(q; t)-laguerre polynomials_ole warnaar

Upload: mecobio

Post on 09-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    1/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    (q, t)-Laguerre polynomials

    Ole Warnaar

    School of Mathematics and Physics

    (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    2/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    The Laguerre polynomials

    For > 1 and m a nonnegative integer, Laguerres equation is thelinear second order ODE

    x y(x) + ( + 1 x)y(x) + m y(x) = 0

    Its polynomial solutions, denoted by L()m (x), are known as the(generalised/associated) Laguerre polynomials.

    (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    3/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    The first few Laguerre polynomials are given by

    L()0 (x) = 1

    L()1 (x) = x + + 1

    L()

    2 (x) = 12x2 ( + 2)x + 1

    2( + 1)( + 2)

    (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    4/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    The first few Laguerre polynomials are given by

    L()0 (x) = 1

    L()1 (x) = x + + 1

    L()

    2 (x) = 12x2 ( + 2)x + 1

    2( + 1)( + 2)

    and more generally one has

    L()m (x) =mi=0

    m + m i

    (x)

    i

    i!

    (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    5/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    It is easily verified that the Laguerre polynomials satisfy a three-termrecurrence relation:

    (m + 1)L()m+1(x) = (2m + 1 + x)L

    ()m (x) (m + )L

    ()m1(x)

    According to Favards theorem the Laguerre polynomials thus form a

    family of orthogonal poynomials.

    (q, t)-Laguerre polynomials

    L l i l L l i l ( ) L l i l

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    6/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    It is easily verified that the Laguerre polynomials satisfy a three-termrecurrence relation:

    (m + 1)L()m+1(x) = (2m + 1 + x)L

    ()m (x) (m + )L

    ()m1(x)

    According to Favards theorem the Laguerre polynomials thus form a

    family of orthogonal poynomials.The orthogonalising measure for the Laguerre polynomials is given by

    d(x) = xexdx

    supported on the positive half-line:0

    L()m (x)L()n (x) d(x) = mn

    (m + + 1)

    m!

    (q, t)-Laguerre polynomials

    L l i l L l i l ( t) L l i l

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    7/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    The orthogonality with respect to the Laguerre measure may be provedas follows:

    Laguerres equation is equivalent to the statement that L()m (x) isthe eigenfunction with eigenvalue m of the second order differentialoperator

    L = xd2

    dx2+ (x 1)

    d

    dx

    (q, t)-Laguerre polynomials

    Laguerre polynomials q Laguerre polynomials (q t) Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    8/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    The orthogonality with respect to the Laguerre measure may be provedas follows:

    Laguerres equation is equivalent to the statement that L()m (x) isthe eigenfunction with eigenvalue m of the second order differentialoperator

    L = xd2

    dx2+ (x 1)

    d

    dx

    The operator L is self-adjoint with respect to the inner product

    f, g

    =

    0

    f(x)g(x)d(x)

    i.e., Lf, g

    =

    f,Lg

    (q, t)-Laguerre polynomials

    Laguerre polynomials q Laguerre polynomials (q t) Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    9/36

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    The q-Laguerre polynomials

    The q-Laguerre polynomials are a discrete or quantum variant of theclassical Laguerre polynomials. They were first studied by Hahn aroundthe 1950s.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    10/36

    Laguerre polynomials q Laguerre polynomials (q, t) Laguerre polynomials

    The q-Laguerre polynomials

    The q-Laguerre polynomials are a discrete or quantum variant of theclassical Laguerre polynomials. They were first studied by Hahn aroundthe 1950s.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    11/36

    gu p y q gu p y (q, ) gu p y

    The q-Laguerre polynomials

    The q-Laguerre polynomials are a discrete or quantum variant of theclassical Laguerre polynomials. They were first studied by Hahn aroundthe 1950s.

    Differential equation q-difference equationIntegration Jackson-integration

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    12/36

    g p y q g p y (q, ) g p y

    Let Dq be the q-derivative operator

    (Dqf)(x) =f(xq) f(x)

    (q 1)x

    If f is differentiable at x then

    limq1

    (Dqf)(x) = f(x)

    For example,Dqx

    m = [m] xm1

    with [a] the q-number [a] = (1 qa)/(1 q).

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    13/36

    The q-Laguerre polynomial L(m (x) = L

    (m (x; q) is the eigenfunction, with

    eigenvalue [m], of the q-difference operator

    L = (x + 1)Dq q1Dq1

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    14/36

    The q-Laguerre polynomial L(m (x) = L

    (m (x; q) is the eigenfunction, with

    eigenvalue [m], of the q-difference operator

    L = (x + 1)Dq q1Dq1

    The first few q-Laguerre polynomials are given by

    L()0 (x) = 1

    L()1 (x) = q

    +1 X + [ + 1]

    L()2 (x) =

    1[2]

    X2 q+1[ + 2] X + 1[2]

    [ + 1][ + 2]

    where X = x/(1 q).

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    15/36

    Again there is a three-term recurrence:

    [m + 1]L()m+1(x)

    = [m + 1] + q[m + ] q2m++1(1 q)xL

    ()m (x)

    q[m + ]L()m1(x)

    Hence there exists an orthogonalising measure such that theq-Laguerre polynomials form an orthogonal family.

    To describe this measure we need the Jackson integral.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    16/36

    The Jackson integral over the positive reals is defined as

    0

    f(x)dqx = (1 q)

    n=

    f(qi)qi

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    17/36

    Because of its discreteness something is lost, and there is no q-analogueof

    c

    0

    f(cx)dx =

    0

    f(x)dx c > 0

    Hence we also definec0

    f(x)dqx = (1 q)

    n=

    f(cqi)cqi

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    18/36

    The q-Laguerre polynomials satisfy the discrete orthogonality

    c0

    L()m (x)L()n (x)d(x)

    = mn[c(1 q)]+1qm

    q(m + + 1)

    q(m + 1)

    (acq)

    (c)

    whered(x) = xeq(x)dqx

    and

    eq(x) =

    n=0

    Xn

    [n]!

