ref611_appl_757456_ena

128
Relion ® 611 series Feeder Protection and Control REF611 Application Manual

Upload: phelo1

Post on 23-Dec-2015

7 views

Category:

Documents


0 download

DESCRIPTION

ref611 application manual

TRANSCRIPT

Page 1: REF611_appl_757456_ENa

Relion® 611 series

Feeder Protection and ControlREF611Application Manual

Page 2: REF611_appl_757456_ENa
Page 3: REF611_appl_757456_ENa

Document ID: 1MRS757456Issued: 2011-11-18

Revision: AProduct version: 1.0

© Copyright 2011 ABB. All rights reserved

Page 4: REF611_appl_757456_ENa

CopyrightThis document and parts thereof must not be reproduced or copied without writtenpermission from ABB, and the contents thereof must not be imparted to a thirdparty, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a licenseand may be used, copied, or disclosed only in accordance with the terms of suchlicense.

TrademarksABB and Relion are registered trademarks of the ABB Group. All other brand orproduct names mentioned in this document may be trademarks or registeredtrademarks of their respective holders.

WarrantyPlease inquire about the terms of warranty from your nearest ABB representative.

http://www.abb.com/substationautomation

Page 5: REF611_appl_757456_ENa

DisclaimerThe data, examples and diagrams in this manual are included solely for the conceptor product description and are not to be deemed as a statement of guaranteedproperties. All persons responsible for applying the equipment addressed in thismanual must satisfy themselves that each intended application is suitable andacceptable, including that any applicable safety or other operational requirementsare complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including butnot limited to personal injuries or death) shall be the sole responsibility of theperson or entity applying the equipment, and those so responsible are herebyrequested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot becompletely ruled out. In case any errors are detected, the reader is kindly requestedto notify the manufacturer. Other than under explicit contractual commitments, inno event shall ABB be responsible or liable for any loss or damage resulting fromthe use of this manual or the application of the equipment.

Page 6: REF611_appl_757456_ENa

ConformityThis product complies with the directive of the Council of the EuropeanCommunities on the approximation of the laws of the Member States relating toelectromagnetic compatibility (EMC Directive 2004/108/EC) and concerningelectrical equipment for use within specified voltage limits (Low-voltage directive2006/95/EC). This conformity is the result of tests conducted by ABB inaccordance with the product standards EN 50263 and EN 60255-26 for the EMCdirective, and with the product standards EN 60255-1 and EN 60255-27 for the lowvoltage directive. The product is designed in accordance with the internationalstandards of the IEC 60255 series.

Page 7: REF611_appl_757456_ENa

Table of contents

Section 1 Introduction.......................................................................5This manual........................................................................................5Intended audience..............................................................................5Product documentation.......................................................................6

Product documentation set............................................................6Document revision history.............................................................7Related documentation..................................................................8

Symbols and conventions...................................................................8Symbols.........................................................................................8Document conventions..................................................................8Functions, codes and symbols......................................................9

Section 2 REF611 overview...........................................................11Overview...........................................................................................11

Product version history................................................................11PCM600 and IED connectivity package version..........................11

Operation functionality......................................................................12Optional functions........................................................................12

Physical hardware............................................................................12Local HMI.........................................................................................13

Display.........................................................................................14LEDs............................................................................................15Keypad........................................................................................15

Web HMI...........................................................................................15Authorization.....................................................................................16Communication.................................................................................17

Section 3 REF611 standard configurations ...................................19Standard configurations....................................................................19Switch groups...................................................................................20

Input switch group ISWGAPC.....................................................21Output switch group OSWGAPC.................................................21Selector switch group SELGAPC................................................22

Connection diagrams........................................................................23Presentation of standard configurations...........................................24Standard configuration A..................................................................26

Applications.................................................................................26Functions.....................................................................................26

Default I/O connections..........................................................27Predefined disturbance recorder connections........................28

Table of contents

REF611 1Application Manual

Page 8: REF611_appl_757456_ENa

Functional diagrams....................................................................28Functional diagrams for protection.........................................29Functional diagrams for disturbance recorder and tripcircuit supervision...................................................................35Functional diagrams for control..............................................38

Switch groups..............................................................................40Binary inputs...........................................................................41Internal signal.........................................................................45Binary outputs and LEDs........................................................47GOOSE..................................................................................68

Standard configuration B..................................................................71Applications.................................................................................71Functions.....................................................................................71

Default I/O connections..........................................................72Predefined disturbance recorder connections........................73

Functional diagrams....................................................................73Functional diagrams for protection.........................................74Functional diagrams for disturbance recorder and tripcircuit supervision...................................................................79Functional diagrams for control..............................................81

Switch groups..............................................................................83Binary inputs...........................................................................84Internal signal.........................................................................87Binary outputs and LEDs........................................................89GOOSE................................................................................105

Section 4 Requirements for measurement transformers..............109Current transformers......................................................................109

Current transformer requirements for non-directionalovercurrent protection................................................................109

Current transformer accuracy class and accuracy limitfactor....................................................................................109Non-directional overcurrent protection.................................110Example for non-directional overcurrent protection..............111

Section 5 IED physical connections.............................................113Inputs..............................................................................................113

Energizing inputs.......................................................................113Phase currents.....................................................................113Residual current...................................................................113Residual voltage...................................................................113

Auxiliary supply voltage input....................................................113Binary inputs..............................................................................114

Outputs...........................................................................................115

Table of contents

2 REF611Application Manual

Page 9: REF611_appl_757456_ENa

Outputs for tripping and controlling............................................115Outputs for signalling.................................................................115IRF.............................................................................................116

Section 6 Glossary.......................................................................117

Table of contents

REF611 3Application Manual

Page 10: REF611_appl_757456_ENa

4

Page 11: REF611_appl_757456_ENa

Section 1 Introduction

1.1 This manual

The application manual contains application descriptions and setting guidelinessorted per function. The manual can be used to find out when and for what purposea typical protection function can be used. The manual can also be used whencalculating settings.

1.2 Intended audience

This manual addresses the protection and control engineer responsible forplanning, pre-engineering and engineering.

The protection and control engineer must be experienced in electrical powerengineering and have knowledge of related technology, such as communicationand protocols.

1MRS757456 A Section 1Introduction

REF611 5Application Manual

Page 12: REF611_appl_757456_ENa

1.3 Product documentation

1.3.1 Product documentation set

Pla

nnin

g &

pur

chas

e

Eng

inee

ring

Inst

allin

g

Com

mis

sion

ing

Ope

ratio

n

Mai

nten

ance

Dec

omm

issi

onin

gde

inst

allin

g&

dis

posa

l

Application manual

Operation manual

Installation manual

Service manual

Engineering manual

Commissioning manual

Communication protocolmanual

Technical manual

Pla

nnin

g &

pur

chas

e

Eng

inee

ring

Inst

allin

g

Com

mis

sion

ing

Ope

ratio

n

Mai

nten

ance

Dec

omm

issi

onin

gde

inst

allin

g&

dis

posa

l

Pla

nnin

g &

pur

chas

e

Eng

inee

ring

Inst

allin

g

Com

mis

sion

ing

Ope

ratio

n

Mai

nten

ance

Dec

omm

issi

onin

gde

inst

allin

g&

dis

posa

l

Application manualApplication manual

Operation manualOperation manual

Installation manualInstallation manual

Service manualService manual

Engineering manualEngineering manual

Commissioning manualCommissioning manual

Communication protocolmanualCommunication protocolmanual

Technical manualTechnical manual

en07000220.vsd

IEC07000220 V1 EN

Figure 1: The intended use of manuals in different lifecycles

The engineering manual contains instructions on how to engineer the IEDs usingthe different tools in PCM600. The manual provides instructions on how to set up aPCM600 project and insert IEDs to the project structure. The manual alsorecommends a sequence for engineering of protection and control functions, LHMIfunctions as well as communication engineering for IEC 61850 and othersupported protocols.

The installation manual contains instructions on how to install the IED. Themanual provides procedures for mechanical and electrical installation. The chaptersare organized in chronological order in which the IED should be installed.

The commissioning manual contains instructions on how to commission the IED.The manual can also be used by system engineers and maintenance personnel forassistance during the testing phase. The manual provides procedures for checkingof external circuitry and energizing the IED, parameter setting and configuration as

Section 1 1MRS757456 AIntroduction

6 REF611Application Manual

Page 13: REF611_appl_757456_ENa

well as verifying settings by secondary injection. The manual describes the processof testing an IED in a substation which is not in service. The chapters are organizedin chronological order in which the IED should be commissioned.

The operation manual contains instructions on how to operate the IED once it hasbeen commissioned. The manual provides instructions for monitoring, controllingand setting the IED. The manual also describes how to identify disturbances andhow to view calculated and measured power grid data to determine the cause of afault.

The service manual contains instructions on how to service and maintain the IED.The manual also provides procedures for de-energizing, de-commissioning anddisposal of the IED.

The application manual contains application descriptions and setting guidelinessorted per function. The manual can be used to find out when and for what purposea typical protection function can be used. The manual can also be used whencalculating settings.

The technical manual contains application and functionality descriptions and listsfunction blocks, logic diagrams, input and output signals, setting parameters andtechnical data sorted per function. The manual can be used as a technical referenceduring the engineering phase, installation and commissioning phase, and duringnormal service.

The communication protocol manual describes a communication protocolsupported by the IED. The manual concentrates on vendor-specific implementations.

The point list manual describes the outlook and properties of the data pointsspecific to the IED. The manual should be used in conjunction with thecorresponding communication protocol manual.

Some of the manuals are not available yet.

1.3.2 Document revision historyDocument revision/date Product series version HistoryA/2011-11-18 1.0 First release

Download the latest documents from the ABB Web sitehttp://www.abb.com/substationautomation.

1MRS757456 A Section 1Introduction

REF611 7Application Manual

Page 14: REF611_appl_757456_ENa

1.3.3 Related documentationName of the document Document IDModbus Communication Protocol Manual 1MRS757461

IEC 61850 Engineering Guide 1MRS757465

Installation Manual 1MRS757452

Operation Manual 1MRS757453

Technical Manual 1MRS757454

1.4 Symbols and conventions

1.4.1 Symbols

The electrical warning icon indicates the presence of a hazardwhich could result in electrical shock.

The warning icon indicates the presence of a hazard which couldresult in personal injury.

The caution icon indicates important information or warning relatedto the concept discussed in the text. It might indicate the presenceof a hazard which could result in corruption of software or damageto equipment or property.

The information icon alerts the reader of important facts andconditions.

The tip icon indicates advice on, for example, how to design yourproject or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary tounderstand that under certain operational conditions, operation of damagedequipment may result in degraded process performance leading to personal injuryor death. Therefore, comply fully with all warning and caution notices.

1.4.2 Document conventionsA particular convention may not be used in this manual.

Section 1 1MRS757456 AIntroduction

8 REF611Application Manual

Page 15: REF611_appl_757456_ENa

• Abbreviations and acronyms in this manual are spelled out in the glossary. Theglossary also contains definitions of important terms.

• Push-button navigation in the LHMI menu structure is presented by using thepush-button icons.To navigate between the options, use and .

• HMI menu paths are presented in bold.Select Main menu/Settings.

• LHMI messages are shown in Courier font.To save the changes in non-volatile memory, select Yes and press .

• Parameter names are shown in italics.The function can be enabled and disabled with the Operation setting.

• Parameter values are indicated with quotation marks.The corresponding parameter values are "On" and "Off".

• IED input/output messages and monitored data names are shown in Courier font.When the function starts, the START output is set to TRUE.

1.4.3 Functions, codes and symbolsTable 1: REF611 functions, codes and symbols

Function IEC 61850 IEC 60617 IEC-ANSIProtection

Three-phase non-directionalovercurrent protection, low stage,instance 1

PHLPTOC1 3I> (1) 51P-1 (1)

Three-phase non-directionalovercurrent protection, high stage,instance 1

PHHPTOC1 3I>> (1) 51P-2 (1)

Three-phase non-directionalovercurrent protection, high stage,instance 2

PHHPTOC2 3I>> (2) 51P-2 (2)

Three-phase non-directionalovercurrent protection, instantaneousstage, instance 1

PHIPTOC1 3I>>> (1) 50P/51P (1)

Non-directional earth-fault protection,low stage, instance 1 EFLPTOC1 Io> (1) 51N-1 (1)

Non-directional earth-fault protection,low stage, instance 2 EFLPTOC2 Io> (2) 51N-1 (2)

Non-directional earth-fault protection,high stage, instance 1 EFHPTOC1 Io>> (1) 51N-2 (1)

Non-directional earth-fault protection,instantaneous stage EFIPTOC1 Io>>> 50N/51N

Directional earth-fault protection, lowstage, instance 1 DEFLPDEF1 Io> -> (1) 67N-1 (1)

Directional earth-fault protection, lowstage, instance 2 DEFLPDEF2 Io> -> (2) 67N-1 (2)

Directional earth-fault protection,high stage DEFHPDEF1 Io>> -> 67N-2

Table continues on next page

1MRS757456 A Section 1Introduction

REF611 9Application Manual

Page 16: REF611_appl_757456_ENa

Function IEC 61850 IEC 60617 IEC-ANSITransient / intermittent earth-faultprotection INTRPTEF1 Io> -> IEF 67NIEF

Non-directional (cross-country) earth-fault protection, using calculated Io EFHPTOC1 Io>> (1) 51N-2 (1)

Negative-sequence overcurrentprotection, instance 1 NSPTOC1 I2> (1) 46 (1)

Negative-sequence overcurrentprotection, instance 2 NSPTOC2 I2> (2) 46 (2)

Phase discontinuity protection PDNSPTOC1 I2/I1> 46PD

Residual overvoltage protection,instance 1 ROVPTOV1 Uo> (1) 59G (1)

Residual overvoltage protection,instance 2 ROVPTOV2 Uo> (2) 59G (2)

Residual overvoltage protection,instance 3 ROVPTOV3 Uo> (3) 59G (3)

Three-phase thermal protection forfeeders, cables and distributiontransformers

T1PTTR1 3Ith>F 49F

Circuit breaker failure protection CCBRBRF1 3I>/Io>BF 51BF/51NBF

Three-phase inrush detector INRPHAR1 3I2f> 68

Master trip, instance 1 TRPPTRC1 Master Trip (1) 94/86 (1)

Master trip, instance 2 TRPPTRC2 Master Trip (2) 94/86 (2)

Switch groups

Input switch group1) ISWGAPC ISWGAPC ISWGAPC

Output switch group2) OSWGAPC OSWGAPC OSWGAPC

Selector switch group3) SELGAPC SELGAPC SELGAPC

Configurable timer

Minimum pulse timer (2 pcs)4) TPGAPC TP TP

Control

Circuit-breaker control CBXCBR1 I <-> O CB I <-> O CB

Auto-reclosing DARREC1 O -> I 79

Supervision

Trip circuit supervision, instance 1 TCSSCBR1 TCS (1) TCM (1)

Trip circuit supervision, instance 2 TCSSCBR2 TCS (2) TCM (2)

Measurement

Disturbance recorder RDRE1 - -

Three-phase current measurement,instance 1 CMMXU1 3I 3I

Sequence current measurement CSMSQI1 I1, I2, I0 I1, I2, I0

Residual current measurement,instance 1 RESCMMXU1 Io In

Residual voltage measurement RESVMMXU1 Uo Vn

1) 10 instances2) 20 instances3) 6 instances4) 10 instances

Section 1 1MRS757456 AIntroduction

10 REF611Application Manual

Page 17: REF611_appl_757456_ENa

Section 2 REF611 overview

2.1 Overview

REF611 is a dedicated feeder IED designed for the protection, control,measurement and supervision of utility substations and industrial power systemsincluding radial, looped and meshed distribution networks with or withoutdistributed power generation. REF611 is a member of ABB’s Relion® productfamily and part of the 611 protection and control product series. The 611 seriesIEDs are characterized by their compactness and withdrawable-unit design.

The 611 series is designed to offer simplified, but powerful functionality intendedfor most applications. Once the application-specific parameters have been entered,the installed IED is ready to be put into service. The further addition ofcommunication functionality and interoperability between substation automationdevices offered by the IEC 61850 standard adds flexibility and value to end usersas well as electrical system manufacturers.

2.1.1 Product version historyProduct version Product history1.0 Product released

2.1.2 PCM600 and IED connectivity package version• Protection and Control IED Manager PCM600 Ver. 2.4 or later• REF611 Connectivity Package Ver. 1.0 or later

• Parameter Setting• Firmware Update• Disturbance Handling• Signal Monitoring• Lifecycle Traceability• Signal Matrix• Communication Management• IED Configuration Migration• Configuration Wizard• Label Printing• IED User Management• Differential Characteristics Tool

1MRS757456 A Section 2REF611 overview

REF611 11Application Manual

Page 18: REF611_appl_757456_ENa

Download connectivity packages from the ABB web site http://www.abb.com/substationautomation

2.2 Operation functionality

2.2.1 Optional functions• Autoreclosing• Modbus TCP/IP or RTU/ASCII

2.3 Physical hardware

The IED consists of two main parts: plug-in unit and case. The content depends onthe ordered functionality.

Table 2: Plug-in unit and case

Main unit Slot ID Content optionsPlug-in

unit- HMI Small (4 lines, 16 characters)

X100 Auxiliary power/BO module

48-250 V DC/100-240 V AC; or 24-60 V DC2 normally-open PO contacts1 change-over SO contacts1 normally-open SO contact2 double-pole PO contacts with TCS1 dedicated internal fault output contact

X120 AI/BI module Only with configuration A :3 phase current inputs (1/5 A)1 residual current input (1/5 A or 0.2/1 A)1)

1 residual voltage input (60-120 V)3 binary inputs

Only with configuration B:3 phase current inputs (1/5 A)1 residual current input (1/5 A or 0.2/1 A)1)

4 binary inputs

Case X130 Optional BI/Omodule

Optional for configurations A and B: 6 binary inputs 3SO contacts

X000 Optionalcommunicationmodule

See technical manual for details about different type ofcommunication modules.

1) The 0.2/1 A input is normally used in applications requiring sensitive earth-fault protection andfeaturing core-balance current transformers.

Rated values of the current and voltage inputs are basic setting parameters of theIED. The binary input thresholds are selectable within the range 18…176 V DC byadjusting the binary input setting parameters.

Section 2 1MRS757456 AREF611 overview

12 REF611Application Manual

Page 19: REF611_appl_757456_ENa

The connection diagrams of different hardware modules are presented in this manual.

See the installation manual for more information about the case andthe plug-in unit.

Table 3: Number of physical connections in standard configurations

Conf. Analog channels Binary channels CT VT BI BO

A 4 1 3(9)1) 6(9)1)

B 4 - 4(10)1) 6(9)1)

1) With optional BIO module

2.4 Local HMI

REF611

Overcurrent

Earth-fault

Phase unbalance

Thermal overload

AR sequence in progress

Disturb.rec.trigged

Trip circuit failure

Breaker failure

GUID-E15422BF-B3E6-4D02-8D43-D912D5EF0360 V1 EN

Figure 2: Example of 611 series LHMI

1MRS757456 A Section 2REF611 overview

REF611 13Application Manual

Page 20: REF611_appl_757456_ENa

The LHMI of the IED contains several elements.

• Display• Buttons• LED indicators• Communication port

The LHMI is used for setting, monitoring and controlling.

2.4.1 DisplayThe LHMI includes a graphical display that supports two character sizes. Thecharacter size depends on the selected language. The amount of characters androws fitting the view depends on the character size.

Table 4: Characters and rows on the view

Character size Rows in view Characters on rowSmall, mono-spaced (6x12 pixels) 5 rows 20

Large, variable width (13x14 pixels) 4 rows min 8

The display view is divided into four basic areas.

1

3 4

2

GUID-24ADB995-439A-4563-AACE-1FAA193A8EF9 V1 EN

Figure 3: Display layout

1 Header

2 Icon

3 Content

4 Scroll bar (displayed when needed)

Section 2 1MRS757456 AREF611 overview

14 REF611Application Manual

Page 21: REF611_appl_757456_ENa

2.4.2 LEDsThe LHMI includes three protection indicators above the display: Ready, Start andTrip.

There are also 8 programmable LEDs on front of the LHMI. The LEDs can beconfigured with the LHMI, WHMI or PCM600.

