for direct catalytic conversion of biomass to biofuels … highlight... · center for direct...

9
Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio) RESEARCH PLAN AND DIRECTIONS We will maximize the energy and carbon efficiencies of advanced biofuels production by the design of both thermal and chemical conversion processes and the biomass itself. Impacts are to more than double the carbon captured into fuel molecules and expand the product range to alkanes and other energyrich fuels. C3Bio develops transformational knowledge and technologies for the direct conversion of plant lignocellulosic biomass to advanced (dropin) biofuels and other biobased products, currently derived from oil, by the use of new chemical catalysts and thermal treatments. 

Upload: dangnhan

Post on 18-May-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)

RESEARCH PLAN AND DIRECTIONSWe will maximize the energy and carbon efficiencies of advanced biofuels production by the design of both thermal and chemical conversion processes and the biomass itself. Impacts are to more than double the carbon captured into fuel molecules and expandthe product range to alkanes and other energy‐rich fuels.

C3Bio develops transformational knowledge and technologies for the direct conversion of plant lignocellulosic biomass to advanced (drop‐in) biofuels and other biobased products, currently derived from oil, by the use of new chemical catalysts and thermal treatments. 

Sample Preparation for Biomass Biomaterials Microscopy

Scientific AchievementOptimized and standardized a set of hybrid biological and materials‐science sample preparation techniques to enable consistently high quality multi‐scale microscopy analysis of biomass.

Significance and Impact•Provides a single “go‐to” reference for the field that shares details and tips that are not possible to fully convey in the typical manuscript methods section. 

•Facilitates direct, quantitative comparison between samples prepared and imaged by these methods.

Donohoe, B. S.; Ciesielski, P. N.; and Vinzant, T. B. PRESERVATION AND PREPARATION OF LIGNOCELLULOSIC

BIOMASS SAMPLES FOR MULTI‐SCALE MICROSCOPYANALYSIS, In: Michael E. Himmel (ed.), Biomass 

Conversion: Methods and Protocols, Methods in Molecular Biology, 908, 31‐47 (2012). 

[10.1007/978‐1‐61779‐956‐3_4]

Work was performed at NREL

Research Details‐ NREL’s Biomass Surface Characterization Laboratory (BSCL) is a leader in 

multi‐scale microscopic structural analysis of biomass conversion processes.‐ C3Bio enabled a critical transition in the BSCL workflow to include 

quantitative image analysis as the final goal of all imaging efforts.‐ The impact quantitative image analysis has had on informing sample prep 

and image acquisition is reflected in this chapter.

staining'solu+on'

deionized'water' mul+2grid'

holder'

staining'bath'''

a" bcba

water(convec, on(pla/ orm(

vacuumchamber

thermocouplesample

chambers

dryingchamber

hot(and(cold(water(controllers

CO2

cylinder

water(chiller

water(heater

condenser(chamber

Tandem Mass Spectrometric Analysis of Degraded Cellulose 

Scientific AchievementDemonstrated  that chloride anion attachment/atmospheric pressure ionization generates only one ion for each carbohydrate in a mixture and that multistage tandem mass spectrometry  can be used to determine the ions’ structures.

Significance and ImpactAllows more detailed characterization of  mixtures of pyrolyzed and other‐wise degraded cellulose  than before. 

Vinueza, N.R.,  Gallardo, V.A., Klimek, J.F., Carpita, N., and Kenttämaa, H.I. ANALYSIS OF CARBOHYDRATES BY ATMOSPHERIC PRESSURE CHLORIDE ANIONATTACHMENT TANDEM MASS SPECTROMETRY,  Fuel, 105, 235‐246 (2013).

Work was performed at Purdue University

Research Details‐ Used linear quadrupole ion trap  and a variety of 

ionization methods to ionize pure carbohydrates  ‐ After identification of the best ionization method, 

examined known mixtures of carbohydrates ‐ Measured tandem mass spectra up to MS4 to 

gather useful structural information from the fragmentation patterns of  the carbohydrates

140 160 180 200 220 240 260 280 300 320 340 360 380 400m/z

0

10

20

30

40

50

60

70

80

90

100377

215

185

379217

187161

[M+ 35Cl]¯

[M+ 35Cl]¯[M+ 35Cl]¯

Fructose

CellobioseXylose

Rel

ativ

e A

bund

ance

[C6H9O5]¯

Isolation ofion of m/z 377followed byfragmentation

Chloride anionattachmentmass spectrumfor a mixture ofthree compounds(35Cl and 37ClIsotopes facilitateIdentification)

Fructose

FeIII(POP) Catalyst for HMF Oxidation to FDCAScientific AchievementA porphyrin‐based porous organic polymer (POP) loaded with Fe3+ catalyst is a thermally stable and recyclable catalyst for oxidation of hydroxymethylfurfural (HMF) to 2,5‐furandicarboxylic acid (FDCA) in water using molecular oxygen. Significance and Impact• In C3Bio, we have shown that maleic acid catalysis converts glucose in non‐crystalline polymers in biomass to HMF.

