pump technology - asmefiles.asme.org/divisions/fed/16298.pdf · maximum bearing housing vibration...

38
PUMP TECHNOLOGY Are we making any progress? S. Gopalakrishnan Flowserve Corporation Pump Division Vernon, California PUMP DIVISION ASME FEDSM May 31, 2001

Upload: vonhu

Post on 01-May-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

PUMP TECHNOLOGY

Are we making any progress?

S. GopalakrishnanFlowserve Corporation

Pump DivisionVernon, California

PUMP DIVISION

ASME FEDSM May 31, 2001

“LARGEST PUMP”

• HIGHEST HORSEPOWER– American Electric Power John E. Amos plant– Boiler Feed Pump - Multistage, Barrel– 21,800 GPM– 11,300 ft TDH– 4160 RPM

– 63,200 HP– 1973

“LARGEST PUMP”

• HIGHEST CAPACITY– South Florida - Mill Creek– Flood Control

– 695,000 GPM– 180 RPM– 24 ft TDH– 5000 HP– 1985

“LARGEST PUMP”

• LARGEST SIZE– Grand Coulee Dam on the Columbia River– Single Stage Vertical Volute Pump– 605,000 GPM, 330 ft TDH, 200 RPM– 55,200 HP

– Volute “Diameter” ~ 21 ft– 1951

0

100

200

300

400

500

600

700

800

900

1940 1950 1960 1970 1980 1990 2000

PL

AN

T O

UT

PU

T (M

W)

FOSSIL PLANT OUTPUT (MW)

H. Ohashi: ASME FED SM 1997

POWER PLANT DEVELOPMENT

0

200

400

600

800

1000

1200

1400

1940 1950 1960 1970 1980 1990 2000

PL

AN

T O

UT

PU

T (M

W)

FOSSIL PLANT OUTPUT (MW)

NUCLEAR PLANT OUTPUT (MW)

H. Ohashi: ASME FED SM 1997

POWER PLANT DEVELOPMENT

0

5

10

15

20

25

30

35

1940 1950 1960 1970 1980 1990 2000

PU

MP

PO

WE

R (

MW

) an

d S

TA

GE

PR

. (B

AR

)

0

200

400

600

800

1000

1200

1400

PL

AN

T P

UT

PU

T (

MW

)

FOSSIL PLANT OUTPUT (MW)

NUCLEAR PLANT OUTPUT (MW)

PUMP POWER (MW)

H. Ohashi: ASME FED SM 1997

POWER PLANT DEVELOPMENT

0

10

20

30

40

50

60

70

80

1940 1950 1960 1970 1980 1990 2000

PU

MP

PO

WE

R (

MW

) an

d S

TA

GE

PR

. (B

AR

)

0

200

400

600

800

1000

1200

1400

PL

AN

T P

UT

PU

T (

MW

)

FOSSIL PLANT OUTPUT (MW)

NUCLEAR PLANT OUTPUT (MW)

PUMP POWER (MW)

STAGE PR. (BAR)

H. Ohashi: ASME FED SM 1997

P. Hergt: ASME FED SM 1997

POWER PLANT DEVELOPMENT

CUSTOMER REQUIREMENTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SUPERSYNCHRONOUS RPM

PRESSURE SURGE

RECYCLING ABILITY

SUCTION ABILITY

CONTROL RANGE

NOISE EMISSION

PRICE

EMISSION FREE

EFFICIENCY

RELIABILITY

P. Hergt: ASME FED SM 1997

ECONOMICS OFRELIABILITY

• The cost of maintaining a pumpsignificantly exceeds the first cost.

PRICE9%

REPAIR COST(NPV)

27%

ENERGY (NPV)64%

COST OF RELIABILITY

ANSI PUMP

ECONOMICS OFRELIABILITY

• The cost of maintaining a pumpsignificantly exceeds the first cost.

• The imperative on the manufacturer is toincrease MTBR.

CHARGE PUMP FAILURE DATA

SEALS 43%

BEARINGS13%

SHAFT13%

AUX. SYSTEMS31%

Source: NERI Smart NPP report Task 1June 2000

RELIABILITY IMPROVEMENTINITIATIVES

• ROBUST MECHANICAL DESIGN– Minimizing Vibrations

• Reduction of Forces• Elimination of resonances

– Improving cavitation resistance

RELIABILITY IMPROVEMENTAPI VIBRATION LIMITS

0

1

2

3

4

5

6

7

8

9

10

1950 1960 1970 1980 1990 2000 2010

OVERALL

FILTERED

VIB

RA

TIO

N V

EL

OC

ITY

(M

M/S

EC

)