2.4.3 KeypadThe LHMI keypad contains push-buttons which are used to navigate in differentviews or menus. With the push-buttons you can give open or close commands toone object in the primary circuit, for example, a circuit breaker, a contactor or adisconnector. The push-buttons are also used to acknowledge alarms, resetindications, provide help and switch between local and remote control mode.

GUID-B681763E-EC56-4515-AC57-1FD5349715F7 V1 EN

Figure 4: LHMI keypad with object control, navigation and command push-buttons and RJ-45 communication port

2.5 Web HMI

The WHMI enables the user to access the IED via a web browser. The supportedweb browser version is Internet Explorer 7.0 or 8.0.

WHMI is disabled by default.

WHMI offers several functions.

• Programmable LEDs and event lists• System supervision• Parameter settings• Measurement display

1MRS757456 A Section 2REF611 overview

REF611 15Application Manual

Page 22: REF611_appl_757456_ENa

• Disturbance records• Phasor diagram• Signal configuration

The menu tree structure on the WHMI is almost identical to the one on the LHMI.

GUID-CD531B61-6866-44E9-B0C1-925B48140F3F V1 EN

Figure 5: Example view of the WHMI

The WHMI can be accessed locally and remotely.

• Locally by connecting your laptop to the IED via the front communication port.• Remotely over LAN/WAN.

2.6 Authorization

The user categories have been predefined for the LHMI and the WHMI, each withdifferent rights and default passwords.

The default passwords can be changed with Administrator user rights.

User authorization is disabled by default but WHMI always usesauthorization.

Section 2 1MRS757456 AREF611 overview

16 REF611Application Manual

Page 23: REF611_appl_757456_ENa

Table 5: Predefined user categories

Username User rightsVIEWER Read only access

OPERATOR • Selecting remote or local state with (only locally)• Changing setting groups• Controlling• Clearing indications

ENGINEER • Changing settings• Clearing event list• Clearing disturbance records• Changing system settings such as IP address, serial baud rate

or disturbance recorder settings• Setting the IED to test mode• Selecting language

ADMINISTRATOR • All listed above• Changing password• Factory default activation

For user authorization for PCM600, see PCM600 documentation.

2.7 Communication

For application specific situations where communication between IEDs and remotesystems are needed, the 611 series IEDs also support IEC 61850 and Modbus®

communication protocols. Operational information and controls are availablethrough these protocols. Some communication functionality, for example,horizontal communication between the IEDs, is only enabled by the IEC 61850communication protocol.

The IEC 61850 communication implementation supports monitoring and controlfunctionality. Additionally, parameter settings and disturbance and fault recordscan be accessed using the IEC 61850 protocol. Disturbance records are available toany Ethernet-based application in the standard COMTRADE file format. The IEDcan send and receive binary signals from other IEDs (so called horizontalcommunication) using the IEC 61850-8-1 GOOSE profile, where the highestperformance class with a total transmission time of 3 ms is supported. The IEDmeets the GOOSE performance requirements for tripping applications indistribution substations, as defined by the IEC 61850 standard. The IED cansimultaneously report events to five different clients on the station bus.

The IED can support five simultaneous clients. If PCM600 reserves one clientconnection, only four client connections are left, for example, for IEC 61850 andModbus.

1MRS757456 A Section 2REF611 overview

REF611 17Application Manual

Page 24: REF611_appl_757456_ENa

All communication connectors, except for the front port connector, are placed onintegrated optional communication modules. The IED can be connected to Ethernet-based communication systems via the RJ-45 connector (100Base-TX) or the fibre-optic LC connector (100Base-FX). An optional serial interface is available forRS-485 communication.

Managed Ethernet switchwith RSTP support

Managed Ethernet switchwith RSTP support

Network

Network

REF611

Overcurrent

Earth-fault

Phase unbalance

Thermal overload

AR sequence in progress

Disturb.rec.trigged

Trip circuit failure

Breaker failure

REF611

Overcurrent

Earth-fault

Phase unbalance

Thermal overload

AR sequence in progress

Disturb.rec.trigged

Trip circuit failure

Breaker failure

REF611

Overcurrent

Earth-fault

Phase unbalance

Thermal overload

AR sequence in progress

Disturb.rec.trigged

Trip circuit failure

Breaker failure

REM611

Short circuit

Combined protection

Thermal overload

Motor restart inhibit

Emergency start enabled

Disturb.rec.trigged

Supervision alarm

Breaker failure

REB611

High-impedance 1 operate

High-impedance 2 operate

High-impedance 3 operate

High-impedance start

Segregated supervision

Disturb.rec.trigged

Trip circuit failure

Breaker failure

REF611 REF611 REF611 REM611 REB611

Client BClient A

GUID-A19C6CFB-EEFD-4FB2-9671-E4C4137550A1 V1 EN

Figure 6: Self-healing Ethernet ring solution

The Ethernet ring solution supports the connection of up to thirty611 series IEDs. If more than 30 IEDs are to be connected, it isrecommended that the network is split into several rings with nomore than 30 IEDs per ring.

Section 2 1MRS757456 AREF611 overview

18 REF611Application Manual

Page 25: REF611_appl_757456_ENa

Section 3 REF611 standard configurations

3.1 Standard configurations

REF611 is available in two alternative standard configurations.

To increase the user friendliness of the IED’s standard configurations and toemphasize the IED's simplicity of usage, only the application-specific parametersneed setting within the IED's intended area of application.

The standard signal configuration can be altered by LHMI, WHMI or the optionalapplication functionality of the Protection and Control IED Manager PCM600.

Table 6: Standard configurations

Description Std. conf.Non-directional overcurrent and directional earth-fault protection A

Non-directional overcurrent and non-directional earth-fault protection B

Table 7: Supported functions

Functionality A BProtection1)2)

Three-phase non-directional overcurrent protection, low stage, instance 1 ● ●

Three-phase non-directional overcurrent protection, high stage, instance 1 ● ●

Three-phase non-directional overcurrent protection, high stage, instance 2 ● ●

Three-phase non-directional overcurrent protection, instantaneous stage, instance1

● ●

Non-directional earth-fault protection, low stage, instance 1 - ●3)

Non-directional earth-fault protection, low stage, instance 2 - ●3)

Non-directional earth-fault protection, high stage, instance 1 - ●3)

Non-directional earth-fault protection, instantaneous stage - ●3)

Directional earth-fault protection, low stage, instance 1 ●3) -

Directional earth-fault protection, low stage, instance 2 ●3) -

Directional earth-fault protection, high stage ●3) -

Transient/intermittent earth-fault protection ●4) -

Non-directional (cross-country) earth-fault protection, using calculated Io ●5) -

Negative-sequence overcurrent protection, instance 1 ● ●

Negative-sequence overcurrent protection, instance 2 ● ●

Phase discontinuity protection ● ●

Table continues on next page

1MRS757456 A Section 3REF611 standard configurations

REF611 19Application Manual

Page 26: REF611_appl_757456_ENa

Functionality A BResidual overvoltage protection, instance 1 ● -

Residual overvoltage protection, instance 2 ● -

Residual overvoltage protection, instance 3 ● -

Three-phase thermal protection for feeders, cables and distribution transformers ● ●

Circuit-breaker failure protection ● ●

Three-phase inrush detector ● ●

Master trip, instance 1 ● ●

Master trip, instance 2 ● ●

Switch groups

Input switch group ● ●

Output switch group ● ●

Selector switch group ● ●

Configurable timer

Minimum pulse timer (2 pcs) ● ●

Control

Circuit-breaker control ● ●

Auto-reclosing o o

Supervision

Trip circuit supervision, instance 1 ● ●

Trip circuit supervision, instance 2 ● ●

Measurement

Disturbance recorder ● ●

Three-phase current measurement, instance 1 ● ●

Sequence current measurement ● ●

Residual current measurement, instance 1 ● ●

Residual voltage measurement ● -

● = Included,○ = Can be ordered as option

1) Note that all directional protection functions can also be used in non-directional mode.2) The instances of a protection function represent the number of identical function blocks available in

a standard configuration.3) Io selectable by parameter, Io measured as default.4) Io measured is always used.5) Io selectable by parameter, Io calculated as default.

3.2 Switch groups

The default application configurations cover the most common application cases,however, changes can be made according to specific needs through LHMI, WHMIand PCM600.

Section 3 1MRS757456 AREF611 standard configurations

20 REF611Application Manual

Page 27: REF611_appl_757456_ENa

Programming is easily implemented with three switch group functions includinginput switch group (ISWGAPC), output switch group (OSWGAPC) and selectorswitch group (SELGAPC). Each switch group has several instances.

Connections of binary inputs to functions, GOOSE signals to functions, functionsto functions, functions to binary outputs and functions to LEDs have beenpreconnected through corresponding switch groups.

Change the parameter values of the switch groups to modify the real connectionlogic and the application configuration.

3.2.1 Input switch group ISWGAPCThe input switch group ISWGAPC has one input and a number of outputs. Everyinput and output has a read-only description. ISWGAPC is used for connecting theinput signal to one or several outputs of the switch group. Each output can be set tobe connected or not connected with the input separately via the “OUT_xconnection” setting.

GUID-2D549B56-6CF7-4DCB-ACDE-E9EF601868A8 V1 EN

Figure 7: Input switch group ISWGAPC

3.2.2 Output switch group OSWGAPCThe output switch group OSWGAPC has a number of inputs and one output. Everyinput and output has a read-only description. OSWGAPC is used for connectingone or several inputs to the output of the switch group via OR logic. Each input canbe set to be connected or not connected with the OR logic via the “IN_xconnection” settings. The output of OR logic is routed to switch group output.

1MRS757456 A Section 3REF611 standard configurations

REF611 21Application Manual

Page 28: REF611_appl_757456_ENa

GUID-1EFA82D5-F9E7-4322-87C2-CDADD29823BD V1 EN

Figure 8: Output switch group OSWGAPC

3.2.3 Selector switch group SELGAPCThe selector switch group SELGAPC has a number of inputs and outputs. Everyinput and output has a read-only description. Each output can be set to beconnected with one the of inputs via the “OUT_x connection” setting. An outputcan also be set to be not connected with any of the inputs. In SELGAPC, oneoutput signal can only be connected to one input signal but the same input signalcan be routed to several output signals.

GUID-E3AEC7AB-2978-402D-8A80-C5DE9FED67DF V1 EN

Figure 9: Selector switch group SELGAPC

Section 3 1MRS757456 AREF611 standard configurations

22 REF611Application Manual

Page 29: REF611_appl_757456_ENa

3.3 Connection diagrams

REF611

1) Optional2) The IED features an automatic short-circuit mechanism in the CT connector when plug-in unit is detached

16

17

1918

X100

67

89

10

111213

15

14

2

1

3

45

22

212324

SO2

TCS2

PO4

SO1

TCS1

PO3

PO2

PO1

IRF

+

-Uaux

20

X13012

3

45

6BI 4

BI 3

BI 2

BI 1

BI 6

BI 58

9

7

X130

12

10

11

15

13

14

18

16

17

SO3

SO2

SO1

1)

1)

2)

X120

12

3

4

567

89

1011

1213

14Io

IL1

IL2

BI 3

BI 2

BI 1

Uo

IL3

1/5A

N1/5A

N1/5A

N1/5A

N

60 -

N

210V

L1L2L3

da dn

S1

S2

P1

P2

P2

P1 S1

S2

A

N

PositiveCurrentDirection

GUID-EAC6CB29-0D2C-4714-9273-72694FB77E90 V1 EN

Figure 10: Connection diagram for configuration A

1MRS757456 A Section 3REF611 standard configurations

REF611 23Application Manual

Page 30: REF611_appl_757456_ENa

REF611

16

17

1918

X100

67

8910

111213

15

14

2

1

3

45

22

212324

SO2

TCS2

PO4

SO1

TCS1

PO3

PO2

PO1

IRF

+

-Uaux

20

X130

12

3

45

6BI 4

BI 3

BI 2

BI 1

BI 6

BI 58

9

7

X130

12

10

11

15

13

14

18

16

17

SO3

SO2

SO1

1) Optional2) The IED features an automatic short-circuit mechanism in the CT connector when plug-in unit is detached

2)

X120

12

3

4

567

89

1011

12

14Io

IL1

IL2

BI 4

BI 3

BI 2

BI 1

IL3

1/5A

N1/5A

N1/5A

N1/5A

N

1) 1)

13

L1L2L3

S1

S2

P1

P2

P2

P1 S1

S2

PositiveCurrentDirection

GUID-6692D10C-76A4-475F-AFD9-E8CD93973428 V1 EN

Figure 11: Connection diagram for configuration B

3.4 Presentation of standard configurations

Functional diagramsThe functional diagrams describe the IED's functionality from the protection,measuring, condition supervision, disturbance recording, control and interlocking

Section 3 1MRS757456 AREF611 standard configurations

24 REF611Application Manual

Page 31: REF611_appl_757456_ENa

perspective. Diagrams show the default functionality with simple symbol logicsforming principle diagrams.

The functional diagrams are divided into sections with each section constitutingone functional entity.

Protection function blocks are part of the functional diagram. They are identifiedbased on their IEC 61850 name but the IEC based symbol and the ANSI functionnumber are also included. Some function blocks, such as PHHPTOC, are usedseveral times in the configuration. To separate the blocks from each other, the IEC61850 name, IEC symbol and ANSI function number are appended with a runningnumber, that is an instance number, from one upwards. If the block has no suffixafter the IEC or ANSI symbol, the function block has been used, that is,instantiated, only once.

Switch groupsSwitch group information can be divided into three levels.

• The first level is a configuration overview. All switch groups in theconfiguration are presented in an overview figure. The figure provides generalinformation about the relationship between different switch groups.

• The second level presents function group information. It explains how theswitch groups belong to a special function as well as related function blocks.

• The third level presents detailed information about the switch groups. Itprovides information about a specific switch group including the logicconnection of the input and output, default connection and port description.

Conventions used in switch group figures:

• The text in the symbol indicates the logic connections of the function'sinputs or outputs. The text is a combination of a function block name and theinput or output name. They are connected with a “_” symbol.

• If there are many lines of text in an output symbol , each line indicates asignal. The switch group output is routed to all these signals.

• If there are many lines of text in an input symbol , each line indicates asignal. All signals are routed to a switch group input via an OR logic.

• The text above the connection line is the description of the port.• If there is no text in the connection line, the port description is the same as the

text in the symbol.• A dashed arrow within the switch group function box indicate the default

connection of the switch group.

1MRS757456 A Section 3REF611 standard configurations

REF611 25Application Manual

Page 32: REF611_appl_757456_ENa

3.5 Standard configuration A

3.5.1 ApplicationsThe standard configuration for non-directional overcurrent and directional earth-fault protection is mainly intended for cable and overhead-line feeder applicationsin isolated and resonant-earthed distribution networks.

The IED with a standard configuration is delivered from the factory with defaultsettings and parameters. The end-user flexibility for incoming, outgoing andinternal signal designation within the IED enables this configuration to be furtheradapted to different primary circuit layouts and the related functionality needs bymodifying the internal functionality using PCM600.

3.5.2 FunctionsTable 8: Functions included in the standard configuration A

Function IEC 61850 IEC 60617 IEC-ANSIProtection

Three-phase non-directional overcurrentprotection, low stage, instance 1 PHLPTOC1 3I> (1) 51P-1 (1)

Three-phase non-directional overcurrentprotection, high stage, instance 1 PHHPTOC1 3I>> (1) 51P-2 (1)

Three-phase non-directional overcurrentprotection, high stage, instance 2 PHHPTOC2 3I>> (2) 51P-2 (2)

Three-phase non-directional overcurrentprotection, instantaneous stage, instance 1 PHIPTOC1 3I>>> (1) 50P/51P (1)

Directional earth-fault protection, lowstage, instance 1 DEFLPDEF1 Io> -> (1) 67N-1 (1)

Directional earth-fault protection, lowstage, instance 2 DEFLPDEF2 Io> -> (2) 67N-1 (2)

Directional earth-fault protection, high stage DEFHPDEF1 Io>> -> 67N-2

Transient/intermittent earth-fault protection INTRPTEF1 Io> -> IEF 67NIEF

Non-directional (cross-country) earth-faultprotection, using calculated Io EFHPTOC1 Io>> (1) 51N-2 (1)

Negative-sequence overcurrent protection,instance 1 NSPTOC1 I2> (1) 46 (1)

Negative-sequence overcurrent protection,instance 2 NSPTOC2 I2> (2) 46 (2)

Phase discontinuity protection PDNSPTOC1 I2/I1> 46PD

Residual overvoltage protection, instance 1 ROVPTOV1 Uo> (1) 59G (1)

Residual overvoltage protection, instance 2 ROVPTOV2 Uo> (2) 59G (2)

Residual overvoltage protection, instance 3 ROVPTOV3 Uo> (3) 59G (3)

Three-phase thermal protection forfeeders, cables and distributiontransformers

T1PTTR1 3Ith>F 49F

Table continues on next page

Section 3 1MRS757456 AREF611 standard configurations

26 REF611Application Manual

Page 33: REF611_appl_757456_ENa

Function IEC 61850 IEC 60617 IEC-ANSICircuit breaker failure protection CCBRBRF1 3I>/Io>BF 51BF/51NBF

Three-phase inrush detector INRPHAR1 3I2f> 68

Master trip, instance 1 TRPPTRC1 Master Trip (1) 94/86 (1)

Master trip, instance 2 TRPPTRC2 Master Trip (2) 94/86 (2)

Switch groups

Input switch group ISWGAPC ISWGAPC ISWGAPC

Output switch group OSWGAPC OSWGAPC OSWGAPC

Selector switch group SELGAPC SELGAPC SELGAPC

Configurable timers

Minimum pulse timer (2 pcs) TPGAPC TP TP

Control

Circuit-breaker control CBXCBR1 I <-> O CB I <-> O CB

Auto-reclosing DARREC1 O -> I 79

Supervision

Trip circuit supervision, instance 1 TCSSCBR1 TCS (1) TCM (1)

Trip circuit supervision, instance 2 TCSSCBR2 TCS (2) TCM (2)

Measurement

Disturbance recorder RDRE1 - -

Three-phase current measurement,instance 1 CMMXU1 3I 3I

Sequence current measurement CSMSQI1 I1, I2, I0 I1, I2, I0

Residual current measurement, instance 1 RESCMMXU1 Io In

Residual voltage measurement RESVMMXU1 Uo Vn

3.5.2.1 Default I/O connections

Table 9: Default connections for binary inputs

Binary input Default usage Connector pinsX120-BI1 Blocking of overcurrent instantaneous stage X120-1,2

X120-BI2 Circuit breaker closed position indication X120-3,2

X120-BI3 Circuit breaker open position indication X120-4,2

Table 10: Default connections for binary outputs

Binary input Default usage Connector pinsX100-PO1 Close circuit breaker X100-6,7

X100-PO2 Circuit breaker failure protection trip to upstreambreaker

X100-8,9

X100-PO3 Open circuit breaker/trip coil 1 X100-15,16,17,18,19

Table continues on next page

1MRS757456 A Section 3REF611 standard configurations

REF611 27Application Manual

Page 34: REF611_appl_757456_ENa

Binary input Default usage Connector pinsX100-PO4 Open circuit breaker/trip coil 2 X100-20,21,22,23,24

X100-SO1 General start indication X100-10,11,12

X100-SO2 General operate indication X100-13,14,15

Table 11: Default connections for LEDs

LED Default usage1 Non-directional overcurrent operate

2 Earth fault protection operate

3 Negative-sequence overcurrent/phase discontinuity operate

4 Thermal overload alarm

5 Autoreclose in progress

6 Disturbance recorder triggered

7 Trip circuit supervision alarm

8 Circuit-breaker failure operate

3.5.2.2 Predefined disturbance recorder connections

Table 12: Predefined analog channel setup

Channel Selection and text1 IL1

2 IL2

3 IL3

4 Io

5 Uo

Additionally, all the digital inputs that are connected by default are also enabledwith the setting. Default triggering settings are selected depending on theconnected input signal type. Typically all protection START signals are selected totrigger the disturbance recorded by default.

3.5.3 Functional diagramsThe functional diagrams describe the default input, output, programmable LED,switch group and function-to-function connections. The default connections can beviewed and changed with switch groups in PCM600, LHMI and WHMI accordingto the application requirements.

