W. and Shapiro A. P. (1997). ‘‘Scale-up aspects of the Lasagna ~TM process for in situ soil decontamination.’’ J. Haz. Mat., 55, 39–60.

78). Hubick K. T. (1992) “Artificial neural networks in Australia”, Department of Industry, Technology and Commerce; Commonwealth of Australia

79). Hunter R. J. (1981). “Zeta potential in colloid science: Principles and applications.” Academic, London.

80). Hunter R. J. and James M. (1992). ‘‘Charge reversal of kaolinite by hydrolyzable metal ions: An electroacoustic study.’’ Clays Clay Miner., 40, 644–649.

81). Hutton M. and Symon C. (1986). “The Quantities of Cadmium, Lead, Mercury and

Arsenic Entering the U.K. Environment from Human Activities ‘.Sci. Total Environ.

57, 129-150.

82). Iyer R. (2001). “Electrokinetic Remediation, Particulate Science and Technology.” An

International Journal, 19, 219.

83). Jacobs R. A. and Probstein R. F. (1996). ‘‘Two-dimensional modeling of electroremediation.’’ AIChE J., 42, 1685–1696.

84). Jacobs R. A., Senguin M. Z., Hicks R. E. and Probstein, R. F. (1994). ‘‘Model and experiments on soil remediation by electric fields.’’ J. Envir. Sci. Health., 29-9 1933–1955.

85). Jarup L., Persson B., Elinder C. G. (1998) “Cadmium may be a risk factor for osteoporosis.”

Occup Environ Med., 55-7, 435–439.

86). Jarup L., Rogenfelt A., Elinder C. G. , Nogawa K., Kjelstrom T. (1983) “Biological half-

time of cadmium in the blood of workers after cessation of exposure.”, Scandinavian

Journal of work, environment and health, 9-4, 327-331

107

Page 7: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

87). Jarup, Berglund M., Elinder C. G., Nordberg G., Vahter M. (1998). “Health effects of cadmium exposure, a review of the literature and a risk estimate; Scand J Work; Environ Health 24, 1–51.

88). Javadi and Al Najjar. (2007). “Finite element modeling of contaminant transport in soil

including the effect of chemical reaction.” J. of Haz. Mat., 143-3, 690-710

89). Jensen J. B., Kubes V. and Kubal M. (1994). ‘‘Electrokinetic remediation of soils polluted with heavy metals. Removal of zinc and copper using a new concept.’’ Env. Tech., 15, 1077–1082.

90). Jin and Sharma (1991). “A Model for Electrochemical and Electrokinetic Coupling in

Inhomogeneous Porous Media.” University of Texas at Austin.

91). Johnston W. and Butterfield R. (1977). “A laboratory investigation of soil consolidation by

electroosmosis” Australian Geomechanics Journal, 21 - 32.

92). Kang B. (1997). ‘‘Removal of lead from contaminated Korean marine clay by electrokinetic remediation technology.’’ Geoenvironmental Engineering, R. N. Young and H. R. Thomas, eds., Thomas Telford, London, 423–430.

93). Kaplana D. I., Bertschb P. M. and Adrianob D. C. (1991). “Facilitated transport of

contaminant metals through a colloidal aquifer”, 33-5.

94). Khan L. I. and Alam M. S. (1994). ‘‘Heavy metal removal from soil by coupled electric-hydraulic gradient.’’ J. Environ. Eng. Div., ASCE, 120-6, 1524–1543.

95). Kiikkila and Lone et al. (2008). “Conventional and new ways of remediating soils

polluted with heavy metals.” Scholars Nigerian online publishing.

96). Kim J. and Lee K. (1999). ‘‘Effects of electric field directions on surfactant enhanced electrokinetic remediation of diesel-contaminated sand column.’’ J. Envir. Sci. Health, 34-4, 863–877.

97). Kim J. G., Dixon J. B., Chusuei C. C. and Deng Y. (2002). “Oxidation of chromium III

to VI by manganese oxides.” Soil Science Society American Journal, 66, 306-315.

