real-time implementation of digital coherent detection

30
R. Noé 1 Real-time Implementation of Digital Coherent Detection R. Noé, U. Rückert, S. Hoffmann, R. Peveling, T. Pfau, M. El-Darawy, A. Al-Bermani University of Paderborn, Electrical Engineering Optical Communications and High-Frequency Engineering

Upload: others

Post on 02-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

R. Noé 1

Real-time Implementation of Digital Coherent Detection

R. Noé, U. Rückert, S. Hoffmann, R. Peveling, T. Pfau, M. El-Darawy, A. Al-Bermani

University of Paderborn, Electrical EngineeringOptical Communications and High-Frequency Engineering

R. Noé 2

IntroductionReal-time constraints for coherent receiver algorithms Angle-based phase estimation for QPSKCombination with polarization multiplexIntegrated DSPU for a PDM-QPSK receiverReal-time measurement resultsConclusion and outlook

Outline

R. Noé 3

QPSK transports 2 bits per transmitted optical symbol compared to OOKLower symbol rate enhances chromatic and polarization mode dispersion tolerance (10 Gbaud Polarization multiplex QPSK ≡ 40 Gbit/s)Feedforward receiver concepts can easily be implemented using digital signal processing compared to classical OPLL approach.Off-the-shelf, low-cost, small-sized DFB lasers suffice in spite of phase noise.

Coherent QPSK transmission

R. Noé 4

Coherent optical receiver structure

Compensation of intermediate frequency and phase noise, polarization crosstalk, PMD, CD, (nonlinear effects,) … using digital signal processing.

LO

ADC

ADC

ADC

ADC

DSPU

Digital Signal Processing U

nit

Localoscillator

90° hybrid

90° hybrid

I1

Q1

I2

Q2

TX

single-chipor

modular system

R. Noé 5

Internal structure of the DSPU

……… …

1:m demux

ADC

1:m demux

ADC

1:m demux

ADC

1:m demux

ADC

……… …

I1 Q1 I2 Q2

T-spaced sampling:fIN = 1/TS

T/2-spaced sampling:fIN = 2/TS

fDIV = fIN/m

feedback path

m:1 mux

m:1 mux

m:1 mux

m:1 mux fOUT = 1/TS

Algorithmsmust be compatible to

the receiver structure!

R. Noé 6

Demultiplexing and parallelization allows to use standard logic elements with relaxed clock speed requirements.

Delay robustness of control algorithms for all the cases when feedback loops cannot be avoided at all.

Efficient hardware is required to enable a high degree of parallelization with moderate area and power consumption.

Real-time constraints for receiver DSP algorithms

R. Noé 7

Feasibility of parallel processing

ADC sampling frequency: 10 GHz to 56 GHz

DSPU clock frequency:100 MHz to 800 MHz

Demultiplexing to16…128 parallel

channels……… …

1:m demux

ADC

1:m demux

ADC

1:m demux

ADC

1:m demux

ADC

……… …

I1 Q1 I2 Q2

m:1 mux

m:1 mux

m:1 mux

m:1 mux

R. Noé 8

++++

Comparison of FIR and IIR filters

xk T T

+ yk

α0 α1 α2

xk-1 xk-2 yk

TT

+

xk

β1β2

yk-1yk-2

++++

serial

parallel

data not instantly available

R. Noé 9

Real-time constraint: Hardware efficiency

Computationally complex algorithms increase the required chip area, power consumption and cost.

• Signal transformations, example: FFT/ IFFTWays to increase hardware efficiency:

Convolution MultiplicationFFT/IFFT• Use of look-up tables

• Optimization of the required precision

R. Noé 10

Real-time constraint: Tolerance against feedback delays

Digital signal processing for coherent optical receivers requires massive

• parallel processing,• pipelining.

……… …

1:m demux

ADC

1:m demux

ADC

1:m demux

ADC

1:m demux

ADC

……… …

I1 Q1 I2 Q2

m:1 mux

m:1 mux

m:1 mux

m:1 mux

R. Noé 11

ψk

Decision-directed carrier recovery

decision circuit +

-

exp{-j( )}

arg( )

arg( )

W(z)

Yk

^FF

Xk^

filter function

1ˆ −− kje ψ

W(z)

exp{-j( )}FF

Decision circuit +

-arg( )

arg( )

FF

FF

FFFFDecision circuit +

-arg( )

arg( )

FF

FF

FFFFDecision circuit +

-arg( )

arg( )

FF

FF

FFFFdecision circuit +

-arg( )

arg( )

FF

FF

FFFF

FF

FF

Yk

Yk-m+1

Xk-2m^

Xk-3m+1^

ψk-4m^mkje 5ˆ −− ψ

Feedback delay of 1 symbol

Linewidth tolerance is significantly reduced!