The analog channels have fixed connections towards the different function blocksinside the IED’s standard configuration. Exceptions from this rule are the eight

Section 3 1MRS757456 AREF611 standard configurations

28 REF611Application Manual

Page 35: REF611_appl_757456_ENa

analog channels available for the disturbance recorder function. These channels arefreely selectable and a part of the disturbance recorder’s parameter settings.

The analog channels are assigned to different functions. The common signalmarked with 3I represents the three phase currents. The signal marked with Iorepresents the measured residual current via a core balance current transformer.The signal marked with Uo represents the measured residual voltage via open-deltaconnected voltage transformers.

The EFHPTOC protection function block for double (cross-country) earth-faultsuses the calculated residual current originating from the measured phase currents.

3.5.3.1 Functional diagrams for protection

The functional diagrams describe the IED’s protection functionality in detail andpicture the factory default connections.

X120-BI1

LED 1

ISWGAPC1OUT_4IN

SELGAPC4OUT_1IN_10

OSWGAPC8

OR OUT

IN_1

IN_2

IN_3

IN_4

OVERCURRENT PROTECTION AND INRUSH INDICATION

PHLPTOC13I>(1)

51P-1(1)

BLOCK START

OPERATE3I

ENA_MULT

PHHPTOC13I>>(1)

51P-2(1)

BLOCK START

OPERATE3I

ENA_MULT

PHHPTOC23I>>(2)

51P-2(2)

BLOCK START

OPERATE3I

ENA_MULT

SELGAPC1OUT_1IN_1

PHIPTOC13I>>>(1)

50P/51P(1)

BLOCK START

OPERATE3I

ENA_MULTBlocking 1

INRPHAR13I2f >(1)

68(1)

BLOCK

BLK2H3I

GUID-7490603E-FE2C-4241-A98B-2CE7C935C0FB V1 EN

Figure 12: Overcurrent protection

Four overcurrent stages are offered for overcurrent and short-circuit protection.The instantaneous stage (PHIPTOC1) can be blocked by energizing the binaryinput (X120:1-2). The inrush detection block’s (INRPHAR1) output BLK2Henables either blocking the function or multiplying the active settings for any of thedescribed protection function blocks.

1MRS757456 A Section 3REF611 standard configurations

REF611 29Application Manual

Page 36: REF611_appl_757456_ENa

All operate signals are connected to the Master Trip and to the alarm LED 1.

LED 2

EARTH-FAULT PROTECTION

DOUBLE (CROSS-COUNTRY) EARTH-FAULT PROTECTION

DIRECTIONAL EARTH-FAULT PROTECTION

INTERMITTENT EARTH-FAULT PROTECTION

DEFLPDEF1Io>->(1)

67N-1(1)

BLOCKSTART

OPERATEIo

ENA_MULT

Uo

RCA_CTL

DEFLPDEF2Io>->(2)

67N-1(2)

BLOCK

START

OPERATEIo

ENA_MULT

Uo

RCA_CTL

DEFHPDEF1Io>>->(1)

67N-2(1)

BLOCK

START

OPERATEIo

ENA_MULT

Uo

RCA_CTL

OSWGAPC9

OR OUT

IN_5

IN_6

IN_7

IN_8

IN_12

SELGAPC4OUT_2IN_11

INTRPTEF1Io>->IEF(1)

67NIEF(1)

START

OPERATE

BLK_EFBLOCK

Io

Uo

EFHPTOC1Io>>(1)

51N-2(1)

BLOCK STARTOPERATEIo

ENA_MULT

Calculated lo

GUID-7DA854F7-A732-46FD-A9D9-398B3E4150C8 V1 EN

Figure 13: Earth-fault protection

Section 3 1MRS757456 AREF611 standard configurations

30 REF611Application Manual

Page 37: REF611_appl_757456_ENa

Three stages are offered for directional earth-fault protection. In addition, there is adedicated protection stage (INTRPTEF) either for transient-based earth-faultprotection or for cable intermittent earth-fault protection in compensated networks.

A dedicated non-directional earth-fault protection block (EFHPTOC) is intendedfor protection against double earth-fault situations in isolated or compensatednetworks. This protection function uses the calculated residual current originatingfrom the phase currents.

All operate signals are connected to the Master Trip and to alarm LED 2.

LED 2

RESIDUAL OVERVOLTAGE PROTECTION

ROVPTOV1U0>(1)

59G(1)

BLOCK START

OPERATEU0

ROVPTOV2U0>(2)

59G(2)

BLOCK START

OPERATEU0

ROVPTOV3U0>(3)

59G(3)

BLOCK START

OPERATEU0

OSWGAPC9

OR OUT

IN_9

IN_10

IN_11

SELGAPC4OUT_2IN_11

GUID-41F06B86-FFB5-4162-BF38-B85F43C88002 V1 EN

Figure 14: Residual overvoltage protection

The residual overvoltage protection (ROVPTOV) provides earth-fault protectionby detecting abnormal level of residual voltage. It can be used, for example, as a non-selective backup protection for the selective directional earth-fault functionality.The operation signal is also connected to alarm LED 2.

1MRS757456 A Section 3REF611 standard configurations

REF611 31Application Manual

Page 38: REF611_appl_757456_ENa

LED 3

UNBALANCE PROTECTION

NSPTOC1I2>(1)

46(1)

BLOCK START

OPERATE3I

ENA_MULT

NSPTOC2I2>(2)

46(2)

BLOCK START

OPERATE3I

ENA_MULT

OSWGAPC10

OR OUT

IN_13

IN_14

IN_15

SELGAPC4IN_12 OUT_3

PDNSPTOC1I2/I1(1)

46PD(1)

BLOCK START

OPERATE3I

GUID-A367FC04-F391-48E9-9CBF-599AC625C7FF V1 EN

Figure 15: Unbalance protection

Two negative-sequence overcurrent stages (NSPTOC1 and NSPTOC2) and onephase discontinuity stage (PDNPSTOC1) are offered for unbalance protection. Thephase discontinuity protection (PDNPSTOC1) provides protection for interruptionsin the normal three-phase load supply, for example, in downed conductor situations.

The operate signals of these unbalance protections are connected to the Master Tripand to alarm LED 3.

Section 3 1MRS757456 AREF611 standard configurations

32 REF611Application Manual

Page 39: REF611_appl_757456_ENa

X120-BI2

X100 PO2

LED 8

PHIPTOC1_OPERATEPHHPTOC2_OPERATE

PHLPTOC1_OPERATEPHHPTOC1_OPERATE

DEFHPTOC1_OPERATE

ORDEFLPTOC1_OPERATEDEFLPTOC2_OPERATE

SELGAPC3OUT_2IN_4

OSWGAPC15OUTIN_5

LED 4

THERMAL OVERLOAD PROTECTION

CIRCUIT BREAKER FAILURE PROTECTION

SELGAPC4OUT_8IN_17

OSWGAPC11OUTIN_1

SELGAPC4OUT_4IN_13

SELGAPC1OUT_2IN_2

CB Closed Position

51BF/51NBF(1)

3I

Io

START TRRET

TRBU

POSCLOSE

CB_FAULT

BLOCK

CB_FAULT_AL

CCBRBRF13I>/Io>BF(1)

T1PTTR13Ith>F(1)

49F(1)

BLK_OPR

START

OPERATE3I

BLK_CLOSE

ALARMENA_MULT

AMB_TEMP

GUID-A046A312-1E3B-4186-BBEB-2AF8C2423C5F V1 EN

Figure 16: Thermal overload and circuit-breaker failure protection

The thermal overload protection (T1PTTR1) provides indication on overloadsituations. LED 4 is used for the thermal overload protection alarm indication.

The circuit-breaker failure protection (CCBRBRF1) is initiated via the start inputby a number of different protection stages in the IED. The circuit-breaker failureprotection function offers different operating modes associated with the circuitbreaker position and the measured phase and residual currents. The breaker failureprotection has two operating outputs: TRRET and TRBU. The TRRET operateoutput is used for retripping its own breaker through the Master Trip 2. The TRBUoutput is used to give a backup trip to the circuit breaker feeding upstream. For thispurpose, the TRBU operate output signal is connected to the output PO2 (X100:8-9). LED 8 is used for backup (TRBU) operate indication.

1MRS757456 A Section 3REF611 standard configurations

REF611 33Application Manual

Page 40: REF611_appl_757456_ENa

X120-BI3

LED 5DEFLPDEF1_OPERATE ORDEFLPDEF2_OPERATE

DEFLPDEF1_START ORDEFLPDEF2_START

NSPTOC2_OPERATENSPTOC1_OPERATE

CBXCBR1_SELECTED

PHIPTOC1_OPERATE

ORPDNSPTOC1_OPERATE

INTRPTEF1_OPERATE

AUTORECLOSING (Optional)

Always True

SELGAPC1OUT_3IN_3

OUT_6IN_10

OSWGAPC12OUTIN_7

SELGAPC4OUT_5IN_14

PHHPTOC2_OPERATE

PHLPTOC1_OPERATE

EFHPTOC1_OPERATE

PHHPTOC1_OPERATE

DEFHPDEF1_OPERATE

PHLPTOC1_START

EFHPTOC1_START

T1PTTR1_BLK_CLOSE

CB Open Position

DARREC1O->I(1)

79(1)

INT_1

INT_2

INT_3

INT_4

INT_5

INT_6

DEL_INT_2

DEL_INT_3

DEL_INT_4

RECL_ON

INHIBIT_RECL

SYNC

OPEN CB

CLOSE CB

INPRO

UNSUC_RECL

AR_ON

PROT_CRD

READY

BLK_RECL_T

BLK_RCLM_T

BLK_THERM

CB_POS

CB_READY

INC_SHOTP

CMD_WAIT

LOCKED

GUID-3F551E60-55D5-4971-8CC8-E6742AF9CAAB V1 EN

Figure 17: Autoreclosing

Autoreclosing (DARREC1) is included as an optional function.

The autoreclose function is configured to be initiated by operate signals from anumber of protection stages through the INT_1...6 inputs and by start signalsthrough the DEL_INT_2…4. It is possible to create individual autoreclosesequences for each input.

The autoreclose function can be blocked with the INHIBIT_RECL input. Bydefault, the operations of selected protection functions are connected to this input.A control command to the circuit breaker, either local or remote, also blocks theautoreclose function via the CBXCBR_SELECTED signal.

The circuit breaker availability for the autoreclose sequence is expressed with theCB_READY input in DARREC1. In the configuration, this signal is connectedwith an always true signal through the SELGAPC1. As a result, the functionassumes that the circuit breaker is available all the time.

The autoreclose sequence in progress indication INPRO is connected to the alarmLED 5.

Section 3 1MRS757456 AREF611 standard configurations

34 REF611Application Manual

Page 41: REF611_appl_757456_ENa

3.5.3.2 Functional diagrams for disturbance recorder and trip circuitsupervision

RDRE1

C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26C27C28C29C30C31C32

OR

C33C34C35C36C37C38C39C40

OR

OR

OR

TRIGGERED LED 6

DISTURBANCE RECORDER

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATE

DEFHPDEF1_OPERATEDEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

ROVPTOV1_OPERATEROVPTOV2_OPERATEROVPTOV3_OPERATE

NSPTOC1_OPERATENSPTOC2_OPERATE

OSWGAPC13OUTIN_2

SELGAPC4OUT_6IN_15

PHLPTOC1_START

DEFHPDEF1_START

NSPTOC1_STARTINTRPTEF1_START

PHHPTOC1_START

PHIPTOC1_STARTPHHPTOC2_START

DEFLPDEF1_STARTDEFLPDEF2_START

ROVPTOV1_STARTROVPTOV2_STARTROVPTOV3_START

NSPTOC2_START

T1PTTR1_START

EFHPTOC1_OPERATE

INTRPTEF1_OPERATE

PDNSPTOC1_OPERATET1PTTR1_OPERATE

SELGAPC1_ Blocking 1SELGAPC1_ CB Closed Position

SELGAPC1_ CB Open Position INRPHAR1_BLK2H

CCBRBRF1_TRRETCCBRBRF1_TRBUDARREC1_INPRO

DARREC1_CLOSE_CBDARREC1_UNSUC_RECL

PDNSPTOC1_START

EFHPTOC1_START

SELGAPC1_External TripSG_1_ACTSG_2_ACTSG_3_ACTSG_4_ACTSG_5_ACTSG_6_ACT

GUID-C8E19D4D-9410-45B2-977A-4A56A0F41A48 V1 EN

Figure 18: Disturbance recorder

All start and operate signals from the protection stages are routed to trigger thedisturbance recorder or alternatively only to be recorded by the disturbancerecorder depending on the parameter settings. Additionally, the selectedautoreclose output signals and the three binary inputs from X120 are alsoconnected. The active setting group is also to be recorded via SG_1_ACT toSG_6_ACT. The disturbance recorder triggered signal indication is connected toLED 6.

Table 13: Disturbance recorder binary channel default value

Channel number Channel ID text Level trigger modeBinary channel 1 PHLPTOC1_START 1=positive or rising

Binary channel 2 PHHPTOC1_START 1=positive or rising

Binary channel 3 PHHPTOC2_START 1=positive or rising

Binary channel 4 PHIPTOC1_START 1=positive or rising

Binary channel 5 EFHPTOC1_START 1=positive or rising

Binary channel 6 DEFLPDEF1_START 1=positive or rising

Binary channel 7 DEFLPDEF2_START 1=positive or rising

Binary channel 8 DEFHPDEF1_START 1=positive or rising

Table continues on next page

1MRS757456 A Section 3REF611 standard configurations

REF611 35Application Manual

Page 42: REF611_appl_757456_ENa

Channel number Channel ID text Level trigger modeBinary channel 9 ROVPTOV1_START 1=positive or rising

Binary channel 10 ROVPTOV2_START 1=positive or rising

Binary channel 11 ROVPTOV3_START 1=positive or rising

Binary channel 12 INTRPTEF1_START 1=positive or rising

Binary channel 13 NSPTOC1_START 1=positive or rising

Binary channel 14 NSPTOC2_START 1=positive or rising

Binary channel 15 PDNSPTOC1_START 1=positive or rising

Binary channel 16 T1PTTR1_START 1=positive or rising

Binary channel 17 PHxPTOC_OPERATE 4=level trigger off

Binary channel 18 EFHPTOC1_OPERATE 4=level trigger off

Binary channel 19 DEFxPDEF_OPERATE 4=level trigger off

Binary channel 20 ROVPTOV_OPERATE 4=level trigger off

Binary channel 21 INTRPTEF1_OPERATE 4=level trigger off

Binary channel 22 NSPTOC1/2_OPERATE 4=level trigger off

Binary channel 23 PDNSPTOC1_OPERATE 4=level trigger off

Binary channel 24 T1PPTR1_OPERATE 4=level trigger off

Binary channel 25 SELGAPC1_Blocking 1 4=level trigger off

Binary channel 26 SELGAPC1_CB_Closed 4=level trigger off

Binary channel 27 SELGAPC1_CB_Open 4=level trigger off

Binary channel 28 INRPHAR1_BLK2H 4=level trigger off

Binary channel 29 CCBRBRF1_TRRET 4=level trigger off

Binary channel 30 CCBRBRF1_TRBU 4=level trigger off

Binary channel 31 DARREC1_INPRO 4=level trigger off

Binary channel 32 DARREC1_CLOSE_CB 4=level trigger off

Binary channel 33 DARREC1_UNSUC_RECL 4=level trigger off

Binary channel 34 SELGAPC1_External Trip 4=level trigger off

Binary channel 35 SG1_ACTIVE 4=level trigger off

Binary channel 36 SG2_ACTIVE 4=level trigger off

Binary channel 37 SG3_ACTIVE 4=level trigger off

Binary channel 38 SG4_ACTIVE 4=level trigger off

Binary channel 39 SG5_ACTIVE 4=level trigger off

Binary channel 40 SG6_ACTIVE 4=level trigger off

Section 3 1MRS757456 AREF611 standard configurations

36 REF611Application Manual

Page 43: REF611_appl_757456_ENa

X120-BI3

ORLED 7

TRIP CIRCUIT SUPERVISION

SELGAPC1OUT_3IN_3

TRPPTRC1_TRIP

TRPPTRC2_TRIP

TCSSCBR1

BLOCK ALARM

TCSSCBR2

BLOCK ALARM

SELGAPC4OUT_7IN_16

OSWGAPC14

OR OUT

IN_3

IN_4

SELGAPC2

OUT_1

IN_2 OUT_2CB Closed Position

GUID-50B079D8-AE34-4D47-BD5F-ACCBBEC0EC18 V1 EN

Figure 19: Trip circuit supervision

Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blockedby the Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker openposition. The TCS alarm indication is connected to LED 7.

1MRS757456 A Section 3REF611 standard configurations

REF611 37Application Manual

Page 44: REF611_appl_757456_ENa

3.5.3.3 Functional diagrams for control

OR X100 PO3

OSWGAPC1

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

IN_12

IN_13

IN_15

IN_14

X100 PO4

MASTER TRIP #1

MASTER TRIP #2

OR

OR

SELGAPC3OUT_6IN_2

SELGAPC3OUT_5IN_1

OSWGAPC2

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

IN_12

IN_13

IN_15

IN_14

IN_17

TRIPCL_LKOUT

BLOCK

RST_LKOUT

TRPPTRC1

OPERATE

TRIPCL_LKOUT

BLOCK

RST_LKOUT

TRPPTRC2

OPERATE

SELGAPC1_RST_LKOUT

DARREC1_OPEN_CB

CBXCBR1_EXE_OP

SELGAPC1_External Trip

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

EFHPTOC1_OPETATE

INTRPTEF1_OPERATE

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

EFHPTOC1_OPETATE

INTRPTEF1_OPERATE

CCBRBRF1_TRRET

SELGAPC1_External Trip

SELGAPC1_RST_LKOUT

GUID-A4419861-FA17-4E12-8951-ABEB715AA740 V1 EN

Figure 20: Master trip

The operate signals from the protections and an external trip are connected to thetwo trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via thecorresponding Master Trips TRPPTRC1 and TRPPTRC2. Open control commandsto the circuit breaker from local or remote CBXCBR1_EXE_OP or from theautoreclosing DARREC1_OPEN_CB are connected directly to the output contactPO3 (X100:15-19).

Section 3 1MRS757456 AREF611 standard configurations

38 REF611Application Manual

Page 45: REF611_appl_757456_ENa

TRPPTRC1 and 2 provide the lockout/latching function, event generation and thetrip signal duration setting. One binary input through SELGAPC1 can be connectedto the RST_LKOUT input of the Master Trip. If the lockout operation mode isselected, it is used to enable external reset.

X120-BI2

X120-BI3

ANDTRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR1_EXE_OP

X100 PO1OR

DARREC1_CLOSE_CB

CIRCUIT BREAKER CONTROL

T1PTTR1_BLK_CLOSE

Always True

CBXCBR1

ENA_OPEN

SELECTEDEXE_OPEXE_CL

ENA_CLOSEBLK_OPENBLK_CLOSEAU_OPENAU_CLOSE

POSOPENPOSCLOSE

OPENPOSCLOSEPOS

OKPOSOPEN_ENAD

CLOSE_ENADITL_BYPASS

SELGAPC3OUT_1IN_3

SELGAPC1

OUT_2

IN_3

IN_2

OUT_3

IN_10 OUT_5

CB Closed Position

CB Open Position

GUID-1093EFA7-FA5F-4711-BF03-2B30C553BD72 V1 EN

Figure 21: Circuit breaker control

The ENA_CLOSE input, which enables the closing of the circuit breaker, is astatus of the Master Trip in the circuit-breaker control function block CBXCBR.An always true signal is also connected to ENA_CLOSE via SELGAPC1 bydefault. The open operation is always enabled.

1MRS757456 A Section 3REF611 standard configurations

REF611 39Application Manual

Page 46: REF611_appl_757456_ENa

X100 SO1

X100 SO2

COMMON ALARM INDICATION 1 & 2

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERTAE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

ROVPTOV2_OPERTAE

ROVPTOV3_OPERTAE

EFHPTOC1_OPETATE

INTRPTEF1_OPERATE

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

DEFLPDEF1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

ROVPTOV2_START

ROVPTOV3_START

EFHPTOC1_START

INTRPTEF1_START

OSWGAPC3

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

IN_12

IN_13

IN_15

IN_14

OSWGAPC7

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

IN_12

IN_13

IN_15

IN_14

SELGAPC3OUT_3IN_5

OUT_4IN_9

TPGAPC1IN1 OUT1

TPGAPC3IN1 OUT1

GUID-9AFB34C6-4203-47D4-B03D-F071504B50D3 V1 EN

Figure 22: Common alarm indication

The signal outputs from the IED are connected to give dedicated information on:

• Start of any protection function SO1 (X100:10-12)• Operation (trip) of any protection function SO2 (X100: 13-15)

TPGAPC are timers and they are used for setting the minimum pulse length for theoutputs. There are seven generic timers (TPGAPC1…7) available in the IED.