98). Kim S. O., Kim K. W. and Stuben D. (2002). “Evaluation of Electrokinetic Removal

of Heavy Metals from Tailing Soils” ASCE, 128, 8-705

99). Kjeldsen P. and Christensen T. H. (1996). “Kemiske stoffers opførsel i jord og

grundvand: bind1 og 2. Projekt om jord og grundvand fra Miljøstyrelsen nr. 20, 1996

(original in Danish)

100). Krause T. R. and Tarman B. (1995). ‘‘Preliminary results from the investigation of thermal effects in electrokinetic soil remediation.’’ ACS Symp. Ser., 607, 21–32.

108

Page 8: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

101). Krupadam R. J., Smita P. and Wate S. R. (2006). “Geochemical fractionation of

heavy metals in sediments of the Tapi estuary”, Geochemical Journal, 40, 513- 522.

102). Kuo C. C. and Papadopoulos K. D. (1996). ‘‘Electrokinetic movement of settled spherical particles in fine capillaries.’’ Environ. Sci. Technol., 30-4, 1176–1179.

103). Labunska et.al. (1999). “Organic and heavy metal contaminants in samples taken at

three industrial estates in Gujarat, India.” Technical Note 05/99, Gujarat industrial

estates.

104). Lageman R. (1993). ‘‘Electroreclamation - applications in the Netherlands.’’ Env. Sci. Tech., 27-13, 2648–2650.

105). Lageman R., Pool W. and Seffinga G. A. (1990). ‘‘Electroreclamation: State of the art and future developments.’’ Contaminated Soil ’90, F.

106). Lageman R., Pool W. and Seffinga G.A. (1989). ‘‘Electroreclamation: Theory and practice.’’ Chem. Ind., 18, 585–590.

107). Lageman R., Pool W., Van Vulpen, M. and Norris R. D. (1995). ‘‘In situ electrobioreclamation in low-permeability soils.’’ Applied Bioremediation Petroleum Hydrocarbons. Bioremediation Series, 3-6, 287–292.

108). Lancelot F., Londiche H. and De Marsily G. (1990). ‘‘Experimental results on the influence of electric fields on the migration of oil, ionic species and water in porous media.’’ J. Pet. Sci. Eng., 4, 67–74.

109). Laursen S. (1997). ‘‘Laboratory investigation of electroosmosis in bentonites and natural clays.’’ Can. Geotech. J., 34, 664–671.

110). Lehe´cho I., Tellier S. and Astruc M. (1999). ‘‘Industrial site soils contaminated with arsenic or chromium: Evaluation of the electrokinetic method.’’ Environ. Technol., 19, 1095–1102.

111). Lenntech Water Treatment and Air Purification (2004). “Water Treatment”, Published by

Lenntech, Rotterdamseweg, Netherlands

112). Li Z., Shuman L. M. (1996)., Sci. Total Environment, 191, 95-107

113). Li Z., Yu J. W. and Neretnieks I. (1996). ‘‘A new approach to electro-kinetic remediation of soils polluted by heavy metals.’’ J. Contam. Hydrol., 22, 241–253.

114). Li Z., Yu J. W. and Neretnieks I. (1997a). ‘‘Removal of Cu~II and Cr~III from naturally contaminated loam by electromigration.’’ J. Env. Sci. Health. A, 32, 1293–1308.

115). Li Z., Yu J. W. and Neretnieks I. (1997b). ‘‘Removal of Pb~II, Cd~II and Cr~III from sand by electromigration.’’ J. Haz. Mat., 55, 295– 304.

109

Page 9: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

116). Li Z., Yu J. W. and Neretnieks I. (1999). ‘‘Electroremediation: Removal of heavy metals from soils by using cation selective membrane.’’ Environ. Sci. Technol., 32-3, 394–397.

117). Lindgren E. R., Hankins M. G., Mattson E. D. and Duda P. M. (1999). ‘‘Electrokinetic demonstration at the unlined chromic acid pit.’’ Rep. No. SAND97-2592, Sandia, Albuquerque, N.M.

118). Lindgren E. R., Mattson E. D. and Kozak M. W. (1994). ‘‘Electroki-netic remediation of unsaturated soils.’’ ACS Symp. Ser., 554, 33–50.