• Saha et al achieved quantitative conversion of HMF with >85% selectivity in water under mild reaction conditions.

• The catalyst retained Fe(III) oxidation state after catalysis and metal does not leach into solution.

• FDCA is a promising replacement for petroleum‐derived terephthalic acid for polyester production.

Saha, B.; Gupta, D.; Abu‐Omar, M. M.; Modak, A.; and Bhaumik, A. PORPHYRINBASED POROUS ORGANIC POLYMER SUPPORTEDIRON(III) CATALYST FOR EFFICIENT AEROBICOXIDATION OF 5‐HYDROXYMETHYLFURFURALINTO 2,5‐FURANDICARBOXYLIC ACID. Journal of Catalysis, 299, 316‐320 (2013). [10.1016/j.jcat.2012.12.024] Work was performed at Purdue University and University of Delhi. Catalyst was prepared by collaborator at Indian Association for the Cultivation of Science.

Research Details

Before catalysis

After catalysis0

20

40

60

80

100

120

0 2 4 6 8 10 12HM

F co

nver

sion

and

pro

duct

dis

trib

utio

n, %

Time, h

O COOHHOOC

O CHOHOOC

O CHOHO

O

CHO

CHO

• Characterization of the catalyst showed uniform nanospheres of dimension 50‐100 nm  which self‐assemble to larger sizes. 

• Hydroxymethyl group (‐CH2OH) of HMF oxidized first followed by oxidation of –CHO group.• The data support a hypothesis that the reaction progresses via a free radical chain mechanism with the formation of peroxyl radical in the catalytic cycle.

3D Electron Tomography of Pretreated Biomass Informs Atomic Modeling of Cellulose Microfibrils

Scientific Achievement• Using 3D electron tomography and novel computational analysis tools, we modeled and quantified the macromolecular architecture of thermochemically treated biomass.

Significance and Impact• This study produced the first measurements of cellulose microfibril curvature. We investigated the significance of this parameter by construction and evaluation of atomic models that exhibited the geometry obtained from the microscopy data.

• Our results and analyses have elucidated new relationships between the nanostructure and energetics of plant cellulose that may be exploited in catalytic conversion processes.

Ciesielski, P. N.; Matthews, J. F.; Tucker, M. P.; Beckham, G. T.; Crowley, M. F.; Himmel, M. E.; Donohoe, B. S. 3D ELECTRON TOMOGRAPHY OF PRETREATEDBIOMASS INFORMS ATOMIC MODELING OF CELLULOSE MICROFIBRILS. ACS Nano, 7, 8011‐8019. 2013. DOI: 10.1021/nn4031542.Work performed at the National Renewable Energy Laboratory

The radius of curvature of the microfibrils was measured from the fitted curves. Atomistic models were constructed using the extracted geometric parameters. Kink defects were predicted in the atomic models when the fibril was bent about certain crystallographic directions. 

Tomographic  subvolumes showing space curves fit to cellulose microfibrils (scale bars 10 nm)

Averagae

radius of curvature (nm

)

Original atomiccoordinates

Energy‐minimized  atomic coordinates

Catalytic cleavage and hydrodeoxygenation of lignin models

Scientific AchievementA combined Zn/Pd/C catalyst effectively cleaved the lignin β‐O‐4 linkage and subsequently hydrodeoxygenated the aromatic fragments without loss of aromatic functional groups. The catalyst is robust and fully recyclable without the need for additional zinc.Significance and ImpactThe β‐O‐4 linkage is the most abundant repeating subunit of the lignin macromolecule. Devising a catalyst that can selectively cleave this type of ether linkage and undergo hydrodeoxygenation provides a means of unzipping the very complex polymeric structure into smaller, manageable molecules that have higher energy value. Parsell TH, Owen BC, Klein I, Jarrell TM, 

Marcum CL, Haupert LJ, Amundson LM, Kenttämaa HI Ribeiro F, Miller JT, Abu‐Omar MM. Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis. Chem. Sci., 4, 806‐813 (2013). [10.1039/C2SC21657D]

Work was performed at Purdue University and Argonne National Lab

Research Details− In a typical experiment: substrate, 5 wt% Zn/Pd/C, and methanol (15 mL) were added to a dry glass sleeve, placed into a stainless steel Parr reactor and sealed. While stirring, the mixture was purged with UHP grade H2 for ca. 1–2 min., pressurized with H2 (30–300 psi, 2–20.4 bar), and heated to 150⁰C.