3.5.4 Switch groupsIn standard configuration A, the switch group function blocks are organized in fourgroups: binary inputs, internal signal, GOOSE as well as binary outputs and LEDs.

Section 3 1MRS757456 AREF611 standard configurations

40 REF611Application Manual

Page 47: REF611_appl_757456_ENa

GOOSE

Binary Inputs Protection and Control

GOOSE

GOOSE

GOOSE

Binary Inputs(1...3, 4...9*)

Received GOOSE(0...19)

ISWGAPC3

INRPHAR1_BLK2H

Binary Outputs and LEDs

OSWGAPC2

OSWGAPC1

OSWGAPC16

OSWGAPC15

OSWGAPC14

OSWGAPC13

OSWGAPC12

OSWGAPC11

SELGAPC4

LEDs

SELGAPC3

Binary Outputs

OSWGAPC10

OSWGAPC9

OSWGAPC8

OSWGAPC7

OSWGAPC6

OSWGAPC5

OSWGAPC4

OSWGAPC3

Binary Outputs(1...6, 7..9*)

LEDs(1…8)

PHLPTOC1 PHHPTOC1

PHHPTOC2 PHIPTOC1

EFHPTOC1 DEFLPDEF1

DEFLPDEF2

NSPTOC1

DEFHPDEF1

NSPTOC2

INTRPTEF1 PDNSPTOC1

ROVPTOV1 ROVPTOV2

ROVPTOV3 T1PTTR1

INRPHAR1

CBXCBR1 DARREC1*

TCSSCBR1 TCSSCBR2

CCBRBRF1

Internal Signal

SELGAPC1

Binary Inputs

ISWGAPC2ISWGAPC1

SELGAPC2

Blocking

TCS Blocking

ISWGAPC9

GOOSE Blocking

ISWGAPC10

GOOSE Block CB Alarm

Trip

Start

Master trip

ISWGAPC5

BasicAngle Control

ISWGAPC4

DARREC1_PROT_CRD

* Optional Function

GUID-70D440AE-3136-411D-8A5C-56CABE711F69 V1 EN

Figure 23: Standard configuration A switch group overview

3.5.4.1 Binary inputs

The binary inputs group includes one SELGAPC and three ISWGAPCs.SELGAPC1 is used to route binary inputs to ISWGAPC or directly to IEDfunctions. ISWGAPC1 and ISWGAPC2 are used to configure the signal to blockthe protection functions. ISWGAPC5 is used to control the characteristic angle ofDEFxPDEF.

1MRS757456 A Section 3REF611 standard configurations

REF611 41Application Manual

Page 48: REF611_appl_757456_ENa

SELGAPC1

ISWGAPC1Blocking 1

ISWGAPC5Basic Angle Control

DEFLPDEF1_RCA_CTLDEFLPDEF2_RCA_CTLDEFHPDEF1_RCA_CTL1) Optional binary inputs

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKPHIPTOC1_BLOCKEFHPTOC1_BLOCKDEFLPDEF1_BLOCKDEFLPDEF2_BLOCKDEFHPDEF1_BLOCKROVPTOV1_BLOCKROVPTOV2_BLOCKROVPTOV3_BLOCKINTRPTEF1_BLOCKNSPTOC1_BLOCKNSPTOC2_BLOCKPDNSPTOC1_BLOCKT1PTTR1_BLOCK

X120-BI1

X120-BI2

X120-BI3

X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

X130-BI6

1)

ISWGAPC2Blocking 2

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKPHIPTOC1_BLOCKEFHPTOC1_BLOCKDEFLPDEF1_BLOCKDEFLPDEF2_BLOCKDEFHPDEF1_BLOCKROVPTOV1_BLOCKROVPTOV2_BLOCKROVPTOV3_BLOCKINTRPTEF1_BLOCKNSPTOC1_BLOCKNSPTOC2_BLOCKPDNSPTOC1_BLOCKT1PTTR1_BLOCK

GUID-B37E732A-4522-4B96-BA67-A7C7020B40D5 V1 EN

Figure 24: Binary inputs

SELGAPC1SELGAPC1 has inputs from IED binary inputs. IN_1 to IN_3 are binary inputsfrom X100. IN_4 to IN_9 can be used while X130 optional card is taken into use.An always true signal is connected to IN_10. SELGAPC1 outputs are used to routeinputs to different functions. By setting SELGAPC1, binary inputs can beconfigured for different purposes.

Section 3 1MRS757456 AREF611 standard configurations

42 REF611Application Manual

Page 49: REF611_appl_757456_ENa

SELGAPC1

Blocking 1

CCBRBRF1_POSCLOSECBXCBR1_POSCLOSESELGAPC2_IN_1

CB Closed Position

CB Open PositionDARREC1_CB_POS CBXCBR1_POSOPENSELGAPC2_IN_2

Basic Angle Control

CBXCBR1_ENA_CLOSECB Close Enable

DARREC1_CB_READY

External Trip

PROTECTION_BI_SG_2Setting Group 2

Blocking 2

PROTECTION_BI_SG_3Setting Group 3

PROTECTION_BI_SG_4Setting Group 4

ISWGAPC1_IN

ISWGAPC2_IN

X120/1-2 BI1

X120/3-2 BI2

X120/4-2 BI3

X130/1-2 BI1

X130/3-2 BI2

X130/4-5 BI3

X130/6-5 BI4

X130/7-8 BI5

X130/9-8 BI6

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

TRPTTRC1_OPERATETRPTTRC2_OPERATE

1) Optional binary inputs

X120-BI1

X120-BI2

X120-BI3

X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

X130-BI6

1)

Always True

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

ISWGAPC5_IN

DARREC1_RECL_ON

TRPTTRC1_RST_LKOUTTRPTTRC2_RST_LKOUT

TRPTTRC1/2_RST_LKOUT

GUID-A12A8C92-A8FA-46B1-A4C9-D1BAE4DE62DA V1 EN

Figure 25: SELGAPC1

ISWGAPC1ISWGAPC1 is used for general blocking. ISWGAPC1 input is routed fromSELGAPC1 output OUT_1 Blocking 1. ISWGAPC1 outputs are connected toBLOCK inputs of protection functions. Select which protection functions are to beblocked by changing the ISWGAPC1 parameters.

1MRS757456 A Section 3REF611 standard configurations

REF611 43Application Manual

Page 50: REF611_appl_757456_ENa

ISWGAPC1

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

Blocking 1SELGAPC1_OUT_1

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

GUID-BDC462BB-B635-4BE4-932D-68010331C92B V1 EN

Figure 26: ISWGAPC1

ISWGAPC2ISWGAPC2 is used for general blocking. ISWGAPC2 input is routed fromSELGAPC1 output OUT_13 Blocking 2. ISWGAPC2 outputs are connected toBLOCK inputs of protection functions. Select which protection functions are to beblocked by changing the ISWGAPC2 parameters.

Section 3 1MRS757456 AREF611 standard configurations

44 REF611Application Manual

Page 51: REF611_appl_757456_ENa

Blocking 2SELGAPC1_OUT_13

ISWGAPC2

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

GUID-56855209-1CDA-4B53-A920-3976BF96C636 V1 EN

Figure 27: ISWGAPC2

ISWGAPC5ISWGAPC5 input is routed from SELGAPC1 output OUT_4 Basic Angle Control.ISWGAPC5 outputs are connected to RCA_CTL inputs of directional earth-faultprotection functions. Select which directional earth-fault protection is controlled byISWGAPC5 input by changing the ISWGAPC5 parameters.

ISWGAPC5

IN

OUT_1

OUT_2

OUT_3

SELGAPC1_OUT_4

DEFLPDEF1_RCA_CTL

DEFLPDEF2_RCA_CTL

DEFHPDEF1_RCA_CTL

Basic Angle Control

GUID-47706B0D-5CB7-4D8D-8B07-846B87DDBDB4 V1 EN

Figure 28: ISWGAPC5

3.5.4.2 Internal signal

The internal signal group is used to configure logic connections between functionblocks. There are two ISWGAPC instances and one SELGAPC in the group.

ISWGAPC3 is used to configure which protection function enables the currentmultiplier if the INRPHAR1 function detects inrush. ISWGAPC4 is used toconfigure the cooperation between the autoreclose function and the protectionfunctions. The autoreclose function DARREC1 can block protection functions

1MRS757456 A Section 3REF611 standard configurations

REF611 45Application Manual

Page 52: REF611_appl_757456_ENa

according to the application. SELGAPC2 is used to configure TCS blocking fromthe circuit breaker open or close position.

ISWGAPC3

PHLPTOC1_ENA_MULTPHHPTOC1_ENA_MULTPHHPTOC2_ENA_MULTPHIPTOC1_ENA_MULTEFHPTOC1_ENA_MULTDEFLPDEF1_ENA_MULTDEFLPDEF2_ENA_MULTDEFHPDEF1_ENA_MULTNSPTOC1_ENA_MULTNSPTOC2_ENA_MULTT1PTTR1_ENA_MULT

ISWGAPC4

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKEFHPTOC1_BLOCKDEFLPDEF1_BLOCKDEFLPDEF2_BLOCKDEFHPDEF1_BLOCK

SELGAPC2 TCSSCBR1_BLOCKTCSSCBR2_BLOCK

INRPHAR1_BLK2H

DARREC1_PROT_CRD

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

CB Open Position

GUID-A717CE52-5F4C-40C4-BF71-FBFCB900179B V1 EN

Figure 29: Internal signal

ISWGAPC3ISWGAPC3 input is routed from INRPHAR1 output BLK2H. ISWGAPC3 outputsare connected to ENA_MULT of the protection functions. Configure whichprotection function enables current multiplier while inrush is detected byINRPHAR1, by changing the ISWGAPC3 parameters.

ISWGAPC3

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

INRPHAR1_BLK2H

PHLPTOC1_ENA_MULT

PHHPTOC1_ENA_MULT

PHHPTOC2_ENA_MULT

PHIPTOC1_ENA_MULT

EFHPTOC1_ENA_MULT

DEFLPDEF1_ENA_MULT

DEFLPDEF2_ENA_MULT

DEFHPDEF1_ENA_MULT

NSPTOC1_ENA_MULT

NSPTOC2_ENA_MULT

T1PTTR1_ENA_MULT

GUID-CC7AF316-6030-4959-B6EE-032E6415804C V1 EN

Figure 30: ISWGAPC3

Section 3 1MRS757456 AREF611 standard configurations

46 REF611Application Manual

Page 53: REF611_appl_757456_ENa

ISWGAPC4ISWGAPC4 input is routed from DARREC1 output PROT_CRD. ISWGAPC4outputs are connected to the BLOCK inputs of some of the protection functions.Configure which protection function is blocked by the autoreclose function bychanging the ISWGAPC4 parameters.

ISWGAPC4

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

DARREC1_PROT_CRD

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

GUID-E0106013-2B27-4DED-81C7-40ED4F0A94F0 V1 EN

Figure 31: ISWGAPC4

SELGAPC2SELGAPC2 inputs represent the circuit breaker closed and open position fromSELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuitsupervision TCSSCBR1 and TCSSCBR2.

By default, X100 PO3 and PO4 are both used for the open circuit breaker.TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position.If X100-PO3 is used for closing the circuit breaker, TCSSCBR1 needs to beblocked by circuit breaker close position (OUT_1 connection=IN_1). If X100-PO4is used for closing the circuit breaker, TCSSCBR2 needs to be blocked by thecircuit breaker close position (OUT_2 connection=IN_1).

SELGAPC2IN_1

IN_2

OUT_1

OUT_2

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

CB Open Position

GUID-4E5F2683-ED84-45AB-8636-023584763783 V1 EN

Figure 32: SELGAPC2

3.5.4.3 Binary outputs and LEDs

In standard configuration A, the signals are routed to binary outputs and LEDs areconfigured by OSWGAPCs. There are 16 OSWGAPC instances in total. They arecategorized in four groups, which include two Master trip, four start, four trip andsix alarm signals. The OSWGAPC output is connected with binary outputs andLEDs via SELGAPC3 and SELGAPC4.

1MRS757456 A Section 3REF611 standard configurations

REF611 47Application Manual

Page 54: REF611_appl_757456_ENa

• SELGAPC3 is used to configure OSWGAPC signals to the IED's binaryoutputs. SELGAPC4 is used to configure OSWGAPC signals to LEDs.

• OSWGAPC1 and OSWGAPC2 are used for the Master trip. The inputs arerouted from the protection function's operate and the circuit breaker failure's re-trip.

• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are startsignals routed from the protection functions.

• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs areoperation signals routed from the protection functions.

• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs arealarm signals routed from the protection and monitoring functions.

Section 3 1MRS757456 AREF611 standard configurations

48 REF611Application Manual

Page 55: REF611_appl_757456_ENa

Master Trip 1

OSWGAPC2 Master Trip 2

Trip 1

Trip 2

Trip 3

Trip 4

T1PTTR1_ALARMRDRE_TRIGGEREDTCSSCBR1_ALARMTCSSCBR2_ALARMCCBRBRF1_TRBUCCBRBRF1_TRRETDARREC1_INPRODARREC1_LOCKEDDARREC1_PROT_CRDDARREC1_UNSUC_RECLDARREC1_AR_ONDARREC1_READYSELGAPC1_OUT_9TRPPTRC1_CL_LKOUTTRPPTRC2_CL_LKOUT

OSWGAPC12 Alarm 2

OSWGAPC13 Alarm 3

OSWGAPC14 Alarm 4

OSWGAPC1

OSWGAPC3

OSWGAPC11 Alarm 1

TRPPTRC1

TRPPTRC2

TPGAPC3

TPGAPC4

TPGAPC5

TPGAPC6

SELGAPC3

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFHPTOC1_OPERATEDEFLPDEF1_OPERATEDEFLPDEF2_OPERATEDEFHPDEF1_OPERATEROVPTOV1_OPERATEROVPTOV2_OPERATEROVPTOV3_OPERATEINTRPTEF1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATECCBRBRF1_TRRET

PHLPTOC1_STARTPHHPTOC1_STARTPHHPTOC2_STARTPHIPTOC1_STARTEFHPTOC1_STARTDEFLPDEF1_STARTDEFLPDEF2_STARTDEFHPDEF1_STARTROVPTOV1_STARTROVPTOV2_STARTROVPTOV3_STARTINTRPTEF1_STARTNSPTOC1_STARTNSPTOC2_STARTPDNSPTOC1_STARTT1PTTR1_START

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFHPTOC1_OPERATEDEFLPDEF1_OPERATEDEFLPDEF2_OPERATEDEFHPDEF1_OPERATEROVPTOV1_OPERATEROVPTOV2_OPERATEROVPTOV3_OPERATEINTRPTEF1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATE

OSWGAPC8

OSWGAPC7

OSWGAPC10

OSWGAPC9

1)Optional binary outputs

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

X130 SO2

X130 SO3

1)

Start 1

Start 2

TPGAPC1

OSWGAPC4

OSWGAPC5 Start 3

Start 4

TPGAPC2

OSWGAPC6

OSWGAPC15 Alarm 5

OSWGAPC16 Alarm 6

TPGAPC7

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

GUID-DC487FC1-179A-44D3-90EC-0B2AB809EB67 V1 EN

Figure 33: Binary outputs

1MRS757456 A Section 3REF611 standard configurations

REF611 49Application Manual

Page 56: REF611_appl_757456_ENa

Master Trip 1

OSWGAPC2 Master Trip 2

Trip 1

Trip 2

Trip 3

Trip 4

T1PTTR1_ALARMRDRE_TRIGGEREDTCSSCBR1_ALARMTCSSCBR2_ALARMCCBRBRF1_TRBUCCBRBRF1_TRRETDARREC1_INPRODARREC1_LOCKEDDARREC1_PROT_CRDDARREC1_UNSUC_RECLDARREC1_AR_ONDARREC1_READYSELGAPC1_OUT_9TRPPTRC1_CL_LKOUTTRPPTRC2_CL_LKOUT

OSWGAPC1

OSWGAPC3

OSWGAPC11 Alarm 1

TRPPTRC1

TRPPTRC2

SELGAPC4

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFHPTOC1_OPERATEDEFLPDEF1_OPERATEDEFLPDEF2_OPERATEDEFHPDEF1_OPERATEROVPTOV1_OPERATEROVPTOV2_OPERATEROVPTOV3_OPERATEINTRPTEF1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATECCBRBRF1_TRRET

PHLPTOC1_STARTPHHPTOC1_STARTPHHPTOC2_STARTPHIPTOC1_STARTEFHPTOC1_STARTDEFLPDEF1_STARTDEFLPDEF2_STARTDEFHPDEF1_STARTROVPTOV1_STARTROVPTOV2_STARTROVPTOV3_STARTINTRPTEF1_STARTNSPTOC1_STARTNSPTOC2_STARTPDNSPTOC1_STARTT1PTTR1_START

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFHPTOC1_OPERATEDEFLPDEF1_OPERATEDEFLPDEF2_OPERATEDEFHPDEF1_OPERATEROVPTOV1_OPERATEROVPTOV2_OPERATEROVPTOV3_OPERATEINTRPTEF1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATE

OSWGAPC8

OSWGAPC7

OSWGAPC10

OSWGAPC9

Start 1

Start 2OSWGAPC4

OSWGAPC5 Start 3

Start 4OSWGAPC6

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

OSWGAPC12 Alarm 2

OSWGAPC13 Alarm 3

OSWGAPC14 Alarm 4

OSWGAPC15 Alarm 5

OSWGAPC16 Alarm 6

GUID-A9F30F03-EB2B-487D-90D1-36E5CD493FF3 V1 EN

Figure 34: LEDs

SELGAPC3SELGAPC3 is used to configure the OSWGAPC outputs to the IED binaryoutputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start, tripand alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timersand used for setting the minimum pulse length for the outputs.

Section 3 1MRS757456 AREF611 standard configurations

50 REF611Application Manual

Page 57: REF611_appl_757456_ENa

SELGAPC3 outputs are connected to X100 binary outputs. If X130 optional card istaken into use, SELGAPC3 outputs also connected to the X130 binary outputs.

SELGAPC3

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

IN_14

IN_15

IN_16

IN_17

IN_18

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

X130 SO2

X130 SO3

1)

1)Optional binary outputs

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC3_OUT

OSWGAPC4_OUT

Start 1

Start 2

Start 3

Start 4

Trip 1

Alarm 1

Trip 2

Trip 3

Trip 4

Alarm 2

Alarm 3

Alarm 4

Alarm 5

Alarm 6

Backup Trip

CBXCBR_EXE_OP DARREC_OPEN_CB TRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CL DARREC_CLOSE_CB

CCBRBRF1_TRBU

CB Open 1

CB Close

CB Open 2

TPGAPC1IN1 OUT1

IN2 OUT2

TPGAPC7IN1 OUT1

IN2 OUT2

TPGAPC6IN1 OUT1

IN2 OUT2

TPGAPC5IN1 OUT1

IN2 OUT2

TPGAPC4IN1 OUT1

IN2 OUT2

TPGAPC3IN1 OUT1

IN2 OUT2

TPGAPC2IN1 OUT1

IN2 OUT2

GUID-3772666B-6FE9-48E5-91BF-9AA80BFD4B6E V1 EN

Figure 35:

SELGAPC4SELGAPC4 is used to configure the OSWGAPC outputs to LEDs. Master tripsignals are connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signalsare connected to SELGAPC4 directly. SELGAPC4 outputs are connected toprogrammable LED1 to LED8.