119). Lindsay W. L. et.al. (1967). “The Physico-chemical equilibrium of metal chelates in soils and

their influence on the availability of micronutrient cation.:, Int. Soc. Soil Sci., Trans. Comm. II,

IV, 305-316

120). Lockhart N. C. (1983) “Electroosmotic dewatering of clays., Influence of voltage”, Colloids and

Surfaces, 6, 229-238

121). Lorenz P. B. (1969). ‘‘Surface conductance and electrokinetic properties of kaolinite beds.’’ Clays Clay Miner., 17, 223–23 1.

122). Lyklema (2003). “Lyotropic sequences in colloid stability revisited.” Elsevier Science

100–102, 1–12.

123). Mattson E. D. and Lindgren, E. R. (1995). ‘‘Electrokinetic extraction of chromate from unsaturated soils.’’ ACS Symp. Ser., 607, 10–20.

124). Mc Dermott C. I. (2007). “Vacuum assisted removal of volatile to semi volatile organic

contaminants from water using hollow fiber membrane contactors: II: A hybrid numerical-

analytical modeling approach”, J. of Membrane Science, 291-1, 17-28

125). McKinley J. D. and Peat L. J. (2000). ‘‘Pore water chemistry effects in electrokinetic remediation.’’ Proc., 2nd Symp. Heavy Metals in the Environment and Electromigration Applied to Soil Remediation, Tech-nical Univ. of Denmark, Lyngby, Denmark, 47–52.

126). Mendenhall and Beaver. (2007). “Regression: A Comparison Report,” Finance India 2007.

127). Menon R. M., Hsu C. and Yeung, A. T. (1996). ‘‘Experimental and modeling studies on electrokinetic extraction of lead from Georgia kaolinite.’’ Environmental Geotechnics, 2, Rotterdam, 1039–1044.

128). Miller R. D. (1955). ‘‘Neglected aspects of electroosmosis in porous bodies.’’ Science, 122, 373–374.

110

Page 10: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

129). Mise T. (1961).‘‘Electroosmotic dewatering of soil and distribution of the pore water pressure.’’ Proc., 5th Int. Conf. on Soil Mechanics and Foundation Engineering, Paris, 1, 255–258.

130). Mitchell J. K. (1993). Fundamentals of Soil Behavior, 2nd Ed., Wiley, New York.

131). Mitchell J. K. (1991). ‘‘Conduction phenomena: From theory to practice.’’ Geotechnique, 41, 299–340.

132). Mitchell J. K. and Yeung, A. T. (1991). ‘‘Electrokinetic flow barriers in compacted clay.’’ Transp. Res. Rec., 1288, 1–9.

133). Mosavat N., Oh E. and Chai G. (2012). “A Review of Electrokinetic Treatment Technique for Improving the Engineering Characteristics of Low Permeable Problematic Soils.” International journal of Geomat, 2-2.

134). Nagar. (1995). “Technical environmental impact assessment studies for selection of

hazardous waste disposal sites and investigation of old dump sites in Bharuch

District of Gujarat.” Central Pollution Control Board, New Delhi, India

135). National Environment Protection Measure (1999). “Schedule B(1), Guideline on the

investigation level for soil and ground water

136). Norvell W.A. (1969). “Reaction of EDTA complexes of Fe, Zn, Mn and Cu with soils.” Soil

Sci. Amer., 33, 86-91

137). Nriagu J. O. and Pacyna J. (1988). “Quantitative Assessment of Worldwide

Contamination of Air, Water and Soil by Trace Metals.” Nature, 333, 134-139.

138). Ottosen L. M, Hansen H. K. and Hansen C. B. (2000a). “Water splitting at ion-

exchange membranes and potential differences in soil during electrodialytic soil

remediation.” J. of Applied Electrochemistry, 30, 1199 –1207.

139). Ottosen L. M., Hansen H. K., Ribeiro A. B. and Villumsen A. (2004). “Removal of

Cu, Pb and Zn in an applied electric field in calcareous and non calcareous soils.”

Journal of Hazardous Materials, 91, 205-219.