    =1

    (1 x)(1 xq)(1 xq2

    ) is the q-exponential function.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    19/36

    The previous results can again be restated as follows:

    The q-Laguerre polynomial L

    ()

    m (x) is the eigenfunction witheigenvalue [m] of

    L = (x + 1)Dq q1

    Dq1

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    20/36

    The previous results can again be restated as follows:

    The q-Laguerre polynomial L

    ()

    m (x) is the eigenfunction witheigenvalue [m] of

    L = (x + 1)Dq q1

    Dq1

    The operator L is self-adjoint with respect to the inner product

    f, g

    =

    c0

    f(x)g(x)d(x)

    whered(x) = xeq(x)dqx

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    21/36

    The (q, t)-Laguerre polynomials

    Motivation. The evaluation of multidimensional integrals related to Lie

    algebras.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    22/36

    The (q, t)-Laguerre polynomials

    Motivation. The evaluation of multidimensional integrals related to Lie

    algebras.Trivial example. The classical Laguerre polynomials

    1, 1

    =

    0

    d(x) =

    0

    xexdx = ( + 1)

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    ( )

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    23/36

    The (q, t)-Laguerre polynomials

    Motivation. The evaluation of multidimensional integrals related to Lie

    algebras.Trivial example. The classical Laguerre polynomials

    1, 1

    =

    0

    d(x) =

    0

    xexdx = ( + 1)

    Non-trivial example. The Lie algebra pair (An1, A1)

    [0,)n

    n

    i=1

    xi exi

    1i

  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    24/36

    For x = (x1, . . . , xn) let q,i be the partial difference operator

    (q,if)(x) =

    f(x1, . . . , xi1, qxi, xi+1, . . . , xn) f(x)

    (q 1)xi

    Define the operators Er(q, t) acting on n = Q(q, t)[x1, . . . , xn]Sn by

    Er(q, t) =

    ni=1

    x

    r

    i n

    j=1j=i

    txi xj

    xi xj

    q,i

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    25/36

    For x = (x1, . . . , xn) let q,i be the partial difference operator

    (q,if)(x) =

    f(x1, . . . , xi1, qxi, xi+1, . . . , xn) f(x)

    (q 1)xi

    Define the operators Er(q, t) acting on n = Q(q, t)[x1, . . . , xn]Sn by

    Er(q, t) =

    ni=1

    x

    r

    i n

    j=1j=i

    txi xj

    xi xj

    q,i

    Note that for n = 1

    E0(q, t) = Dq and E1(q, t) = xDq

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    26/36

    For x = (x1, . . . , xn) let q,i be the partial difference operator

    (q,if)(x) =

    f(x1, . . . , xi1, qxi, xi+1, . . . , xn) f(x)

    (q 1)xi

    Define the operators Er(q, t) acting on n = Q(q, t)[x1, . . . , xn]Sn by

    Er(q, t) =

    ni=1

    x

    r

    i n

    j=1j=i

    txi xj

    xi xj

    q,i

    Note that for n = 1

    E0(q, t) = Dq and E1(q, t) = xDq

    Lemma. For r 0, Er : n n

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    27/36

    Let = (1, . . . , n) be a partition (a weakly decreasing sequence of

    nonnegative integers) and L : n n the operator

    L = E1(q, t) + E0(q, t) q1E0(q

    1, t1)

    The eigenfunction ofL with eigenvalue

    tn1[1] + + t[n1] + [n]

    defines the (q, t)-Laguerre polynomial L() (x) = L

    () (x; q, t).

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    28/36

    Let = (1, . . . , n) be a partition (a weakly decreasing sequence of

    nonnegative integers) and L : n n the operator

    L = E1(q, t) + E0(q, t) q1E0(q

    1, t1)

    The eigenfunction ofL with eigenvalue

    tn1[1] + + t[n1] + [n]

    defines the (q, t)-Laguerre polynomial L() (x) = L

    () (x; q, t).

    Lemma. The L() (x) form a basis of n.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    29/36

    For (q, t) = (q, q) with q 1 the (q, t)-Laguerre polynomials were

    studied by

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    30/36

    Let t = q and define an inner product on n by

    f, g

    =

    cx1=0

    tx1x2=0

    txn1xn=0

    f(x)g(x)d(x)

    where

    d(x) =

    1i

  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    31/36

    Theorem. The operator L is self-adjoint with respectto the inner product on n.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q, t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    32/36

    Theorem. The operator L is self-adjoint with respectto the inner product on n.

    Corollary. L() , L() = c,

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q,

    t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    33/36

    Theorem. The operator L is self-adjoint with respectto the inner product on n.

    Corollary. L() , L() = c,

    Theorem c can explicitly be computed in terms ofnice special functions, such as theta functions and

    q-Gamma functions.

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q,

    t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    34/36

    Ingredients in proofs are:

    Macdonald polynomialsKnopOkounkovSahi interpolation polynomials

    The double affine Hecke algebra

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q,

    t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    35/36

    Ingredients in proofs are:

    Macdonald polynomialsKnopOkounkovSahi interpolation polynomials

    The double affine Hecke algebra

    (q, t)-Laguerre polynomials

    Laguerre polynomials q-Laguerre polynomials (q,

    t)-Laguerre polynomials

    http://find/http://goback/
  • 8/8/2019 (q; t)-Laguerre polynomials_Ole Warnaar

    36/36

    The End

    (q, t)-Laguerre polynomials

    http://find/http://goback/