1MRS757456 A Section 3REF611 standard configurations

REF611 51Application Manual

Page 58: REF611_appl_757456_ENa

SELGAPC4IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

IN_14

IN_15

IN_16

IN_17

IN_18

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

Start 1

Start 2

Start 3

Start 4

Trip 1

Alarm 1

Trip 2

Trip 3

Trip 4

Alarm 2

Alarm 3

Alarm 4

Alarm 5

Alarm 6

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC3_OUT

OSWGAPC4_OUT

CBXCBR_EXE_CLDARREC_CLOSE_CB

CCBRBRF1_TRBU Backup Trip

CB Close

CB Open 1

CB Open 2

CBXCBR_EXE_OPDARREC_OPEN_CBTRPPTRC1_TRIP

TRPPTRC2_TRIP

GUID-B4946537-8289-4424-BE16-C9EDA774A4A4 V1 EN

Figure 36: SELGAPC4

Master trip OSWGAPCsOSWGAPC1 and OSWGAPC2 are used to route the protection function operatesignals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs fromthe protection function's operate signals. The output is connected to TRPPTRCfunction. The default connections for OSWGAPC1 and OSWGAPC2 are different.

Section 3 1MRS757456 AREF611 standard configurations

52 REF611Application Manual

Page 59: REF611_appl_757456_ENa

OSWGAPC1

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

PHLPTOC1_OPERATE

NSPTOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

TRPPTRC 1_OPERATE

IN_14

IN_15

IN_16

IN_17

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

Master trip 1

GUID-1C2DBFDD-9F8B-4574-92C2-02A9D879FDA7 V1 EN

Figure 37: OSWGAPC1

1MRS757456 A Section 3REF611 standard configurations

REF611 53Application Manual

Page 60: REF611_appl_757456_ENa

OSWGAPC2

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

PHLPTOC1_OPERATE

NSPTOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

TRPPTRC 2_OPERATE

IN_14

IN_15

IN_16

IN_17

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

CCBRBRF1_TRRET

Master trip 2

GUID-1E93D270-E0CE-4861-A2B1-8E3974691618 V1 EN

Figure 38: OSWGAPC2

Start OSWGAPCsOSWGAPC instances 3 to 6 are used to configure the protection start signals.These four OSWGAPCs have the same inputs from the protection function startsignals. The output is routed to SELGAPC3 via TPGAPC timer, and routed toSELGAPC4 directly.

Section 3 1MRS757456 AREF611 standard configurations

54 REF611Application Manual

Page 61: REF611_appl_757456_ENa

OSWGAPC3

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_START

DEFLPDEF1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

PHLPTOC1_START

NSPTOC1_START

PHIPTOC1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

PHHPTOC2_START

PHHPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

TPGAPC1_IN1SELGAPC4_IN_5

Start 1

GUID-51366927-F89E-4879-969F-B1023B540BD1 V1 EN

Figure 39: OSWGAPC3

1MRS757456 A Section 3REF611 standard configurations

REF611 55Application Manual

Page 62: REF611_appl_757456_ENa

OSWGAPC4

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_START

DEFLPDEF1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

PHLPTOC1_START

NSPTOC1_START

PHIPTOC1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

PHHPTOC2_START

PHHPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

Start 2 TPGAPC1_IN2SELGAPC4_IN_6

GUID-E9196ACF-BA9A-483C-8FF3-4D41574BCEDE V1 EN

Figure 40: OSWGAPC4

Section 3 1MRS757456 AREF611 standard configurations

56 REF611Application Manual

Page 63: REF611_appl_757456_ENa

OSWGAPC5

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_START

DEFLPDEF1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

PHLPTOC1_START

NSPTOC1_START

PHIPTOC1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

PHHPTOC2_START

PHHPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

Start 3 TPGAPC2_IN1SELGAPC4_IN_7

GUID-FFA9885A-9816-4D9E-BF1F-C8204C73F32D V1 EN

Figure 41: OSWGAPC5

1MRS757456 A Section 3REF611 standard configurations

REF611 57Application Manual

Page 64: REF611_appl_757456_ENa

OSWGAPC6

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_START

DEFLPDEF1_START

ROVPTOV2_START

ROVPTOV3_START

INTRPTEF1_START

PHLPTOC1_START

NSPTOC1_START

PHIPTOC1_START

DEFLPDEF2_START

DEFHPDEF1_START

ROVPTOV1_START

PHHPTOC2_START

PHHPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

Start 4 TPGAPC2_IN2SELGAPC4_IN_8

GUID-41D82F50-DC6D-47AD-84C4-8BB5CE7A396B V1 EN

Figure 42: OSWGAPC6

Trip OSWGAPCsOSWGAPC instances 7 to 10 are used to configure the protection operate signalswhich belong to the trip group. These four OSWGAPCs have same inputs from theoperate signals of the protection functions. The output is routed to SELGAPC3 viaTPGAPC timer, and routed to SELGAPC4 directly.

Section 3 1MRS757456 AREF611 standard configurations

58 REF611Application Manual

Page 65: REF611_appl_757456_ENa

OSWGAPC7

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

PHLPTOC1_OPERATE

NSPTOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

Trip 1 TPGAPC3_IN1SELGAPC4_IN_9

GUID-AB81000E-01A7-40D2-8BD4-3EBB8B125903 V1 EN

Figure 43: OSWGAPC7

1MRS757456 A Section 3REF611 standard configurations

REF611 59Application Manual

Page 66: REF611_appl_757456_ENa

OSWGAPC8

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

PHLPTOC1_OPERATE

NSPTOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

Trip 2 TPGAPC3_IN2SELGAPC4_IN_10

GUID-03032E45-CF34-4D83-BFC4-02C07245E32E V1 EN

Figure 44: OSWGAPC8

Section 3 1MRS757456 AREF611 standard configurations

60 REF611Application Manual

Page 67: REF611_appl_757456_ENa

OSWGAPC9

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

PHLPTOC1_OPERATE

NSPTOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

Trip 3 TPGAPC4_IN1SELGAPC4_IN_11

GUID-F48933D5-43DE-43E1-9260-D10601DFA02F V1 EN

Figure 45: OSWGAPC9

1MRS757456 A Section 3REF611 standard configurations

REF611 61Application Manual

Page 68: REF611_appl_757456_ENa

OSWGAPC10

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

IN_16

EFHPTOC1_OPERATE

DEFLPDEF1_OPERATE

ROVPTOV2_OPERATE

ROVPTOV3_OPERATE

INTRPTEF1_OPERATE

PHLPTOC1_OPERATE

NSPTOC1_OPERATE

PHIPTOC1_OPERATE

DEFLPDEF2_OPERATE

DEFHPDEF1_OPERATE

ROVPTOV1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

Trip 4 TPGAPC4_IN2SELGAPC4_IN_12

GUID-F0AC6293-6959-465E-A233-1D947583A2E1 V1 EN

Figure 46: OSWGAPC10

Alarm OSWGAPCsOSWGAPC instances 11 to 16 are used to configure the alarm signals whichbelong to the alarm group. These six OSWGAPCs have same inputs from the alarmsignals. The output is routed to SELGAPC3 via TPGAPC timer, and routed toSELGAPC4 directly.

Section 3 1MRS757456 AREF611 standard configurations

62 REF611Application Manual

Page 69: REF611_appl_757456_ENa

OSWGAPC11

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_9

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 1 TPGAPC5_IN1SELGAPC4_IN_13

External Trip

GUID-66274761-B6F9-409E-B0DE-9C0596ED4C71 V

Figure 47: OSWGAPC11

1MRS757456 A Section 3REF611 standard configurations

REF611 63Application Manual

Page 70: REF611_appl_757456_ENa

OSWGAPC12

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_9

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 2 TPGAPC5_IN2SELGAPC4_IN_14

External Trip

GUID-ED72F4ED-4DF4-4B13-AE0C-AAB6A03B69C7 V1 EN

Figure 48: OSWGAPC12

Section 3 1MRS757456 AREF611 standard configurations

64 REF611Application Manual

Page 71: REF611_appl_757456_ENa

OSWGAPC13

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_9

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 3 TPGAPC6_IN1SELGAPC4_IN_15

External Trip

GUID-85F16B67-BE18-43A3-8637-FCF29DB2E8D6 V1 EN

Figure 49: OSWGAPC13

1MRS757456 A Section 3REF611 standard configurations

REF611 65Application Manual

Page 72: REF611_appl_757456_ENa

OSWGAPC14

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_9

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 4 TPGAPC6_IN2SELGAPC4_IN_16

External Trip

GUID-C9EC48EA-F53F-4009-9010-5652EE3A6C95 V1 EN

Figure 50: OSWGAPC14

Section 3 1MRS757456 AREF611 standard configurations

66 REF611Application Manual

Page 73: REF611_appl_757456_ENa

OSWGAPC15

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_9

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 5 TPGAPC7_IN1SELGAPC4_IN_17

External Trip

GUID-CC49B32B-234A-43AB-86AF-B83FC2C10F51 V1 EN

Figure 51: OSWGAPC15

1MRS757456 A Section 3REF611 standard configurations

REF611 67Application Manual

Page 74: REF611_appl_757456_ENa

OSWGAPC16

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_9

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 6 TPGAPC7_IN2SELGAPC4_IN_18

External Trip

GUID-053F0EAF-B3F1-474C-91E9-76E4DC91629F V1 EN

Figure 52: OSWGAPC16

3.5.4.4 GOOSE

In the configuration, there are 20 GOOSERCV_BIN functions. EachGOOSERVC_BIN function can be connected to one received binary GOOSEsignal. The signal connection can be configured in PCM600.

• GOOSERCV_BIN instances 0 and 1 are used for blocking protectionfunctions. Signals from these two GOOSERCV_BINs are connected toISWGAPC9. ISWGAPC9 is used to configure which protection function blockis blocked.

• GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE.Signals from these two GOOSERCV_BINs are connected to TRPPTRC1 andTRPPTRC2 trip.

• GOOSERCV_BIN instances 4 to 19 are used for blocking circuit breakeroperation. Signals from these 16 GOOSERCV_BINs are connected toISWGAPC10. ISWGAPC10 is used to configure the GOOSE input signal toblock the circuit breaker open or close operation.

Section 3 1MRS757456 AREF611 standard configurations

68 REF611Application Manual

Page 75: REF611_appl_757456_ENa

CBXCBR1_BLK_CLOSECBXCBR1_BLK_OPEN

GOOSERCV_BIN:1

GOOSERCV_BIN:0

OR ISWGAPC9GOOSE Blcoking

GOOSERCV_BIN:3

GOOSERCV_BIN:2

ORGOOSEExternal Trip

GOOSERCV_BIN:5

GOOSERCV_BIN:4

GOOSERCV_BIN:19

OR ISWGAPC10GOOSE Block CB

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKPHIPTOC1_BLOCKEFHPTOC1_BLOCKDEFLPDEF1_BLOCKDEFLPDEF2_BLOCKDEFHPDEF1_BLOCKROVPTOV1_BLOCKROVPTOV2_BLOCKROVPTOV3_BLOCKINTRPTEF1_BLOCKNSPTOC1_BLOCKNSPTOC2_BLOCKPDNSPTOC1_BLOCKT1PTTR1_BLOCK

TRPPTRC1_OPERATETRPPTRC2_OPERATE

GUID-0B0FD851-2982-4097-B52D-ADC59E9AA638 V1 EN

Figure 53: GOOSE overview

ISWGAPC9ISWGAPC9 is used to configure which protection functions can be blocked by thereceived GOOSE signals. ISWGAPC9 inputs are received GOOSE signals fromGOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to blockinputs of the protection functions.

1MRS757456 A Section 3REF611 standard configurations

REF611 69Application Manual

Page 76: REF611_appl_757456_ENa

ISWGAPC9

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

OUT_13

OUT_14

OUT_15

OUT_16

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFHPTOC1_BLOCK

DEFLPDEF1_BLOCK

DEFLPDEF2_BLOCK

DEFHPDEF1_BLOCK

ROVPTOV1_BLOCK

ROVPTOV2_BLOCK

ROVPTOV3_BLOCK

INTRPTEF1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

GOOSE BlockingGOOSERCV_BIN:0_OUTGOOSERCV_BIN:1_OUT

GUID-8189C6A6-FF9A-423C-B870-06A23A20E3B3 V1 EN

Figure 54: ISWGAPC9

ISWGAPC10ISWGAPC10 is used to block the circuit breaker operation from the receivedGOOSE signals. ISWGAPC10 inputs are received GOOSE signals fromGOOSERCV_BIN:4 to GOOSERCV_BIN:19. The outputs are connected to blockthe circuit breaker's close and open operation.

ISWGAPC10

INOUT_1

OUT_2

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

GOOSERCV_BIN:4_OUTGOOSERCV_BIN:5_OUTGOOSERCV_BIN:6_OUT...GOOSERCV_BIN:19_OUT

GOOSE Block CB

GUID-07F0B112-6C1B-452D-B2E0-BB8857AAF590 V1 EN

Figure 55: ISWGAPC10

Section 3 1MRS757456 AREF611 standard configurations

70 REF611Application Manual

Page 77: REF611_appl_757456_ENa

3.6 Standard configuration B

3.6.1 ApplicationsThe standard configuration for non-directional overcurrent and non-directional earth-fault protection is mainly intended for cable and overhead-line feeder applicationsin isolated and resonant-earthed distribution networks.

The IED with a standard configuration is delivered from the factory with defaultsettings and parameters. The end-user flexibility for incoming, outgoing andinternal signal designation within the IED enables this configuration to be furtheradapted to different primary circuit layouts and the related functionality needs bymodifying the internal functionality using PCM600.

3.6.2 FunctionsTable 14: Functions included in the standard configuration B

Function IEC 61850 IEC 60617 IEC-ANSIProtection

Three-phase non-directional overcurrentprotection, low stage, instance 1 PHLPTOC1 3I> (1) 51P-1 (1)

Three-phase non-directional overcurrentprotection, high stage, instance 1 PHHPTOC1 3I>> (1) 51P-2 (1)

Three-phase non-directional overcurrentprotection, high stage, instance 2 PHHPTOC2 3I>> (2) 51P-2 (2)

Three-phase non-directional overcurrentprotection, instantaneous stage, instance 1 PHIPTOC1 3I>>> (1) 50P/51P (1)

Non-directional earth-fault protection, lowstage, instance 1 EFLPTOC1 Io> (1) 51N-1 (1)

Non-directional earth-fault protection, lowstage, instance 2 EFLPTOC2 Io> (2) 51N-1 (2)

Non-directional earth-fault protection, highstage, instance 1 EFHPTOC1 Io>> (1) 51N-2 (1)

Non-directional earth-fault protection,instantaneous stage EFIPTOC1 Io>>> 50N/51N

Negative-sequence overcurrent protection,instance 1 NSPTOC1 I2> (1) 46 (1)

Negative-sequence overcurrent protection,instance 2 NSPTOC2 I2> (2) 46 (2)

Phase discontinuity protection PDNSPTOC1 I2/I1> 46PD

Three-phase thermal protection forfeeders, cables and distributiontransformers

T1PTTR1 3Ith>F 49F

Circuit breaker failure protection CCBRBRF1 3I>/Io>BF 51BF/51NBF

Three-phase inrush detector INRPHAR1 3I2f> 68

Master trip, instance 1 TRPPTRC1 Master Trip (1) 94/86 (1)

Table continues on next page

1MRS757456 A Section 3REF611 standard configurations

REF611 71Application Manual

Page 78: REF611_appl_757456_ENa

Function IEC 61850 IEC 60617 IEC-ANSIMaster trip, instance 2 TRPPTRC2 Master Trip (2) 94/86 (2)

Switch groups

Input switch group ISWGAPC ISWGAPC ISWGAPC

Output switch group OSWGAPC OSWGAPC OSWGAPC

Selector switch group SELGAPC SELGAPC SELGAPC

Configurable timer

Minimum pulse timer (2 pcs) TPGAPC TP TP

Control

Circuit-breaker control CBXCBR1 I <-> O CB I <-> O CB

Auto-reclosing DARREC1 O -> I 79

Supervision

Trip circuit supervision, instance 1 TCSSCBR1 TCS (1) TCM (1)

Trip circuit supervision, instance 2 TCSSCBR2 TCS (2) TCM (2)

Measurement

Disturbance recorder RDRE1 - -

Three-phase current measurement,instance 1 CMMXU1 3I 3I

Sequence current measurement CSMSQI1 I1, I2, I0 I1, I2, I0

Residual current measurement, instance 1 RESCMMXU1 Io In

3.6.2.1 Default I/O connections

Table 15: Default connections for binary inputs

Binary input Default usage Connector pinsX120-BI1 Blocking of overcurrent instantaneous stage X120-1,2

X120-BI2 Circuit breaker closed position indication X120-3,2

X120-BI3 Circuit breaker open position indication X120-4,2

X120-BI4 Reset of master trip lockout X120-5,6

Table 16: Default connections for binary outputs

Binary input Default usage Connector pinsX100-PO1 Close circuit breaker X100-6,7

X100-PO2 Circuit breaker failure protection trip to upstreambreaker

X100-8,9

X100-PO3 Open circuit breaker/trip coil 1 X100-15,16,17,18,19

X100-PO4 Open circuit breaker/trip coil 2 X100-20,21,22,23,24

X100-SO1 General start indication X100-10,11,12

X100-SO2 General operate indication X100-13,14,15

Section 3 1MRS757456 AREF611 standard configurations

72 REF611Application Manual

Page 79: REF611_appl_757456_ENa

Table 17: Default connections for LEDs

LED Default usage1 Non-directional overcurrent operate

2 Earth fault operate

3 Negative-sequence overcurrent/phase discontinuity operate

4 Thermal overload alarm

5 Autoreclose in progress

6 Disturbance recorder triggered

7 Trip circuit supervision alarm

8 Circuit-breaker failure operate

3.6.2.2 Predefined disturbance recorder connections

Table 18: Predefined analog channel setup

Channel Selection and text1 IL1

2 IL2

3 IL3

4 Io

Additionally, all the digital inputs that are connected by default are also enabledwith the setting. Default triggering settings are selected depending on theconnected input signal type. Typically all protection START signals are selected totrigger the disturbance recorded by default.

3.6.3 Functional diagramsThe functional diagrams describe the default input, output, programmable LED,switch group and function-to-function connections. The default connections can beviewed and changed with switch groups in PCM600, LHMI and WHMI accordingto the application requirements.

The analog channels have fixed connections towards the different function blocksinside the IED’s standard configuration. Exceptions from this rule are the sevenanalog channels available for the disturbance recorder function. These channels arefreely selectable and a part of the disturbance recorder’s parameter settings.

The analog channels are assigned to different functions. The common signalmarked with 3I represents the three phase currents. The signal marked with Iorepresents the measured residual current via a core balance current transformer.

1MRS757456 A Section 3REF611 standard configurations

REF611 73Application Manual

Page 80: REF611_appl_757456_ENa

3.6.3.1 Functional diagrams for protection

The functional diagrams describe the IED’s protection functionality in detail andpicture the factory default connections.

X120-BI1

LED 1

ISWGAPC1OUT_4IN

SELGAPC4OUT_1IN_10

OSWGAPC8

OR OUT

IN_1

IN_2

IN_3

IN_4

OVERCURRENT PROTECTION AND INRUSH INDICATION

PHLPTOC13I>(1)

51P-1(1)

BLOCK START

OPERATE3I

ENA_MULT

PHHPTOC13I>>(1)

51P-2(1)

BLOCK START

OPERATE3I

ENA_MULT

PHHPTOC23I>>(2)

51P-2(2)

BLOCK START

OPERATE3I

ENA_MULT

SELGAPC1OUT_1IN_1

PHIPTOC13I>>>(1)

50P/51P(1)

BLOCK START

OPERATE3I

ENA_MULTBlocking 1

INRPHAR13I2f >(1)

68(1)

BLOCK

BLK2H3I

GUID-DEF278A2-D120-437C-BC9A-180BD34C6962 V1 EN

Figure 56: Overcurrent protection

Four overcurrent stages are offered for overcurrent and short-circuit protection.The instantaneous stage (PHIPTOC1) can be blocked by energizing the binaryinput (X120:1-2). The inrush detection block’s (INRPHAR1) output BLK2Henables either blocking the function or multiplying the active settings for any of thedescribed protection function blocks.

All operate signals are connected to the Master Trip and to the alarm LED 1.