140). Ottosen L. M., Kliem B. K. and Villumsen A. (1997). ‘‘Electrodialytic remediation of soils polluted with Cu, Cr, Hg, Pb and Zn.’’ J. Chem. Technol. Biotechnol., 70, 67–73.

141). Page M.M. and Page C.L. (2002). “Electroremediation Of Contaminated Soils”, Journal

of Environmental Engineering

142). Palmer I. (1997). ‘‘Electrochemical remediation of contaminated land.’’ Proj. Inte. Rep., Dept. of Civil Engineering, Aston Univ., Birming-ham, England.

111

Page 11: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

143). Pamukcu S. and Wittle J. K. (1992). ‘‘Electrokinetic removal of selected heavy metals from soil.’’ Environ. Prog., 11-3, 241–250.

144). Pamukcu S. and Wittle J. K. (1994). ‘‘Electrokinetically enhanced in situ soil decontamination.’’ Remediation of Hazardous Waste Con-taminated Soils, D. L. Wise and D. J. Trantolo, eds., Marcel Dekker, New York, 245–298.

145). Pamukcu S., Khan L. I. and Fang H. Y. (1991). ‘‘Zinc detoxification of soils by electro-osmosis.’’ Transp. Res. Rec., 1288, 41–46.

146). Pavel L.V., Gavrilescu M. (2008). “Overview of Ex Situ Decontamination Techniques

For Soil Cleanup” Environmental Engineering and Management Journal, 7-6, 815-834

147). Penn M. and Savvidou C. (1997). ‘‘Temperature effects on electroki-netic remediation of contaminated soil.’’ Engineering Geology and the Environment,

148). Popov K., Yachmenev V., Kolosov A. and Shabanova N. (1999). “Effect of soil

electroosmotic flow enhancement by chelating reagents.” A Physicochem. Eng. Asp.

160, 135– 140.

149). Probstein R. F. and Hicks R. E. (1993). ‘‘Removal of contaminants from soils by electric fields.’’ Science, 260, 498 –503.

150). Puppala S. K., Acar Y. B., Gale R. J. and Bricka R. M. (1997). ‘‘Effect of solubility on enhanced electrokinetic extraction of metals.’’ In Situ Remediation of the Geoenvironment, ASCE, Geotechnical Special Publication, 71, 532–544.

151). Puppala S. K., Alshawabkeh A. N., Acar Y. B., Gale R. J. and Bricka, M. (1997). ‘‘Enhanced electrokinetic remediation of high sorption capacity soil.’’ J. Haz. Mat., 55, 203 –220.

152). Puri A. N. and Anand, B. (1936). ‘‘Reclamation of alkali soils by electrodialysis.’’ Soil Sci., 42, 23 –27.

153). Putnam G. A. (1988). “Part A: Environmental Science, Engineering and Toxicology.” J.

of Env. Sci. and Health, 25-6.

154). Rao T.G. and Govil P.K. (1995). “Merits of using Barium as a heavy absorber in major element

analysis of rock samples by XRF”. Analyst, 120, 1279–1282.

155). Ray C. and Ramsey R. H. (1987). ‘‘Removal of heavy metals in waste-water in a clay soil matrix using electro-osmosis.’’ Environ. Prog., 6~3, 145–149.

156). Reddy K. R. and Karri M.R. (2006). “Effect of voltage gradient on integrated

electrochemical remediation of contaminant mixtures.” Land Contamination &

Reclamation, 14(3), EPP Publications Ltd.

112

Page 12: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

157). Reddy K. R. and Parupudi U. S. (1997). ‘‘Removal of chromium, nickel and cadmium from clays by in-situ electrokinetic remediation.’’ J. Soil Contamination, 6-4, 391–407.

158). Reddy K. R., Parupudi U. S., Devulapalli,S. N. and Xu C. Y. (1997). ‘‘Effects of soil composition on the removal of chromium by electrokinetics.’’ J. Haz. Mat., 55, 135–158.

159). Reddy K. R., Xu C. Y. and Chinthamreddy. (2001). “Assessment of Electro kinetic

removal of heavy metals from soils by sequential ex-traction analysis.’’ J. Haz. Mat,

B 84(2), 279–296.