− The monomeric lignin surrogate substrates were 4‐(hydroxymethyl)‐2‐methoxyphenol, 4‐hydroxy‐3‐methoxybenzaldehyde, and 4‐(methoxymethyl)‐2‐methoxyphenol. The dimeric lignin surrogate was guaiacylglycerol‐β‐guaiacyl.

− Reaction products were characterized using HPLC coupled to an LQIT mass spectrometer equipped with an ESI source using negative ion mode.

Cobalt‐Catalyzed Oxidative Cleavage of Lignin Models

Scientific AchievementG models of lignin are slow to react.However, we developed a new catalyst that transforms both S and G subunits lignin models into benzoquinones in high yields.Significance and ImpactLignin, a macromolecule of syringyl(S) and guaiacyl (G) subunits, is an underused product of biorefinery operations. Optimal reaction conditions for the conversion of lignin models to quinones were determined. Internal ligand and aliphatic base on the ligand allow for a much stronger catalytic activity. This methodology is highly applicable to the oxidative cleavage of lignin.  

‐ Cedeno, D.; Bozell, J. J.; Tetrahedron Lett.  2012, 53, 2380‐2383.‐ Biannic, B.; Bozell, J.  J. manuscript in preparation

Work was performed at: University of Tennessee,Center for Renewable Carbon

Research Details‐ Previous studies from our laboratory showed that G lignin models undergo oxidation in presence of Co‐salen catalyst and a hindered base in 50% yield.  

‐ This new unsymmetrical Co‐salen catalyst oxidizes each of the lignin primary units.‐ The catalyst contains an internal nitrogen ligand (needed for S and G subunits) and an internalbulky base (needed for G subunit).

‐ An efficient protecting group‐free strategy for the synthesis of lignin models has also been developed. 

L i g n i n M o d e l sL i g n i n M o d e l s H i g h V a l u e C h e m i c a l s

H i g h V a l u e C h e m i c a l s

Selective cobalt catalyzed oxidations of biorefinery lignin

!"#$%&#' ( ) *+,&‐ "%,%*+&. %/( "%&+0%&"%#$1( *&

23&45' %* 5( *&6 ' 7&

28

OH

O O

Diana C, and Bozell JJ. Catalytic oxidation of para‐substituted phenols with cobalt‐Schiff base complexes/O2 ‐selective conversion of syringyl and guaiacyllignin models to benzoquinones. Tetrahedron Letters  53, 2380‐2383 (2012).

Work was performed at the University of Tennessee, Knoxville Center for Renewable Carbon

Scientific AchievementNew processes promote oxidation of both general types of aromatic structure in lignin models (S and G) that are verified in oxidation of actual biorefinery lignin samples (organosolv and extracted kraft) without compromising yield.Significance and ImpactInstead of burning biorefinery ‘waste’ lignin as a $0.05/lb fuel, we have identified processes that position lignin as a chemical feedstock, opening new opportunities in biobased chemical production

Research Details₋ In order to assess the involvement of the sterically hindered base, we 

studied the interaction between DIPEA and Co(salen) using NMR and UV–vis spectroscopy 

₋ Although S subunit models from guaiacyl unit models were easily converted into their corresponding p‐quinones, the same approach with vanillyl alcohol, a model of the G subunit, gave the corresponding 2‐methoxybenzoquinone in only 21% yield. G models are more difficult to oxidize than S models because formation of the key phenoxy radical is slower.

₋ Molecular modeling studies (DFT) have provided new insight into the mechanism and its control

₋ Mass spectrometry development at Purdue has identified new products resulting from lignin oxidation

Solvent‐free methods for making biomass‐derived acetals

Scientific AchievementDemonstrated solvent‐free synthesis of acetals prepared from furfural and glycerol using a variety of common Lewis acids and solid acids

Significance and ImpactAcetals are produced in high yields under mild reaction conditions, allowing for a new route for the utilization of glycerol. Acetal products are potentially useful synthetic platforms and potential fuel additives

Wegenhart, Benjamin L.; Liu, Shuo; Thom, Melanie; Stanley, David; and Abu‐Omar, Mahdi M. SOLVENT‐FREE METHODS FOR MAKING ACETALS DERIVEDFROM GLYCEROL AND FURFURAL AND THEIR USE AS ABIODIESEL FUEL COMPONENT, ACS Catalysis, 2, 2524‐2530 (2012). [10.1021/cs300562e]

Work was performed at Purdue University

Research Details‐ Reactions between furfural and glycerol are performed at 100°C with a five‐fold excess of furfural, allowing for yields up to 90%

‐ The addition of a dry stream of nitrogen purging the headspace improves yields and allows for a reduced excess of furfural

‐ The novel reaction methods are applicable to crude glycerol‐ Acetal products were successfully hydrogenated and acetylated, and the resulting material tested as fuel additives in biodiesel