Section 3 1MRS757456 AREF611 standard configurations

74 REF611Application Manual

Page 81: REF611_appl_757456_ENa

LED 2

EARTH-FAULT PROTECTION

SELGAPC4OUT_2IN_11

OSWGAPC9

OR OUT

IN_5

IN_6

IN_7

IN_8

EFLPTOC1Io>(1)

51N-1(1)

BLOCK STARTOPERATEIo

ENA_MULT

EFLPTOC2Io>(2)

51N-1(2)

BLOCK STARTOPERATEIo

ENA_MULT

EFIPTOC1Io>>>(1)

50N(1)

BLOCK STARTOPERATEIo

ENA_MULT

EFHPTOC1Io>>(1)

51N-2(1)

BLOCK STARTOPERATEIo

ENA_MULT

GUID-A3A385B1-89E2-4E71-9C18-183C9A1F9660 V1 EN

Figure 57: Earth-fault protection

Four stages are offered for non-directional earth-fault protection.

All operate signals are connected to the Master Trip as well as to the alarm LED 2.

1MRS757456 A Section 3REF611 standard configurations

REF611 75Application Manual

Page 82: REF611_appl_757456_ENa

LED 3

UNBALANCE PROTECTION

NSPTOC1I2>(1)

46(1)

BLOCK START

OPERATE3I

ENA_MULT

NSPTOC2I2>(2)

46(2)

BLOCK START

OPERATE3I

ENA_MULT

SELGAPC4IN_12 OUT_3

OSWGAPC10

OR OUT

IN_9

IN_10

IN_11

PDNSPTOC1I2/I1(1)

46PD(1)

BLOCK START

OPERATE3I

GUID-4CFBCA74-5D5E-4C39-87DE-18EE2BE86C19 V1 EN

Figure 58: Unbalance protection

Two negative-sequence overcurrent stages (NSPTOC1 and NSPTOC2) and onephase discontinuity stage (PDNPSTOC1) are offered for the unbalance protection.The phase discontinuity protection (PDNPSTOC1) provides protection forinterruptions in the normal three-phase load supply, for example, in downedconductor situations.

The operate signals of these unbalance protections are connected to the Master Tripand also to alarm LED 3.

Section 3 1MRS757456 AREF611 standard configurations

76 REF611Application Manual

Page 83: REF611_appl_757456_ENa

X120-BI2

X100 PO2

LED 8

SELGAPC3OUT_2IN_4

OSWGAPC15OUTIN_5

LED 4

THERMAL OVERLOAD PROTECTION

CIRCUIT BREAKER FAILURE PROTECTION

SELGAPC4OUT_8IN_17

OSWGAPC11OUTIN_1

SELGAPC4OUT_4IN_13

SELGAPC1OUT_2IN_2

PHIPTOC1_OPERATEPHHPTOC2_OPERATE

PHLPTOC1_OPERATEPHHPTOC1_OPERATE

EFHPTOC1_OPERATE

OREFLPTOC1_OPERATEEFLPTOC2_OPERATE

EFIPTOC1_OPERATE

CB Closed Position

51BF/51NBF(1)

3I

Io

START TRRET

TRBU

POSCLOSE

CB_FAULT

BLOCK

CB_FAULT_AL

CCBRBRF13I>/Io>BF(1)

T1PTTR13Ith>F(1)

49F(1)

BLK_OPR

START

OPERATE3I

BLK_CLOSE

ALARMENA_MULT

AMB_TEMP

GUID-05F6D382-22E2-41D8-84A3-1EC01A52B6B1 V1 EN

Figure 59: Thermal overload and circuit-breaker failure protection

The thermal overload protection (T1PTTR1) provides indication on overloadsituations. LED 4 is used for the thermal overload protection alarm indication.

The circuit-breaker failure protection (CCBRBRF1) is initiated via the start inputby a number of different protection stages in the IED. CCBRBRF1 offers differentoperating modes associated with the circuit-breaker position and the measuredphase and residual currents. CCBRBRF1 has two operating outputs: TRRET andTRBU. The TRRET operate output is used for retripping its own circuit breakerthrough Master Trip 2. The TRBU output is used to give a backup trip to the circuit-breaker feeding upstream. For this purpose, the TRBU operate output signal isconnected to the output PO2 (X100: 8-9). LED 8 is used for the backup (TRBU)operate indication.

1MRS757456 A Section 3REF611 standard configurations

REF611 77Application Manual

Page 84: REF611_appl_757456_ENa

X120-BI3

LED 5

OR

OR

AUTORECLOSING (Optional)

Always True

OSWGAPC12OUTIN_7

SELGAPC4OUT_5IN_14

PHHPTOC2_OPERATE

PHLPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

PHLPTOC1_START

EFHPTOC1_START

EFLPTOC1_OPERATE

PHHPTOC1_OPERATE

EFLPTOC1_STARTEFLPTOC2_START

NSPTOC2_OPERATENSPTOC1_OPERATE

CBXCBR1_SELECTED

EFIPTOC1_OPERATE

PDNSPTOC1_OPERATEPHIPTOC1_OPERATE

SELGAPC1OUT_3IN_3

OUT_6IN_11

T1PTTR1_BLK_CLOSE

CB Open Position

DARREC1O->I(1)

79(1)

INT_1

INT_2

INT_3

INT_4

INT_5

INT_6

DEL_INT_2

DEL_INT_3

DEL_INT_4

RECL_ON

INHIBIT_RECL

SYNC

OPEN CB

CLOSE CB

INPRO

UNSUC_RECL

AR_ON

PROT_CRD

READY

BLK_RECL_T

BLK_RCLM_T

BLK_THERM

CB_POS

CB_READY

INC_SHOTP

CMD_WAIT

LOCKED

GUID-C14CE4DE-2849-40A9-87D4-F737031DE5BF V1 EN

Figure 60: Autoreclosing

Autoreclosing (DARREC1) is included as an optional function.

The autoreclose function is configured to be initiated by operate signals from anumber of protection stages through the INT_1...6 inputs and by start signalsthrough the DEL_INT_2…4. It is possible to create individual autoreclosesequences for each input.

The autoreclose function can be blocked with the INHIBIT_RECL input. Bydefault, the operations of selected protection functions are connected to this input.A control command to the circuit breaker, either local or remote, also blocks theautoreclose function via the CBXCBR_SELECTED signal.

The circuit breaker availability for the autoreclose sequence is expressed with theCB_READY input in DARREC1. In the configuration, this signal is connectedwith an always true signal through SELGAPC1. As a result, the function assumesthat the circuit breaker is available all the time.

The autoreclosie sequence in progress indication INPRO is connected to the alarmLED 5.

Section 3 1MRS757456 AREF611 standard configurations

78 REF611Application Manual

Page 85: REF611_appl_757456_ENa

3.6.3.2 Functional diagrams for disturbance recorder and trip circuitsupervision

LED 6

DISTURBANCE RECORDER

OSWGAPC13OUTIN_2

SELGAPC4OUT_6IN_15

OR

OR

OR

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATE

EFHPTOC1_OPERATE

EFLPTOC1_OPERATEEFLPTOC2_OPERATE

NSPTOC1_OPERATENSPTOC2_OPERATE

EFIPTOC1_OPERATE

RDRE1C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26C27C28C29C30C31C32C33

TRIGGERED

SELGAPC1_ CB Open Position

PHLPTOC1_START

EFIPTOC1_START

PHHPTOC1_START

PHIPTOC1_STARTPHHPTOC2_START

EFLPTOC2_STARTEFHPTOC1_START

T1PTTR1_START

PDNSPTOC1_OPERATET1PTTR1_OPERATE

SELGAPC1_ Blocking 1SELGAPC1_ CB Closed Position

INRPHAR1_BLK2HCCBRBRF1_TRRET

CCBRBRF1_TRBUDARREC1_INPRO

DARREC1_CLOSE_CBDARREC1_UNSUC_RECL

EFLPTOC1_START

NSPTOC1_STARTNSPTOC2_START

PDNSPTOC1_START

SELGAPC1_External TripSG_1_ACTSG_2_ACTSG_3_ACTSG_4_ACTSG_5_ACTSG_6_ACT

GUID-D5C64B52-5763-48FA-AC6A-14257698FEBC V1 EN

Figure 61: Disturbance recorder

All start and operate signals from the protection stages are routed to trigger thedisturbance recorder or alternatively only to be recorded by the disturbancerecorder depending on the parameter settings. Additionally, the selectedautoreclose output signals and the three binary inputs from X120 are alsoconnected. The active setting group is also to be recorded via SG_1_ACT toSG_6_ACT. The disturbance recorder triggered signal indication is connected toLED 6.

Table 19: Disturbance recorder binary channel default value

Channel number Channel id text Level trigger modeBinary channel 1 PHLPTOC1_START 1=positive or rising

Binary channel 2 PHHPTOC1_START 1=positive or rising

Binary channel 3 PHHPTOC2_START 1=positive or rising

Binary channel 4 PHIPTOC1_START 1=positive or rising

Binary channel 5 EFLPTOC1_START 1=positive or rising

Binary channel 6 EFLPTOC2_START 1=positive or rising

Binary channel 7 EFHPTOC1_START 1=positive or rising

Binary channel 8 EFIPTOC1_START 1=positive or rising

Binary channel 9 NSPTOC1_START 1=positive or rising

Binary channel 10 NSPTOC2_START 1=positive or rising

Binary channel 11 PDNSPTOC1_START 1=positive or rising

Table continues on next page

1MRS757456 A Section 3REF611 standard configurations

REF611 79Application Manual

Page 86: REF611_appl_757456_ENa

Channel number Channel id text Level trigger modeBinary channel 12 T1PTTR1_START 1=positive or rising

Binary channel 13 PHxPTOC_OPERATE 4=level trigger off

Binary channel 14 EFxPTOC_OPERATE 4=level trigger off

Binary channel 15 NSPTOC1/2_OPERATE 4=level trigger off

Binary channel 16 PDNSPTOC1_OPERATE 4=level trigger off

Binary channel 17 T1PPTR1_OPERATE 4=level trigger off

Binary channel 18 SELGAPC1_Blocking 1 4=level trigger off

Binary channel 19 SELGAPC1_CB_Closed 4=level trigger off

Binary channel 20 SELGAPC1_CB_Open 4=level trigger off

Binary channel 21 INRPHAR1_BLK2H 4=level trigger off

Binary channel 22 CCBRBRF1_TRRET 4=level trigger off

Binary channel 23 CCBRBRF1_TRBU 4=level trigger off

Binary channel 24 DARREC1_INPRO 4=level trigger off

Binary channel 25 DARREC1_CLOSE_CB 4=level trigger off

Binary channel 26 DARREC1_UNSUC_RECL 4=level trigger off

Binary channel 27 SELGAPC1_External Trip 4=level trigger off

Binary channel 28 SG_1_ACT 4=level trigger off

Binary channel 29 SG_2_ACT 4=level trigger off

Binary channel 30 SG_3_ACT 4=level trigger off

Binary channel 31 SG_4_ACT 4=level trigger off

Binary channel 32 SG_5_ACT 4=level trigger off

Binary channel 33 SG_6_ACT 4=level trigger off

X120-BI3

ORLED 7

TRIP CIRCUIT SUPERVISION

SELGAPC1OUT_3IN_3

TRPPTRC1_TRIP

TRPPTRC2_TRIP

TCSSCBR1

BLOCK ALARM

TCSSCBR2

BLOCK ALARM

SELGAPC4OUT_7IN_16

OSWGAPC14

OR OUT

IN_3

IN_4

SELGAPC2

OUT_1

IN_2 OUT_2CB Open Position

GUID-8D5B4458-2F48-4925-AEC1-F1C49AFBEE22 V1 EN

Figure 62: Trip circuit supervision

Two separate trip circuit supervision functions are included, TCSSCBR1 for PO3(X100:15-19) and TCSSCBR2 for PO4 (X100:20-24). Both functions are blockedby Master Trip (TRPPTRC1 and TRPPTRC2) and the circuit breaker openposition. The TCS alarm indication is connected to LED 7.

Section 3 1MRS757456 AREF611 standard configurations

80 REF611Application Manual

Page 87: REF611_appl_757456_ENa

3.6.3.3 Functional diagrams for control

OR X100 PO3

TRIPCL_LKOUT

BLOCK

RST_LKOUT

TRPPTRC1

OPERATE

X100 PO4

MASTER TRIP #1

MASTER TRIP #2

OR

ORTRIP

CL_LKOUT

BLOCK

RST_LKOUT

TRPPTRC2

OPERATE

SELGAPC3OUT_6IN_2

SELGAPC3OUT_5IN_1

SELGAPC1OUT_4IN_4

SELGAPC1OUT_4IN_4

OSWGAPC2

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

IN_12

SELGAPC1_External Trip

X120-BI4

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPOTC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

EFLPTOC1_OPETATE

CCBRBRF1_TRRET

OSWGAPC1

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

DARREC1_OPEN_CB

CBXCBR1_EXE_OP

SELGAPC1_External Trip

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPOTC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

EFLPTOC1_OPETATE

X120-BI4

RST_LKOUT

RST_LKOUT

GUID-66E79F27-D704-4BD5-8778-5B1BB863D7D8 V1 EN

Figure 63: Master trip

The operate signals from the protections and an external trip are connected to thetwo trip output contacts PO3 (X100:15-19) and PO4 (X100:20-24) via thecorresponding Master Trips TRPPTRC1 and TRPPTRC2. Open control commandsto the circuit breaker from local or remote CBXCBR1_EXE_OP or from theautoreclosing DARREC1_OPEN_CB are connected directly to the output contactPO3 (X100:15-19).

1MRS757456 A Section 3REF611 standard configurations

REF611 81Application Manual

Page 88: REF611_appl_757456_ENa

TRPPTRC1 and 2 provide the lockout/latching function, event generation and thetrip signal duration setting. One binary input through SELGAPC1 can be connectedto the RST_LKOUT input of Master Trip. If the lockout operation mode isselected, it is used to enable the external reset.

X120-BI2

X120-BI3

AND

CBXCBR1_EXE_OP

X100 PO1OR

CIRCUIT BREAKER CONTROL

Always True

CBXCBR1

ENA_OPEN

SELECTEDEXE_OPEXE_CL

ENA_CLOSEBLK_OPENBLK_CLOSEAU_OPENAU_CLOSE

POSOPENPOSCLOSE

OPENPOSCLOSEPOS

OKPOSOPEN_ENAD

CLOSE_ENADITL_BYPASS

SELGAPC3OUT_1IN_3

SELGAPC1

OUT_2

IN_3

IN_2

OUT_3

IN_11 OUT_5

TRPPTRC1_TRIP

TRPPTRC2_TRIP

DARREC1_CLOSE_CB

T1PTTR1_BLK_CLOSE

CB Closed Position

CB Open Position

GUID-04CDD1B0-F721-4CE4-A19D-B6BF96C0FB42 V1 EN

Figure 64: Circuit breaker control

The ENA_CLOSE input, which enables the closing of the circuit breaker, is astatus of the Master Trip in the circuit-breaker control function CBXCBR. Analways true signal is also connected to ENA_CLOSE via SELGAPC1 by default.The open operation is always enabled.

Section 3 1MRS757456 AREF611 standard configurations

82 REF611Application Manual

Page 89: REF611_appl_757456_ENa

X100 SO1

X100 SO2

COMMON ALARM INDICATION 1 & 2

SELGAPC3OUT_3IN_5

OUT_4IN_9

TPGAPC1IN1 OUT1

TPGAPC3IN1 OUT1

OSWGAPC3

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

PHLPTOC1_OPERATE

PHHPTOC1_OPERATE

PHHPTOC2_OPERATE

PHIPTOC1_OPERATE

EFLPTOC2_OPERATE

EFHPTOC1_OPERATE

EFIPOTC1_OPERATE

NSPTOC1_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

EFLPTOC1_OPETATE

OSWGAPC7

OR

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

OUT

PHLPTOC1_START

PHHPTOC1_START

PHHPTOC2_START

PHIPTOC1_START

EFLPTOC2_START

EFHPTOC1_START

EFIPOTC1_START

NSPTOC1_START

NSPTOC2_START

PDNSPTOC1_START

EFLPTOC1_START

GUID-A26141F0-6317-4DB1-BD64-BE704DF361AD V1 EN

Figure 65: Common alarm indication

The signal outputs from the IED are connected to give dedicated information on:

• Start of any protection function SO1 (X100:10-12)• Operation (trip) of any protection function SO2 (X100: 13-15)

TPGAPC are timers and used for setting the minimum pulse length for the outputs.There are seven generic timers (TPGAPC1…7) available in the IED.

3.6.4 Switch groupsIn the standard configuration B, the switch group function blocks are organized infour groups: binary inputs, internal signal, GOOSE as well as binary outputs andLEDs.

1MRS757456 A Section 3REF611 standard configurations

REF611 83Application Manual

Page 90: REF611_appl_757456_ENa

GOOSE

Binary Inputs Protection and Control

GOOSE

GOOSE

GOOSE

Binary Inputs(1...4, 5...10*)

Received GOOSE(0...19)

* Optional Function

Binary Outputs and LEDs

OSWGAPC2

OSWGAPC1

OSWGAPC16

OSWGAPC15

OSWGAPC14

OSWGAPC13

OSWGAPC12

OSWGAPC11

SELGAPC4

LEDs

SELGAPC3

Binary Outputs

OSWGAPC10

OSWGAPC9

OSWGAPC8

OSWGAPC7

OSWGAPC6

OSWGAPC5

OSWGAPC4

OSWGAPC3

Binary Outputs(1...6, 7..9*)

LEDs(1…8)

PHLPTOC1 PHHPTOC1

PHHPTOC2 PHIPTOC1

EFLPTOC1 EFLPTOC2

EFHPTOC1

NSPTOC1

EFIPTOC1

NSPTOC2

PDNSPTOC1 T1PTTR1

INRPHAR1

CBXCBR1 DARREC1*

TCSSCBR1 TCSSCBR2

CCBRBRF1

Internal Signal

SELGAPC1

Binary Inputs

ISWGAPC2

ISWGAPC1

SELGAPC2

Blocking

TCS Blocking

ISWGAPC9

GOOSE Blocking

ISWGAPC10

GOOSE Block CB Alarm

Trip

Start

Master trip

ISWGAPC3

INRPHAR1_BLK2H

ISWGAPC4

DARREC1_PROT_CRD

GUID-76F84BA2-5219-46EA-9A19-4B9A2D229A7D V1 EN

Figure 66: Standard configuration B switch group overview

3.6.4.1 Binary inputs

Binary inputs group includes one SELGAPC and two ISWGAPCs. SELGAPC1 isused to route binary inputs to ISWGAPC or directly to IED functions. ISWGAPC1and ISWGAPC2 are used to configure the signal to block the protection functions.

SELGAPC1

ISWGAPC1Blocking 1

1) Optional binary inputs

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKPHIPTOC1_BLOCKEFLPTOC1_BLOCKEFLPTOC2_BLOCKEFHPTOC1_BLOCKEFIPTOC1_BLOCKNSPTOC1_BLOCKNSPTOC2_BLOCKPDNSPTOC1_BLOCKT1PTTR1_BLOCK

X120-BI1

X120-BI2

X120-BI3

X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

X130-BI6

1)

X120-BI4

ISWGAPC2Blocking 2

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKPHIPTOC1_BLOCKEFLPTOC1_BLOCKEFLPTOC2_BLOCKEFHPTOC1_BLOCKEFIPTOC1_BLOCKNSPTOC1_BLOCKNSPTOC2_BLOCKPDNSPTOC1_BLOCKT1PTTR1_BLOCK

GUID-ED968721-94B7-4280-A984-ADD75D5182BF V1 EN

Figure 67: Binary inputs

Section 3 1MRS757456 AREF611 standard configurations

84 REF611Application Manual

Page 91: REF611_appl_757456_ENa

SELGAPC1SELGAPC1 has inputs from IED binary inputs. IN_1 to IN_4 are binary inputsfrom X100. IN_5 to IN_10 can be used while X130 optional card is taken into use.An always true signal is connected to IN_11. SELGAPC1 outputs are used to routeinputs to different functions. By setting SELGAPC1, binary inputs can beconfigured for different purposes.