160). Reddy K.R., Saichek R.E., Maturi K. and Ala P. (2002). “Effect of Soil Moisture and

Heavy Metal Concentrations on Electrokinetic Remediation.” Indian Geotechnical

Journal, 32 (2),

161). Reed B. E., Berg M. T., Thompson J. C. and Hatfield J. H. (1995). ‘‘Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam.’’ J. Environ. Eng., 121-11, 805–815.

162). Renaud P. C. and Probstein R. F. (1987). ‘‘Electroosmotic control of hazardous

wastes.’’ PCH PhysicoChemical Hydrodynamics, 9, 345 – 360.

163). Ribeiro A. B. and Mexia J. T. (1997). ‘‘A dynamic model for the electrokinetic removal of copper from a polluted soil.’’ J. Haz. Mat., 56, 257–271.

164). Rodsand T., Acar Y. B. and Breedveld G. (1995). ‘‘Electrokinetic extraction of lead from spiked Norwegian marine clay.’’ Geoenvironment 2000, ASCE, Geotechnical Speical Publication, 46-2, 1518– 1534.

165). Ross et. al. (1981). “Behavior of chromium in soils: IV. Toxicity to microorganisms,” JI

Environ. Qual. 10-2, 145-148.

166). Runnells D. D. and Larson J. L. (1986). ‘‘A laboratory study of electromigration as a possible field technique for the removal of contaminants from ground water.’’ Ground Water Monitoring Revue, 6, 85– 91.

167). Runnells D. D. and Wahli C. (1993). ‘‘In situ electromigration as a method for removing sulfate, metals and other contaminants from groundwater.’’ Ground Water Monitoring Remediation. 13-1, 121–129.

168). Sah J. G. and Chen J. Y. (1999). ‘‘Study of the electrokinetic process on Cd and Pb spiked soils.’’ J. Haz. Mat., 58, 301–3 15.

169). Saichek R.E. and Reddy K.R. (2005). “Electrokinetically enhanced remediation of

hydrophobic organic compounds in soils: A review” Crit. Rev. Environ. Sci. Tech., 35, 115–

192.

113

Page 13: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

170). Schultz D. S. (1997). ‘‘Electroosmosis technology for soil remediation: Laboratory results, field trial, and economic modeling.’’ J.Haz. Mat., 55, 81–91.

171). Schwartz D. T., Buehler M. F., Christiansen D. X. and Davis E. J. (1997). ‘‘Insitu monitoring of electrochemical transport processes in Hanford grout vault soil.’’ J. Haz. Mat., 55, 23–37.

172). Segall B. A. and Bruell C. J. (1992). ‘‘Electroosmotic contaminant removal processes.’’ J. Environ. Eng., 118-1, 84–100.

173). Segall B. A., O’Bannon C. E. and Matthias J. A. (1980). ‘‘Electroosmosis chemistry and water quality.’’ J. Geotech. Eng., 106-10, 1148–1152.

174). Shackelford C. D. and Daniel D. E. (1991). "Diffusion in saturated soil: I. Background." J.

Geotech. Eng., ASCE, 117-3, 467-484.

175). Shahin, Jaksa and Maier (2001). “Artificial neural network applications in geotechnical engineering”, Australian Geomechanics, 2001

176). Shapiro A. P. and Probstein R. F. (1993). ‘‘Removal of contaminants from saturated clay by electroosmosis.’’ Env. Sci. Tech., 27-2, 283–291.

177). Shapiro A. P. et al (1996). “Development of an Integrated in-situ Remediation Technology Topical Report for Tasks No. 2-4 entitled “Electrokinetic Modeling”

178). Shapiro A. P., Renaud P. C. and Probstein R. F. (1989). ‘‘Preliminary studies on the removal of chemical species from saturated porous media by electroosmosis.’’ PCH, Physico-Chem. Hydrodyn., 11, 785– 802.

179). Sheu W. H and Chen Y.H. (2002). “Finite element analysis of contaminant transport

in groundwater.” Applied Mathematics and Computation, 127, 23–43.