R. Noé 12

Feedforward carrier recovery

(·)4 ∑2NCR+1

arg(−(·)) (·)/4Yk kϕ̂

Viterbi & Viterbi Algorithm [1]:

Barycenter-Algorithm [2]:(·)modπ

2arg(·)Yk kϕ̂

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5

+2. Polarisation

2nd Polarization

[1] R. Noé, IEEE J. Lightwave Technology, Vol. 23, No. 2, Feb. 2005, pp. 802-808[2] S. Hoffmann et al., IEEE Photon. Technol. Lett., Vol. 21, No. 3, Feb. 2009, pp. 137-139

R. Noé 13

Barycenter algorithm

(·)modπ2arg(·)Yk kϕ̂

Inherent weighting due to multiple use

of inputs

Re

Im

Each filter cell averages pairwise along shortest path.

R. Noé 14

Digital synchronous QPSK receiver scheme

X(i)

LPF

(⋅)4 (X(i))4

(X(i−1))4

(X(i−2))4

(X(i−2N))4

Y(i)(1/4)arg(− (⋅))

X(i−N) arg(⋅)

ϕ(i)

ψ(i) nr(i)

nr(i−1)

nj(i)

no(i)

o1(i), o2(i)ϕ(i−1)

Im X

Re Xdemulti-plexed output data bits o1, o2

ETX

ELO

l21l12

l11

l22LO

TXfiber

A/D

and

1:MDEMUX

Mod. 1

Mod. 2

Mod. M

Frequency quadrupling

Lowpass filtering

Signal phase

Carrier phase angle

Quadrant phase number (0, 1, 2, 3)

Differential decoding of quadrant phase number, taking carrier phase jumps into account

Module (i mod M)All signals it needs from neighbor modules are already available.

X ~ ETX ELO*

Differential encoding of data quadrant number nd in TX

Functionally identical with analog scheme

R. Noé 15

d1, Re c, o1 d2, Im c, o2 nd, nc, no

1 1 0-1 1 1-1 -1 21 -1 3

Detection and correction of quadrant phase jump

physical course

nj(i0)⋅π/2

π/4

−π/4

0i0i0−1

chosen course

ϕ

i0

1

2

3nj

no(i) = nd(i−N)

nr(i)

i0i0−1 i

nc(i−N)

0

1

2

3

nr(i)−nr(i−1)0

1

2

3

nj(i)

Data bits d1, d2 ⇔ quadrant number nd

Differential encoding of quadrant number in transmitter:Differential decoding of quadrant number in receiver, taking phase jumps into account !

( ) ( ) ( )( ) 4mod1−+= ininin cdc

R. Noé 16

Electronic polarization controlX1(i)

X2(i)

data recovery 1

data recovery 2

M

ϕ(i)

nj(i)

ϕ(i−1)

Z(i)

(X1(i))4

(X2(i))4

Z(i−1) Z(i−2) Z(i−2N)

LPF (1/4)arg(− (⋅))Y(i)

R1(i)

R2(i)

ϕ(l)cos(⋅), sin(⋅) e

−jϕ(l)

X1(l−N), X2(l−N)

nr,1(l), nr,2(l)

Q(l) M(l)

Xp(i)

(⋅)4 (Xp(i))4

Xp(i−N) arg(⋅)ϕ(i)

ψp(i)

nj(i)no,p(i)

op1(i), op2(i)

nr,p(i)

nr,p(i−1)

MQM 1: −=

Q

1Q →( ) += ANAN

( ) ( ) ( ) ( ) ( )+− ⋅⋅−⋅= ieNii ij rXQ ϕ21

( )( )MQ11M −+= g:

be a perfect estimate of MJ

⇒A be a data vector ⇒

results in well sufficient accuracy of matrix elements and control time constant on the order of ≤ 103 cycles. At 10 Gbaud control time constants down to ≤ 100 ns are possible.

( ) 11 −− == JMMJ( )( ) 11 −− −−= Q11Q ( )Q11 −+≈

310−≥g

R. Noé 17

Carrier & data recovery

CorrelationMatrix-update

Decision-directed polarization control

⎥⎦

⎤⎢⎣

yk

xk

YY

,

,⎥⎦

⎤⎢⎣

yk

xk

ZZ

,

,

⎥⎦

⎤⎢⎣

yk

xk

cc

,

,

ˆˆ

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Mk

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Qk

kϕ̂

+−

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡=

yk

xkj

yk

xkk c

ce

YY

k

,

,

,ˆˆϕQ

R. Noé, IEEE Photon. Technol. Lett., Vol. 17, No. 4, April 2005, pp. 887-889

Control target is to force the correlation to the unity matrix.

( ) kkkk g MQ1MM −+=+ :1

Phase offsetsare compensated!