SELGAPC1Blocking 1

CCBRBRF1_POSCLOSECBXCBR1_POSCLOSESELGAPC2_IN_1

CB Closed Position

CB Open PositionDARREC1_CB_POS CBXCBR1_POSOPENSELGAPC2_IN_2

TRPTTRC1/2_RST_LKOUT

CBXCBR1_ENA_CLOSECB Close Enable

DARREC1_CB_READY

External Trip

PROTECTION_BI_SG_3

Setting Group 2

PROTECTION_BI_SG_4

Setting Group 3

ISWGAPC2_IN

Setting Group 4

ISWGAPC1_INX120/1-2 BI1

X120/3-2 BI2

X120/4-2 BI3

X130/1-2 BI1

X130/3-2 BI2

X130/4-5 BI3

X130/6-5 BI4

X130/7-8 BI5

X130/9-8 BI6

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

1) Optional binary inputs

X120-BI1

X120-BI2

X120-BI3

X130-BI1

X130-BI2

X130-BI3

X130-BI4

X130-BI5

X130-BI6

1)

Always True

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

TRPTTRC1_RST_LKOUTTRPTTRC2_RST_LKOUT

DARREC1_RECL_ON

TRPTTRC1_OPERATETRPTTRC2_OPERATE

IN_11

X120/5-6 BI4X120-BI4

Blocking 2

PROTECTION_BI_SG_2

GUID-12D6969A-A486-41A3-853C-534194AD4FA9 V1 EN

Figure 68: SELGAPC1

ISWGAPC1ISWGAPC1 is used for general blocking. The ISWGAPC1 input is routed fromSELGAPC1 output OUT_1 Blocking 1. ISWGAPC1 outputs are connected toBLOCK inputs of protection functions. Select which protection functions are to beblocked by changing the ISWGAPC1 parameters.

1MRS757456 A Section 3REF611 standard configurations

REF611 85Application Manual

Page 92: REF611_appl_757456_ENa

ISWGAPC1

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

Blocking 1SELGAPC1_OUT_1

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

GUID-0D6CBA57-F1A5-4BBE-BF1F-34F79E876171 V1 EN

Figure 69: ISWGAPC1

ISWGAPC2ISWGAPC2 is used for general blocking. The ISWGAPC2 input is routed from theSELGAPC1 output OUT_12 Blocking 2. The ISWGAPC2 outputs are connectedto the BLOCK inputs of the protection functions. Select which protection functionsare to be blocked by changing the ISWGAPC2 parameters.

ISWGAPC2

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

Blocking 2SELGAPC1_OUT_12

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC2_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

GUID-4E83752D-09FE-46D7-AA9F-82C9609C59E8 V1 EN

Figure 70: ISWGAPC2

Section 3 1MRS757456 AREF611 standard configurations

86 REF611Application Manual

Page 93: REF611_appl_757456_ENa

3.6.4.2 Internal signal

The internal signal group is used to configure logic connections between functionblocks. There are two ISWGAPC instances and one SELGAPC in this group.

ISWGAPC3 is used to configure which protection function enables currentmultiplier if inrush is detected by the INRPHAR1 function. ISWGAPC4 is used toconfigure the cooperation between the autoreclose function and protectionfunctions. Autoreclose function DARREC1 can block protection functionsaccording to the application. SELGAPC2 is used to configure TCS blocking fromthe circuit breaker open or close position.

ISWGAPC3

PHLPTOC1_ENA_MULTPHHPTOC1_ENA_MULTPHHPTOC2_ENA_MULTPHIPTOC1_ENA_MULTEFLPTOC1_ENA_MULTEFLPTOC2_ENA_MULTEFHPTOC1_ENA_MULTEFIPTOC1_ENA_MULTNSPTOC1_ENA_MULTNSPTOC2_ENA_MULTT1PTTR1_ENA_MULT

ISWGAPC4

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKEFLPTOC1_BLOCKEFLPTOC2_BLOCKEFHPTOC1_BLOCK

SELGAPC2 TCSSCBR1_BLOCKTCSSCBR2_BLOCK

INRPHAR1_BLK2H

DARREC1_PROT_CRD

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

CB Open Position

GUID-4571B98B-EB9A-45A4-A4B4-6AC63C16D01C V1 EN

Figure 71: Internal signal

ISWGAPC3ISWGAPC3 input is routed from the INRPHAR1 output BLK2H. ISWGAPC3outputs are connected to the ENA_MULT signal of protection functions. Configurewhich protection function enables the current multiplier while inrush is detected byINRPHAR1 function, by changing ISWGAPC3 parameters.

1MRS757456 A Section 3REF611 standard configurations

REF611 87Application Manual

Page 94: REF611_appl_757456_ENa

ISWGAPC3

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

INRPHAR1_BLK2H

PHLPTOC1_ENA_MULT

PHHPTOC1_ENA_MULT

PHHPTOC2_ENA_MULT

PHIPTOC1_ENA_MULT

EFLPTOC1_ENA_MULT

EFLPTOC2_ENA_MULT

EFHPTOC1_ENA_MULT

EFIPTOC1_ENA_MULT

NSPTOC1_ENA_MULT

NSPTOC2_ENA_MULT

T1PTTR1_ENA_MULT

GUID-0FB9BAD2-E624-4310-A267-6E71E936A803 V1 EN

Figure 72: ISWGAPC3

ISWGAPC4The ISWGAPC4 input is routed from the DARREC1 output PROT_CRD.ISWGAPC4 outputs are connected to BLOCK inputs of some of the protectionfunctions. Configure which protection function is blocked by autoreclose bychanging the ISWGAPC4 parameters.

ISWGAPC4

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

DARREC1_PROT_CRD

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC1_BLOCK

GUID-C935C34F-80CD-4A23-99BC-D997FC45B22F V1 EN

Figure 73: ISWGAPC4

SELGAPC2SELGAPC2 inputs are the circuit breaker closed and open positions routed fromSELGACP1. SELGAPC2 outputs are routed to the BLOCK input of the trip circuitsupervision functions TCSSCBR1 and TCSSCBR2.

By default, X100 PO3 and PO4 are both used for the open circuit breaker.TCSSCBR1 and TCSSCBR2 are both blocked by the circuit breaker open position.If X100-PO3 is used for closing the circuit breaker, TCSSCBR1 need to be blockedby the circuit breaker close position (OUT_1 connection=IN_1). If X100-PO4 is

Section 3 1MRS757456 AREF611 standard configurations

88 REF611Application Manual

Page 95: REF611_appl_757456_ENa

used for closing the circuit breaker, TCSSCBR2 needs to be blocked by the circuitbreaker close position (OUT_2 connection=IN_1).

SELGAPC2IN_1

IN_2

OUT_1

OUT_2

TCSSCBR1_BLOCK

TCSSCBR2_BLOCK

SELGAPC1_OUT_2

SELGAPC1_OUT_3

CB Closed Position

CB Open Position

GUID-D390241C-1F0F-4AE7-A803-86931E1E0BEF V1 EN

Figure 74: SELGAPC2

3.6.4.3 Binary outputs and LEDs

In the standard configuration B, the signals route to binary outputs and LEDs areconfigured by OSWGAPCs. There are 16 OSWGAPC instances in total and theycan be categorized to four groups, including two Master trip, four start, four tripand six alarm signals. The OSWGAPC output is connected to binary outputs andLEDs via SELGAPC3 and SELGAPC4.

• SELGAPC3 is used to configure the OSWGAPC signals to IED binaryoutputs. SELGAPC4 is used to configure the OSWGAPC signals to LEDs.

• OSWGAPC1 and OSWGAPC2 are used for Master trip. The inputs are fromthe protection functions operate and breaker failures retrip.

• OSWGAPC3 to OSWGAPC6 are used for the start signal. The inputs are startsignals from the protection functions.

• OSWGAPC7 to OSWGAPC10 are used for the trip signal. The inputs areoperation signals from the protection functions.

• OSWGAPC11 to OSWGAPC16 are used for the alarm signal. The inputs arealarm signals from the protection and monitoring functions.

1MRS757456 A Section 3REF611 standard configurations

REF611 89Application Manual

Page 96: REF611_appl_757456_ENa

Master Trip 1

OSWGAPC2 Master Trip 2

Trip 1

Trip 2

Trip 3

Trip 4

T1PTTR1_ALARMRDRE_TRIGGEREDTCSSCBR1_ALARMTCSSCBR2_ALARMCCBRBRF1_TRBUCCBRBRF1_TRRETDARREC1_INPRODARREC1_LOCKEDDARREC1_PROT_CRDDARREC1_UNSUC_RECLDARREC1_AR_ONDARREC1_READYSELGAPC1_OUT_8TRPPTRC1_CL_LKOUTTRPPTRC2_CL_LKOUT

OSWGAPC12 Alarm 2

OSWGAPC13 Alarm 3

OSWGAPC14 Alarm 4

OSWGAPC1

OSWGAPC3

OSWGAPC11 Alarm 1

TRPPTRC1

TRPPTRC2

TPGAPC3

TPGAPC4

TPGAPC5

TPGAPC6

SELGAPC3

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFLPTOC1_OPERATEEFLPTOC2_OPERATEEFHPTOC1_OPERATEEFIPTOC1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATECCBRBRF1_TRRET

PHLPTOC1_STARTPHHPTOC1_STARTPHHPTOC2_STARTPHIPTOC1_STARTEFLPTOC1_STARTEFLPTOC2_STARTEFHPTOC1_STARTEFIPTOC1_STARTNSPTOC1_STARTNSPTOC2_STARTPDNSPTOC1_STARTT1PTTR1_START

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFLPTOC1_OPERATEEFLPTOC2_OPERATEEFHPTOC1_OPERATEEFIPTOC1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATE

OSWGAPC8

OSWGAPC7

OSWGAPC10

OSWGAPC9

1)Optional binary outputs

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

X130 SO2

X130 SO3

1)

Start 1

Start 2

TPGAPC1

OSWGAPC4

OSWGAPC5 Start 3

Start 4

TPGAPC2

OSWGAPC6

OSWGAPC15 Alarm 5

OSWGAPC16 Alarm 6

TPGAPC7

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

IN1 OUT1

IN2 OUT2

GUID-3F9B4020-ABC3-4C04-8260-C5900074AA6A V1 EN

Figure 75: Binary outputs

Section 3 1MRS757456 AREF611 standard configurations

90 REF611Application Manual

Page 97: REF611_appl_757456_ENa

Master Trip 1

OSWGAPC2 Master Trip 2

Trip 1

Trip 2

Trip 3

Trip 4

OSWGAPC1

OSWGAPC3

OSWGAPC11 Alarm 1

TRPPTRC1

TRPPTRC2

SELGAPC4

OSWGAPC8

OSWGAPC7

OSWGAPC10

OSWGAPC9

Start 1

Start 2OSWGAPC4

OSWGAPC5 Start 3

Start 4OSWGAPC6

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

OSWGAPC12 Alarm 2

OSWGAPC13 Alarm 3

OSWGAPC14 Alarm 4

OSWGAPC15 Alarm 5

OSWGAPC16 Alarm 6

T1PTTR1_ALARMRDRE_TRIGGEREDTCSSCBR1_ALARMTCSSCBR2_ALARMCCBRBRF1_TRBUCCBRBRF1_TRRETDARREC1_INPRODARREC1_LOCKEDDARREC1_PROT_CRDDARREC1_UNSUC_RECLDARREC1_AR_ONDARREC1_READYSELGAPC1_OUT_8TRPPTRC1_CL_LKOUTTRPPTRC2_CL_LKOUT

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFLPTOC1_OPERATEEFLPTOC2_OPERATEEFHPTOC1_OPERATEEFIPTOC1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATE

PHLPTOC1_STARTPHHPTOC1_STARTPHHPTOC2_STARTPHIPTOC1_STARTEFLPTOC1_STARTEFLPTOC2_STARTEFHPTOC1_STARTEFIPTOC1_STARTNSPTOC1_STARTNSPTOC2_STARTPDNSPTOC1_STARTT1PTTR1_START

PHLPTOC1_OPERATEPHHPTOC1_OPERATEPHHPTOC2_OPERATEPHIPTOC1_OPERATEEFLPTOC1_OPERATEEFLPTOC2_OPERATEEFHPTOC1_OPERATEEFIPTOC1_OPERATENSPTOC1_OPERATENSPTOC2_OPERATEPDNSPTOC1_OPERATET1PTTR1_OPERATECCBRBRF1_TRRET

GUID-1938DEEA-E94A-4741-AB88-051B077CEFD7 V1 EN

Figure 76: LEDs

SELGAPC3SELGAPC3 is used to configure the OSWGAPC outputs to the IED binaryoutputs. Master trip signals are connected to SELGAPC3 via TRPPTRC. Start, tripand alarm signals are connected to SELGAPC3 via TPGAPC. TPGAPC are timersand used for setting the minimum pulse length for the outputs.

1MRS757456 A Section 3REF611 standard configurations

REF611 91Application Manual

Page 98: REF611_appl_757456_ENa

SELGAPC3 outputs are connected with the X100 binary outputs. If the X130optional card is taken into use, SELGAPC3 outputs are also connected to the X130binary outputs.

SELGAPC3

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

IN_14

IN_15

IN_16

IN_17

IN_18

X100 PO1

X100 PO2

X100 SO1

X100 SO2

X100 PO3

X100 PO4

X130 SO1

X130 SO2

X130 SO3

1)

1)Optional binary outputs

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC3_OUT

OSWGAPC4_OUT

Start 1

Start 2

Start 3

Start 4

Trip 1

Alarm 1

Trip 2

Trip 3

Trip 4

Alarm 2

Alarm 3

Alarm 4

Alarm 5

Alarm 6

Backup Trip

CBXCBR_EXE_OP DARREC_OPEN_CB TRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CL DARREC_CLOSE_CB

CCBRBRF1_TRBU

CB Open 1

CB Close

CB Open 2

TPGAPC1IN1 OUT1

IN2 OUT2

TPGAPC7IN1 OUT1

IN2 OUT2

TPGAPC6IN1 OUT1

IN2 OUT2

TPGAPC5IN1 OUT1

IN2 OUT2

TPGAPC4IN1 OUT1

IN2 OUT2

TPGAPC3IN1 OUT1

IN2 OUT2

TPGAPC2IN1 OUT1

IN2 OUT2

GUID-FF6B7926-5581-42ED-B604-4C05AB11C971 V1 EN

Figure 77: SELGAPC3

SELGAPC4SELGAPC4 is used to configure OSWGAPC outputs to LEDs. Master trip signalsare connected to SELGAPC4 via TRPPTRC. Start, trip and alarm signals areconnected to SELGAPC4 directly. SELGAPC4 outputs are connected withprogrammable LED1 to LED8.

Section 3 1MRS757456 AREF611 standard configurations

92 REF611Application Manual

Page 99: REF611_appl_757456_ENa

SELGAPC4IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

IN_14

IN_15

IN_16

IN_17

IN_18

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

Start 1

Start 2

Start 3

Start 4

Trip 1

Alarm 1

Trip 2

Trip 3

Trip 4

Alarm 2

Alarm 3

Alarm 4

Alarm 5

Alarm 6

OSWGAPC11_OUT

OSWGAPC12_OUT

OSWGAPC13_OUT

OSWGAPC14_OUT

OSWGAPC15_OUT

OSWGAPC16_OUT

OSWGAPC5_OUT

OSWGAPC6_OUT

OSWGAPC7_OUT

OSWGAPC8_OUT

OSWGAPC9_OUT

OSWGAPC10_OUT

OSWGAPC3_OUT

OSWGAPC4_OUT

CCBRBRF1_TRBU Backup Trip

CB Close

CB Open 1

CB Open 2

CBXCBR_EXE_OPDARREC_OPEN_CBTRPPTRC1_TRIP

TRPPTRC2_TRIP

CBXCBR_EXE_CLDARREC_CLOSE_CB

GUID-D815D8AC-340D-4FB8-A971-0CE6CDE5AD1F V1 EN

Figure 78: SELGAPC4

Master trip OSWGAPCsOSWGAPC1 and OSWGAPC2 are used to route the protection function operatesignals to Master trip. OSWGAPC1 and OSWGAPC2 have the same inputs fromthe protection function operates. The output is connected to the TRPPTRCfunction. The default connections for OSWGAPC1 and OSWGAPC2 are different.

1MRS757456 A Section 3REF611 standard configurations

REF611 93Application Manual

Page 100: REF611_appl_757456_ENa

OSWGAPC1

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

PHLPTOC1_OPERATE

CCBRBRF1_TRRET

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

TRPPTRC 1_OPERATEMaster trip 1

GUID-55CE95A2-E61E-4DA1-A888-F595AE088178 V1 EN

Figure 79: OSWGAPC1

OSWGAPC2

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

PHLPTOC1_OPERATE

CCBRBRF1_TRRET

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

TRPPTRC 2_OPERATEMaster trip 2

GUID-239E2970-724D-47ED-9C11-8F00BB329EEB V1 EN

Figure 80: OSWGAPC2

Section 3 1MRS757456 AREF611 standard configurations

94 REF611Application Manual

Page 101: REF611_appl_757456_ENa

Start OSWGAPCsOSWGAPC instances 3 to 6 are used to configure the protection start signals.These four OSWGAPCs have the same inputs from the protection function startsignals. The output is routed to SELGAPC3 via the TPGAPC timer and toSELGAPC4 directly.

TPGAPC1_IN1SELGAPC4_IN_5

Start 1

OSWGAPC3

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_START

EFLPTOC2_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

PHLPTOC1_START

PHIPTOC1_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

PHHPTOC2_START

PHHPTOC1_START

GUID-37ADCAC6-7D63-4AC8-8CAA-B6D4573123FE V1 EN

Figure 81: OSWGAPC3

1MRS757456 A Section 3REF611 standard configurations

REF611 95Application Manual

Page 102: REF611_appl_757456_ENa

TPGAPC1_IN2SELGAPC4_IN_6

Start 2

OSWGAPC4

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_START

EFLPTOC2_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

PHLPTOC1_START

PHIPTOC1_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

PHHPTOC2_START

PHHPTOC1_START

GUID-C6DF86BC-DDC4-4680-94F1-667864F9570C V1 EN

Figure 82: OSWGAPC4

TPGAPC2_IN1SELGAPC4_IN_7

Start 3

OSWGAPC5

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_START

EFLPTOC2_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

PHLPTOC1_START

PHIPTOC1_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

PHHPTOC2_START

PHHPTOC1_START

GUID-DC9B1877-7BC1-45C6-8E61-85750AE9B22D V1 EN

Figure 83: OSWGAPC5

Section 3 1MRS757456 AREF611 standard configurations

96 REF611Application Manual

Page 103: REF611_appl_757456_ENa

TPGAPC2_IN2SELGAPC4_IN_8

Start 4

OSWGAPC6

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_START

EFLPTOC2_START

NSPTOC2_START

PDNSPTOC1_START

T1PTTR1_START

PHLPTOC1_START

PHIPTOC1_START

EFHPTOC1_START

EFIPTOC1_START

NSPTOC1_START

PHHPTOC2_START

PHHPTOC1_START

GUID-EBDD8FE5-50C7-4097-A48D-E5314E4F968C V1 EN

Figure 84: OSWGAPC6

Trip OSWGAPCsOSWGAPC instances 7 to 10 are used to configure the protection operate signalswhich belong to the trip group. These four OSWGAPCs have the same inputs fromthe operate signals of the protection functions. The output is routed to SELGAPC3via the TPGAPC timer and to SELGAPC4 directly.

1MRS757456 A Section 3REF611 standard configurations

REF611 97Application Manual

Page 104: REF611_appl_757456_ENa

TPGAPC3_IN1SELGAPC4_IN_9

Trip 1

OSWGAPC7

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

PHLPTOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

GUID-1DCBC895-AD32-4C02-983B-AB81D46FC2DE V1 EN

Figure 85: OSWGAPC7

TPGAPC3_IN2SELGAPC4_IN_10

Trip 2

OSWGAPC8

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

PHLPTOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

GUID-122AD794-D4C7-4E43-B8AE-0786F41437FF V1 EN

Figure 86: OSWGAPC8

Section 3 1MRS757456 AREF611 standard configurations

98 REF611Application Manual

Page 105: REF611_appl_757456_ENa

TPGAPC4_IN1SELGAPC4_IN_11

Trip 3

OSWGAPC9

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

PHLPTOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

GUID-93D4C888-0438-4009-97DC-CDF241694E4D V1 EN

Figure 87: OSWGAPC9

TPGAPC4_IN2SELGAPC4_IN_12

Trip 4

OSWGAPC10

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

OUT

EFLPTOC1_OPERATE

EFLPTOC2_OPERATE

NSPTOC2_OPERATE

PDNSPTOC1_OPERATE

T1PTTR1_OPERATE

PHLPTOC1_OPERATE

PHIPTOC1_OPERATE

EFHPTOC1_OPERATE

EFIPTOC1_OPERATE

NSPTOC1_OPERATE

PHHPTOC2_OPERATE

PHHPTOC1_OPERATE

GUID-A4DED42E-2140-4D06-83E6-A23979821AB2 V1 EN

Figure 88: OSWGAPC10

1MRS757456 A Section 3REF611 standard configurations

REF611 99Application Manual

Page 106: REF611_appl_757456_ENa

Alarm OSWGAPCsOSWGAPC instances 11 to 16 are used to configure the alarm signals whichbelong to the alarm group. These six OSWGAPCs have the same inputs from thealarm signals. The output is routed to SELGAPC3 via TPGAPC timer and toSELGAPC4 directly.