180). Shmakin B. M. (1985). ‘‘The method of partial extraction of metals in a constant current electrical field for geochemical exploration.’’ J. Geochem. Exploration, 23, 27–33.

181). Shrestha R., Fischer R., Sillanpaa M. (2007). “Investigations on different positions

of electrodes and their effects on the distribution of Cr at the water sediment

interface” J. Environ. Sci. Tech., 4 (4): 413-420.

182). Sposito G. (1984). “The surface chemistry of soils.” Oxford University Press, New York.

183). Staessen J. A., Roels H. A., Emelianov D., Kuznetsova T., Thijs L. and Vangronsveld J. “Environmental exposure to cadmium, forearm bone density and risk of fractures”. Prospective population study, Lancet 353, 1140–1144.

114

Page 14: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

184). Staessen J.A., Roels H.A., Emelianov D., Kuznetsova T., Thijs L., Vangronsveld J. and Fagard

R. (1999). “Environmental exposure to cadmium, forearm bone density, and risk of fractures:

prospective population study” The Lancet, 353, 1140 – 1144

185). Talapatra A. K., Talukdar R. C. and De P. K. (1986). ‘‘Electrochemical technique for exploration of base metal sulphides.’’ J. Geochem. Exploration, 25, 389–396.

186). Thevanayagam S. and Rishindran T. (1998). "Injection of nutrients and TEAs in

clayey soils using electrokinetics." J. of Geotech. Eng., ASCE, 124-4, 330-338.

187). Thornton R. F. and Shapiro A. P. (1995). ‘‘Modeling and economic analysis of in situ remediation of Cr~VI contaminated soil by electromigration.’’ ACS Symp. Ser., 607, 33–47.

188). Tuin B.J.W. and Tels M. (1990). “ Extraction kinetics of six heavy metals from contaminated

clay soils”, Environmental Technology, 11, 541-554.

189). Tzou Y. M., Chen Y. R. and Wang M. K. (1998). “Chromate sorption by acidic and

alkaline soils.”J. of Env. Sci. and Health, A 33-8, 1607-1630.

190). U.S.E.P.A. (1997). ‘‘Status of electrokinetic remediation technology.’’ Recent developments for In-Situ Treatment of Metal Contaminated Soils U.S.E.P.A., Contract No. 68-W5-0055, 10–26.

191). US Army Environmental Center (2000). “In-Situ Electrokinetic Remediation of Metal Contaminated soils, Technology Status Report.”

192). US Army Environmental Centre (2000). “In-Situ Electrokinetic Remediation of Metal

Contaminated Soils Technology Status final Report.”

193). User manual for MATLAB and SPSS Software.

194). Vadyunina A. F. (1968). ‘‘Meliorative effect of direct electric current on leaching solonchakous Solonetz.’’ Proc.(Trans.) of the 9th Int. Congress of Soil Science, Australia, 455 –463.

195). Van Cauwenberghe. (1997): “Ground Water Remediation Technologies Analysis

Centre.” Electrokinetics, 0 Series, 97-03.

196). Vibrant Gujarat Summit reports. (2011). Government of Gujarat.

197). Virkutyte J., Sillanpaa M. and Latostenmaa P. (2002). “Electrokinetic soil remediation –

critical overview.” The Science of the Total Environment, 289, 97-121.

198). Wan T. and Mitchell J. K. (1976). ‘‘Electroosmotic consolidation of soils.’’ J. Geotech. Eng., 473–491.

115

Page 15: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

199). Weng C. H., Takiyama L. R. and Huang C. P. (1994). ‘‘Electroosmosis for the in-situ treatment of chromium-contaminated soil.’’ Hazardous Industrial Wastes, 26, 496–505.

200). West L. J. and Stewart D. I. (1995). ‘‘Effect of zeta potential on soil electrokinetics.’’ Geoenvironment 2000, ASCE, Geotechnical Special Publication, 462, 1535–1549.

201). West L. J., Stewart D. I., Binley A. M. and Shaw B. (1997). ‘‘Resistivity imaging of electrokinetic transport in soil.’’ Geoenvironmental Engineering, R. N. Yong and H. R. Thomas, Thomas Telford, London, 565–574.