R. Noé 18

DSP components for real-time synchronous QPSK transmission

ADCDE

MUX

DSPUADC

DEMU

X

ADC

DEMU

X

ADC

DEMU

XADC

DEMUX

DSPUADC

DEMU

X

ADC DEMU

X

ADC

DEMUX

Single-chip system Multi-chip system

☺ Highest integration → small footprint

☺ Simple interfacingCommon technology for ADCs and DSPU→ suboptimal performance

☺ Optimum performance☺ Possibility to use commercial ADCs

Complex interfaceIncreased footprint

R. Noé 19

SiGe ADC CMOS ASIC

Technology 0.25µm SiGeResolution 5 bitNumber of transistors 3378Chip size 5.4 mm2

Supply voltage -4 V, 1.8 VMeasured power consumption 2.7 WMeasured full scale range 410 mVMeasured DNL < ± 0.45 LSBMeasured INL < ± 0.35 LSBSampling frequency > 10 GHzMeasured input bandwidth > 5GHz

Standard Cell DesignGates 306,963Std. cells 121,576Max. frequency 625 MHzSupply voltage 1.2 VPower consumption 0.5 W

Full Custom DesignDevices 11,838Max. frequency 10 GHzSupply voltages 1.8 V,1.2VPower consumption 1.5 W

Combined Standard Cell and Full Custom DesignsPower 2 WTechnology 130 nm bulk CMOSSize 15.737 mm2

Pads 146Supply voltages 1.2 V, 1.8 V

Chip Specifications

R. Noé 20

5-bit 10-GS/s analog-to-digital converter

O. Adamczyk et al., Electron. Lett., Vol. 44, No. 15, July 2008, pp. 895-896

technology 0.25 μm SiGe:C BiCMOS

resolution 5 bit

number of transistors 3378

chip size 5.4 mm2

supply voltages -4 V+1.8 V

measured power consumption 2.7 W

measured full scale range (VFSR) 410 mV

measured DNL < ± 0.45 LSB

measured INL < ± 0.35 LSB

sampling frequency > 10 GHz

measured input bandwidth > 5 GHz (10 GSymbol/s)

measured SNR up to 30 dB

R. Noé 21

Digital signal processing unit

Full-custom Standard-cell ASIC

Complexity [transistors] 11,838 1,216,000 1,227,838

Area [mm²] 5.952 5.34 15.737

Frequency [MHz] 5,000 half-rate 625 5,000 half-rate

Power Supply [V] 1.8 1.2 1.8, 1.2

R. Noé 22

Digital signal processing unit

Full-custom Standard-cell ASIC

Complexity [transistors] 11,838 1,216,000 1,227,838

Area [mm²] 5.952 5.34 15.737

Frequency [MHz] 5,000 half-rate 625 5,000 half-rate

Power Supply [V] 1.8 1.2 1.8, 1.2

R. Noé 23

Components

5-bit 10 Gsample/s flash A/D converter chip Size: 2.1 mm×2.55 mm 0.25µm SiGe

CMOS ASIC4.1 mm×4.1 mm 130 nm bulk CMOS

Co-packaged module Ceramic substrate 8.5 cm×6.0 cm

R. Noé 24

10 Gb/s polarization-multiplexed QPSK transmission

no x-talk: SOP is manually adjusted, that the polarization cross-talk is minimized.→ Switching noise is minimized.x-talk: SOP is manually adjusted, that the polarization cross-talk is maximized.→ Switching noise is maximized.50 rad/s: SOP is scrambled with 50 rad/s on the Poincaré sphere.→ Switching noise is the average value of best and worst case.

DFB laser QPSK modulator

QPSK modulator

4x 700 M

b/s

PBS

PBC

Signal laser 45° SSMF80 km

Polarization scrambler

precoder

precoder

DFB laser

ADC

ADC

ADC

ADC5

5

5

5

DSPU

PBS

PBSLocal

oscillator45°

90° hybrid

90° hybrid

I1

Q1

I2

Q2

R. Noé 25

25

Experimental transmission setup

4x 700 M

b/s

I1

Q1

I2

Q2

DFB laser QPSK modulator

QPSK modulator

PBS

PBC

Signal laser 45° SSMF80 km

12 motorized quarterwave plates

HWP

precoder

precoder

motorizedhalf-wave plate

(bulk optic)

DFB laser

ADC

ADC

ADC

ADC5

5

5

5

Xilinx Virtex 4 FPGA

PBS

PBSLocal

oscillator 45°

90° hybrid

90° hybrid

polarization scrambler

PDLvariable

PDL element(0…6 dB)

VOA

CeLight Israel

Photline

Poincaré sphere traces measured with polarized signal:

R. Noé 26

Measurement results – fast polarization changes & receiver sensitivity penalty

0 krad/s20 krad/s40 krad/s

c=0.75μsc=3.00 μs+

R. Noé 27

Measurement results – polarization-dependent loss

R. Noé 28

Generation of fast endless polarization changes by mechanical halfwave plate, inserted between fiberoptic quarterwave plates

R. Noé 29

Conclusion

General real-time requirements for the DSPU: Parallelization Delay tolerance Hardware EfficiencyAngle-based phase recovery concept (barycenter): simple, linewidth-tolerantPolarization diversity with automatic polarization demultiplexRealtime coherent receiver implementation: SiGe ADC, CMOS DSPUTest results: 10 Gb/s, 40 krad/s

R. Noé 30

Acknowledgement

European CommissionFP6 contract 004631http://ont.upb.de/synQPSK

synQPSKUniv. Paderborn, GermanyCeLight IsraelPhotline, FranceIPAG, GermanyUniv. Duisburg-Essen, Germany

Thank you for your attention!