OSWGAPC11

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_8

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 1 TPGAPC5_IN1SELGAPC4_IN_13

External Trip

GUID-8A337ED0-85C0-404C-BE93-C8F77FDB2928 V1 EN

Figure 89: OSWGAPC11

Section 3 1MRS757456 AREF611 standard configurations

100 REF611Application Manual

Page 107: REF611_appl_757456_ENa

OSWGAPC12

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_8

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 2 TPGAPC5_IN2SELGAPC4_IN_14

External Trip

GUID-B43B138E-F672-41BF-B9DA-AAD80C516D14 V1 EN

Figure 90: OSWGAPC12

1MRS757456 A Section 3REF611 standard configurations

REF611 101Application Manual

Page 108: REF611_appl_757456_ENa

OSWGAPC13

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_8

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 3 TPGAPC6_IN1SELGAPC4_IN_15

External Trip

GUID-CE98DECE-330C-45E7-B834-0906072EE83B V1 EN

Figure 91: OSWGAPC13

Section 3 1MRS757456 AREF611 standard configurations

102 REF611Application Manual

Page 109: REF611_appl_757456_ENa

OSWGAPC14

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_8

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 4 TPGAPC6_IN2SELGAPC4_IN_16

External Trip

GUID-E92BEBCD-0151-41E9-BBAD-BADC4B774605 V1 EN

Figure 92: OSWGAPC14

1MRS757456 A Section 3REF611 standard configurations

REF611 103Application Manual

Page 110: REF611_appl_757456_ENa

OSWGAPC15

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_8

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 5 TPGAPC7_IN1SELGAPC4_IN_17

External Trip

GUID-258C10A2-665D-4BFA-8D20-059586803C6C V1 EN

Figure 93: OSWGAPC15

Section 3 1MRS757456 AREF611 standard configurations

104 REF611Application Manual

Page 111: REF611_appl_757456_ENa

OSWGAPC16

IN_1

IN_2

IN_3

IN_4

IN_5

IN_6

IN_7

IN_8

IN_9

IN_10

IN_11

IN_12

IN_13

OUT

IN_14

IN_15

CCBRBRF1_TRBU

CCBRBRF1_TRRET

DARREC1_UNSUC_RECL

DARREC1_AR_ON

DARREC1_READY

T1PTTR1_ALARM

SELGAPC1_OUT_8

TCSSCBR2_ALARM

DARREC1_INPRO

DARREC1_LOCKED

DARREC1_PROT_CRD

TCSSCBR1_ALARM

RDRE_TRIGGERED

TRPPTRC1_CL_LKOUT

TRPPTRC2_CL_LKOUT

Alarm 6 TPGAPC7_IN2SELGAPC4_IN_18

External Trip

GUID-7CFDD919-7415-4AFC-B970-84688BEFD70A V1 EN

Figure 94: OSWGAPC16

3.6.4.4 GOOSE

In the configuration, there are twenty GOOSERCV_BIN functions. EachGOOSERVC_BIN function can be connected to one received binary GOOSEsignal. The signal connection can be configured in PCM600.

GOOSERCV_BIN instances 0 and 1 are used for blocking the protection functions.Signals from these two GOOSERCV_BINs are connected to ISWGAPC9.ISWGAPC9 is used to configure which protection function is blocked.

GOOSERCV_BIN instances 2 and 3 are used for tripping from GOOSE. Signalsfrom these two GOOSERCV_BINs are connected to TRPPTRC1 and TRPPTRC2trip.

GOOSERCV_BIN instances 4 to 19 are used for blocking the circuit breakeroperation. Signals from these 16 GOOSERCV_BINs are connected toISWGAPC10. ISWGAPC10 is used to configure GOOSE input signal to block thecircuit breaker open or close operation.

1MRS757456 A Section 3REF611 standard configurations

REF611 105Application Manual

Page 112: REF611_appl_757456_ENa

CBXCBR1_BLK_CLOSECBXCBR1_BLK_OPEN

GOOSERCV_BIN:1

GOOSERCV_BIN:0

OR ISWGAPC9GOOSE Blcoking

GOOSERCV_BIN:3

GOOSERCV_BIN:2

ORGOOSEExternal Trip

GOOSERCV_BIN:5

GOOSERCV_BIN:4

GOOSERCV_BIN:19

OR ISWGAPC10GOOSE Block CB

PHLPTOC1_BLOCKPHHPTOC1_BLOCKPHHPTOC2_BLOCKPHIPTOC1_BLOCKEFLPTOC1_BLOCKEFLPTOC2_BLOCKEFHPTOC1_BLOCKEFIPTOC1_BLOCKNSPTOC1_BLOCKNSPTOC2_BLOCKPDNSPTOC1_BLOCKT1PTTR1_BLOCK

TRPPTRC1_OPERATETRPPTRC2_OPERATE

GUID-344C14FB-6F56-4A40-ADA5-639B82C77501 V1 EN

Figure 95: GOOSE overview

ISWGAPC9ISWGAPC9 is used to configure which protection functions can be blocked by thereceived GOOSE signals. ISWGAPC9 inputs are received GOOSE signals fromGOOSERCV_BIN:0 and GOOSERCV_BIN:1. The outputs are connected to blockinputs of the protection functions.

Section 3 1MRS757456 AREF611 standard configurations

106 REF611Application Manual

Page 113: REF611_appl_757456_ENa

GOOSERCV_BIN:0_OUTGOOSERCV_BIN:1_OUT

ISWGAPC9

IN

OUT_1

OUT_2

OUT_3

OUT_4

OUT_5

OUT_6

OUT_7

OUT_8

OUT_9

OUT_10

OUT_11

OUT_12

PHLPTOC1_BLOCK

PHHPTOC1_BLOCK

PHHPTOC2_BLOCK

PHIPTOC1_BLOCK

EFLPTOC1_BLOCK

EFLPTOC2_BLOCK

EFHPTOC2_BLOCK

EFIPTOC1_BLOCK

NSPTOC1_BLOCK

NSPTOC1_BLOCK

PDNSPTOC1_BLOCK

T1PTTR1_BLOCK

GOOSE Blocking

GUID-12868AC3-B5C0-4AA9-B0C7-4E89BD5BAFE1 V1 EN

Figure 96: ISWGAPC9

ISWGAPC10ISWGAPC10 is used to block the circuit breaker operation from the receivedGOOSE signals. ISWGAPC10 inputs are received GOOSE signals fromGOOSERCV_BIN:4 to GOOSERCV_BIN:19. The outputs are connected to blockthe circuit breaker close and open operation.

ISWGAPC10

INOUT_1

OUT_2

CBXCBR1_BLK_CLOSE

CBXCBR1_BLK_OPEN

GOOSERCV_BIN:4_OUTGOOSERCV_BIN:5_OUTGOOSERCV_BIN:6_OUT...GOOSERCV_BIN:19_OUT

GOOSE Block CB

GUID-C0024745-DFB7-4849-9F43-44159D9736B9 V1 EN

Figure 97: ISWGAPC10

1MRS757456 A Section 3REF611 standard configurations

REF611 107Application Manual

Page 114: REF611_appl_757456_ENa

108

Page 115: REF611_appl_757456_ENa

Section 4 Requirements for measurementtransformers

4.1 Current transformers

4.1.1 Current transformer requirements for non-directionalovercurrent protectionFor reliable and correct operation of the overcurrent protection, the CT has to bechosen carefully. The distortion of the secondary current of a saturated CT mayendanger the operation, selectivity, and co-ordination of protection. However,when the CT is correctly selected, a fast and reliable short circuit protection can beenabled.

The selection of a CT depends not only on the CT specifications but also on thenetwork fault current magnitude, desired protection objectives, and the actual CTburden. The protection settings of the IED should be defined in accordance withthe CT performance as well as other factors.

4.1.1.1 Current transformer accuracy class and accuracy limit factor

The rated accuracy limit factor (Fn) is the ratio of the rated accuracy limit primarycurrent to the rated primary current. For example, a protective current transformerof type 5P10 has the accuracy class 5P and the accuracy limit factor 10. Forprotective current transformers, the accuracy class is designed by the highestpermissible percentage composite error at the rated accuracy limit primary currentprescribed for the accuracy class concerned, followed by the letter "P" (meaningprotection).

Table 20: Limits of errors according to IEC 60044-1 for protective current transformers

Accuracy class Current error atrated primarycurrent (%)

Phase displacement at rated primarycurrent

Composite error atrated accuracy limitprimary current (%)minutes centiradians

5P ±1 ±60 ±1.8 5

10P ±3 - - 10

The accuracy classes 5P and 10P are both suitable for non-directional overcurrentprotection. The 5P class provides a better accuracy. This should be noted also ifthere are accuracy requirements for the metering functions (current metering,power metering, and so on) of the IED.

1MRS757456 A Section 4Requirements for measurement transformers

REF611 109Application Manual

Page 116: REF611_appl_757456_ENa

The CT accuracy primary limit current describes the highest fault currentmagnitude at which the CT fulfils the specified accuracy. Beyond this level, thesecondary current of the CT is distorted and it might have severe effects on theperformance of the protection IED.

In practise, the actual accuracy limit factor (Fa) differs from the rated accuracylimit factor (Fn) and is proportional to the ratio of the rated CT burden and theactual CT burden.

The actual accuracy limit factor is calculated using the formula:

F FS S

S Sa n

in n

in

≈ ×

+

+

A071141 V1 EN

Fn the accuracy limit factor with the nominal external burden Sn

Sin the internal secondary burden of the CT

S the actual external burden

4.1.1.2 Non-directional overcurrent protection

The current transformer selectionNon-directional overcurrent protection does not set high requirements on theaccuracy class or on the actual accuracy limit factor (Fa) of the CTs. It is, however,recommended to select a CT with Fa of at least 20.

The nominal primary current I1n should be chosen in such a way that the thermaland dynamic strength of the current measuring input of the IED is not exceeded.This is always fulfilled when

I1n > Ikmax / 100,

Ikmax is the highest fault current.

The saturation of the CT protects the measuring circuit and the current input of theIED. For that reason, in practice, even a few times smaller nominal primary currentcan be used than given by the formula.

Recommended start current settingsIf Ikmin is the lowest primary current at which the highest set overcurrent stage is tooperate, the start current should be set using the formula:

Current start value < 0.7 x (Ikmin / I1n)

I1n is the nominal primary current of the CT.

Section 4 1MRS757456 ARequirements for measurement transformers

110 REF611Application Manual

Page 117: REF611_appl_757456_ENa

The factor 0.7 takes into account the protection IED inaccuracy, currenttransformer errors, and imperfections of the short circuit calculations.

The adequate performance of the CT should be checked when the setting of thehigh set stage overcurrent protection is defined. The operate time delay caused bythe CT saturation is typically small enough when the overcurrent setting isnoticeably lower than Fa.

When defining the setting values for the low set stages, the saturation of the CTdoes not need to be taken into account and the start current setting is simplyaccording to the formula.

Delay in operation caused by saturation of current transformersThe saturation of CT may cause a delayed IED operation. To ensure the timeselectivity, the delay must be taken into account when setting the operate times ofsuccessive IEDs.

With definite time mode of operation, the saturation of CT may cause a delay thatis as long as the time the constant of the DC component of the fault current, whenthe current is only slightly higher than the starting current. This depends on theaccuracy limit factor of the CT, on the remanence flux of the core of the CT, andon the operate time setting.

With inverse time mode of operation, the delay should always be considered asbeing as long as the time constant of the DC component.

With inverse time mode of operation and when the high-set stages are not used, theAC component of the fault current should not saturate the CT less than 20 times thestarting current. Otherwise, the inverse operation time can be further prolonged.Therefore, the accuracy limit factor Fa should be chosen using the formula:

Fa > 20*Current start value / I1n

The Current start value is the primary pickup current setting of the IED.

4.1.1.3 Example for non-directional overcurrent protection

The following figure describes a typical medium voltage feeder. The protection isimplemented as three-stage definite time non-directional overcurrent protection.

1MRS757456 A Section 4Requirements for measurement transformers

REF611 111Application Manual

Page 118: REF611_appl_757456_ENa

A071142 V1 EN

Figure 98: Example of three-stage overcurrent protection

The maximum three-phase fault current is 41.7 kA and the minimum three-phaseshort circuit current is 22.8 kA. The actual accuracy limit factor of the CT iscalculated to be 59.

The start current setting for low-set stage (3I>) is selected to be about twice thenominal current of the cable. The operate time is selected so that it is selective withthe next IED (not visible in the figure above). The settings for the high-set stageand instantaneous stage are defined also so that grading is ensured with thedownstream protection. In addition, the start current settings have to be defined sothat the IED operates with the minimum fault current and it does not operate withthe maximum load current. The settings for all three stages are as in the figure above.

For the application point of view, the suitable setting for instantaneous stage (I>>>)in this example is 3 500 A (5.83 x I2n). For the CT characteristics point of view, thecriteria given by the current transformer selection formula is fulfilled and also theIED setting is considerably below the Fa. In this application, the CT rated burdencould have been selected much lower than 10 VA for economical reasons.

Section 4 1MRS757456 ARequirements for measurement transformers

112 REF611Application Manual

Page 119: REF611_appl_757456_ENa

Section 5 IED physical connections

5.1 Inputs

5.1.1 Energizing inputs

5.1.1.1 Phase currents

The IED can also be used in single or two-phase applications byleaving one or two energizing inputs unoccupied. However, at leastterminals X120/7-8 must be connected.

Table 21: Phase current inputs included in configurations A and B

Terminal DescriptionX120-7, 8 IL1

X120-9, 10 IL2

X120-11, 12 IL3

5.1.1.2 Residual current

Table 22: Residual current input included in configurations A and B

Terminal DescriptionX120-13, 14 Io

5.1.1.3 Residual voltage

Table 23: Additional residual voltage input included in configuration A

Terminal DescriptionX120-5, 6 Uo

5.1.2 Auxiliary supply voltage inputThe auxiliary voltage of the IED is connected to terminals X100/1-2. At DCsupply, the positive lead is connected to terminal X100-1. The permitted auxiliaryvoltage range (AC/DC or DC) is marked on the top of the LHMI of the IED.

1MRS757456 A Section 5IED physical connections

REF611 113Application Manual

Page 120: REF611_appl_757456_ENa

Table 24: Auxiliary voltage supply

Terminal DescriptionX100-1 + Input

X100-2 - Input

5.1.3 Binary inputsThe binary inputs can be used, for example, to generate a blocking signal, tounlatch output contacts, to trigger the disturbance recorder or for remote control ofIED settings.

Terminals X120/1-4 are binary input terminals. In the IED variant B, there areadditional binary inputs X120/5-6 included. Optional BIO-module BIO0006 forslot X130 can be included at the time of order.

Binary inputs of slot X120 are available with configurations A and B.

Table 25: Binary input terminals X120-1...6

Terminal DescriptionX120-1 BI1, +

X120-2 BI1, -

X120-3 BI2, +

X120-2 BI2, -

X120-4 BI3, +

X120-2 BI3, -

X120-5 BI4, +

X120-6 BI4, -

Binary inputs of slot X130 are optional for configurations A and B.

Table 26: Binary input terminals X130-1...9

Terminal DescriptionX130-1 BI1, +

X130-2 BI1, -

X130-2 BI2, -

X130-3 BI2, +

X130-4 BI3, +

X130-5 BI3, -

X130-5 BI4, -

X130-6 BI4, +

X130-7 BI5, +

Table continues on next page

Section 5 1MRS757456 AIED physical connections

114 REF611Application Manual

Page 121: REF611_appl_757456_ENa

Terminal DescriptionX130-8 BI5, -

X130-8 BI6, -

X130-9 BI6, +

5.2 Outputs

5.2.1 Outputs for tripping and controllingOutput contacts PO1, PO2, PO3 and PO4 are heavy-duty trip contacts capable ofcontrolling most circuit breakers. On delivery from the factory, the trip signalsfrom all the protection stages are routed to PO3 and PO4.

Table 27: Output contacts

Terminal DescriptionX100-6 PO1, NO

X100-7 PO1, NO

X100-8 PO2, NO

X100-9 PO2, NO

X100-15 PO3, NO (TCS resistor)

X100-16 PO3, NO

X100-17 PO3, NO

X100-18 PO3 (TCS1 input), NO

X100-19 PO3 (TCS1 input), NO

X100-20 PO4, NO (TCS resistor)

X100-21 PO4, NO

X100-22 PO4, NO

X100-23 PO4 (TCS2 input), NO

X100-24 PO4 (TCS2 input), NO

5.2.2 Outputs for signallingOutput contacts SO1 and SO2 in slot X100 or SO1, SO2 and SO3 in slot X130(optional) can be used for signalling on start and tripping of the IED. On deliveryfrom the factory, the start and alarm signals from all the protection stages arerouted to signalling outputs.

1MRS757456 A Section 5IED physical connections

REF611 115Application Manual

Page 122: REF611_appl_757456_ENa

Table 28: Output contacts X100-10...14

Terminal DescriptionX100-10 SO1, common

X100-11 SO1, NC

X100-12 SO1, NO

X100-13 SO2, NO

X100-14 SO2, NO

Output contacts of slot X130 are available in the optional BIO module (BIO0006).

Output contacts of slot X130 are optional for configurations A and B.

Table 29: Output contacts X130-10...18

Terminal DescriptionX130-10 SO1, common

X130-11 SO1, NO

X130-12 SO1, NC

X130-13 SO2, common

X130-14 SO2, NO

X130-15 SO2, NC

X130-16 SO3, common

X130-17 SO3, NO

X130-18 SO3, NC

5.2.3 IRFThe IRF contact functions as an output contact for the self-supervision system ofthe protection IED. Under normal operating conditions, the IED is energized andthe contact is closed (X100/3-5). When a fault is detected by the self-supervisionsystem or the auxiliary voltage is disconnected, the output contact drops off and thecontact closes (X100/3-4).

Table 30: IRF contact

Terminal DescriptionX100-3 IRF, common

X100-4 Closed; IRF, or Uaux disconnected

X100-5 Closed; no IRF, and Uaux connected

Section 5 1MRS757456 AIED physical connections

116 REF611Application Manual

Page 123: REF611_appl_757456_ENa

Section 6 Glossary

ANSI American National Standards InstituteCT Current transformerEMC Electromagnetic compatibilityGOOSE Generic Object-Oriented Substation EventHMI Human-machine interfaceIEC International Electrotechnical CommissionIEC 61850 International standard for substation communication and

modelingIED Intelligent electronic deviceIP address A set of four numbers between 0 and 255, separated by

periods. Each server connected to the Internet is assigned aunique IP address that specifies the location for the TCP/IPprotocol.

LAN Local area networkLC Connector type for glass fibre cableLCD Liquid crystal displayLED Light-emitting diodeLHMI Local human-machine interfaceModbus A serial communication protocol developed by the Modicon

company in 1979. Originally used for communication in PLCsand RTU devices.

PCM600 Protection and Control IED ManagerRJ-45 Galvanic connector typeWAN Wide area networkWHMI Web human-machine interface

1MRS757456 A Section 6Glossary

REF611 117Application Manual

Page 124: REF611_appl_757456_ENa

118

Page 125: REF611_appl_757456_ENa

119

Page 126: REF611_appl_757456_ENa
Page 127: REF611_appl_757456_ENa
Page 128: REF611_appl_757456_ENa

Contact us

ABB OyDistribution AutomationP.O. Box 699FI-65101 VAASA, FinlandPhone +358 10 22 11Fax +358 10 22 41094

www.abb.com/substationautomation

1MR

S75

7456

Cop

yrig

ht 2

011

AB

B. A

ll rig

hts

rese

rved

.