202). WHO (1996). “Soil concentrations of potentially toxic metals prescribed.” by WHO

guidelines.

203). Wittle J. K. and Pamucku S. (1997). “Theoretical and Experimental Modeling of Multi-Species Transport in Soils under Electric Fields.” EPA/600/R-97/054.

204). Wong J. S. H., Hicks R. E. and Probstein R. F. (1997). ‘‘EDTA enhanced electroremediation of metal contaminated soils.’’ J. Haz. Mat., 55, 61–79.

205). Yang G. C. C. and Lin S. (1999). ‘‘Removal of lead from a silt loam by electrokinetic remediation.’’ J. Haz. Mat., 58, 285–299.

206). Yeung A. T. (1990). ‘‘Coupled flow equations for water, electricity and ionic contaminants through clayey soils under hydraulic, electrical and chemical gradients.’’ J. Non Equil. Thermodyn., 15-3, 247–267.

207). Yeung A. T. and Datla S. (1995). ‘‘Fundamental formulation of electrokinetic

extraction of contaminants from soil.’’ Can. Geotech. J., 32, 569–583.

208). Yeung A. T. and Mitchell J. K. (1993). ‘‘Coupled fluid, electrical and chemical

flows in soil.’’ Geotechnique, 43-1, 121–134.

209). Yeung A. T., Hsu C. and Menon R. M. (1996). ‘‘EDTA enhanced electrokinetic

extraction of lead.’’ J. Geotech. Eng., 122-8, 666–673.

210). Yeung A. T., Hsu C. and Menon R. M. (1997b). ‘‘Physicochemical soil-

contaminated interactions during electrokinetic extraction.’’ J. Haz. Mat., 55, 221–

237.

211). Zumdahl (1992). “Chemical principals.” D. C. Heath and Company, Lexington,

Massachusetts, Toronto.

116

Page 16: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

Indian Standard Codes

1) Moisture Content (I.S. 2720 Part-2)

2) Grain Size Analysis (I.S.2720 part-4)

3) Atterberg’s limits (I.S. 2720 Part-5)

4) Specific Gravity (I.S.2720-Part-3 Sec-1)

5) Standard Procter Test (Light Compaction) (I.S.2720-Part-7)

6) Modified Procter Test (Heavy Compaction) (I.S. 2720-Part-8)

7) pH (I.S.2720 Part-26-1987)

8) Alkalinity (I.S.3025 Part-23-1986)

9) Conductivity (I.S.2720 Part-26-1987)

10) Chlorides (I.S.3025-Part-2-1988)

APHA Standards 1) Inductively Coupled Plasma Method (For Chromium)

2) Neocuproine Methode (APHA 3500-Cu)

3) Nitric Acid-Sulfuric Acid Digestion (APHA 3030 G)

Books

1) Bard, A. J., and Faulkner, L. R. “Electrochemical Methods, Fundamentals and Applications.” Wlley: New York, p 567.

2) Koryta J., 1982. Ions, Electrodes, and Membranes. Wiley, New York.

3) Mitchell. “Foundation of Soil Behavior.” John Wiley & Sonc.,ISBN-13: 978-0-471-46302-7.

117

Page 17: Reference - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/9719/16/17_references.pdf · ‘‘In-situ electroremediation.’’ Remedial Treatment for Contaminated Remedial

Publication from study

1) “Application of ANN in electrokinetic remediation of contaminated Clayey Soil of Gujarat, India” – Communicated to Geotechnical Testing Journal, ASTM.

2) "Comparison of Neural Network and Statistical Models for prediction of Decontamination in Electrokinetic Remediation" – Communicated to Chemosphere, Elsevier

3) "Parametric study on electrokinetic remediation of contaminated Soil of Gujarat, India" – communicated to Order – Springer

4) Thaker K., Shah P., Modi M. (2012). “Effect of Physical and Chemical Properties of fine grained soil on extraction rate of electrokinetic remediation” International Journal on Science and Technology, 2-2, 317-325

5) Thaker K., Shah P., Patel A. (2012). “Study of process parameters on electrokinetic remediation”. GIT Journal of End. and Tech., ISSN 2249 – 6157

118