RELIABILITY IMPROVEMENT

DSHF

RELIABILITYIMPROVEMENT

SR ratio

RMS(in/sec)

StaticDeflection(mils)

Double Suction Process PumpVibration Data Map

3

2

1

0

1.81.51.20.90.60.3

0.24

0.21

0.18

0.15

0.12

0.09

RELIABILITY IMPROVEMENT

• Increase foot thickness

• Decrease bearing span

• Robust bearing adaptors

EXISTINGDSHF

BEARINGADAPTER

DESIGN

NEW DSHFBEARINGADAPTERDESIGN

INCREASE OFGAP “B”

IMPELLER VANESTAGGER

RELIABILITYIMPROVEMENT

DSHF Pump Vibration DataMAXIMUM BEARING HOUSING VIBRATION VERSUS FLOW RATE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Q/Qbep (ratio)

New 360 degree BracketStaggered ImpellerThicker Pump FeetFlex in/ out

0.1560.120 API LIMIT

x 1.30

CURVE FIT

PUMP DIVISION

RM

S in

/sec

RELIABILITY IMPROVEMENT

0

10

20

30

40

50

60

1996 1997 1998 1999 2000

12 m

on

th r

olli

ng

MT

BR

M.L. Fontaine and E. Haflich, “Developing Fixed-Fee SealArrangements to Improve Pump Reliability” - 18th Texas A&MPump Symposium, March 2001

NPSH REQUIRED

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.8 1 1.2 1.4 1.6 1.8FLOW (m^3/sec)

NP

SH

(m

)

INCEPTION3 % HEAD DROPDAMAGE FREE

REDUCTION OF CAVITATIONDAMAGE

0

0.001

0.002

0.003

0.004

0.005

0 0.5 1 1.5 2 2.5 3 3.5

BUBBLE LENGTH (IN)

RE

LA

TIV

E E

RO

SIO

N R

AT

E

316 STEELNITRONICS 50DUPLEX

REDUCTION OF CAVITATIONDAMAGE

0

0.01

0.02

0.03

0.04

0.05

CAST IRON CA 15 CASTCARBONSTEEL

CA6NM 17-4 PH(H1150)

XCAVALLOY

MP

DR

REDUCTION OF CAVITATIONDAMAGE

REDUCTION OF CAVITATIONDAMAGE

• We still need a way to assess damagepotential at factory testing stage.

PRICE9%

ENERGY (NPV)83%

REPAIR COST(NPV)

8%

PRICE9%

REPAIR COST(NPV)

27%

ENERGY (NPV)64%

ECONOMICS OF EFFICIENCY

API PUMP ANSI PUMP

[ ]

j

Z

1j

1

0 mp

oe dt

t

t ??tHtQ

g?E

nC ∑=

∫+

=•

••••

444 3444 21321nr1

1. Power in one annual cycle

2. Cost of energy

Source: P. Wurzburger, “Energy - A basic element of Life Cycle Costing” - Einfúhrungsvortrag,Pump Users International Forum - Karlsruhe - October 2000

3. No. of years

ENERGY COST CALCULATIONMODEL

4. Net present value

ECONOMICS OF EFFICIENCY

• A project funded by the European Commission(SAVE) has concluded:

– Pump efficiencies can be improved with presenttechnology by 3 points.

– If all EU pumps are upgraded, a total of 1.1TWhr of energy can be saved. At 5 c/kWhr, thisamounts to about 50 million $ saving per year

– Basic infrastructure issues are the impedimentto this upgrade.

THEORETICAL EFFICIENCY

0.4

0.5

0.6

0.7

0.8

0.9

1

100 1000 10000

SPECIFIC SPEED

EF

FIC

IEN

CY

THEOR. MAXPRACTICAL MAX.AVERAGE

FLOW = 800 GPM

European Association of Pump Manufactureres No. 2 (1999):Attainable Efficiencies of Volute Casing Pumps

BASELINING WITH CFD

H. Goto: ASME FED SM 1997

CRYOGENIC EXPANDER

EFFICIENCY IMPROVEMENT

CALCULATED EFFICIENCES (%)

SINGLE STAGE MULTI-STAGEHydraulic Net

8RL (Baseline) 92.1 89.2 85.08RH – Design #1 91.7 86.8 84.98RH – Design #2 94.5 89.6 87.98RH - Final 94.6 89.7 88.1

HIGH PERFORMANCEEXPANDER

0

Flow (l/sec)

0

50

100

150

200

250

300

350

400

450

500

20 40 60 80 100 120 140 160 180 200 220 240 260 2800%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1800 RPM

Efficiency

Total Turbine Output

Head

Eff

icie

ncy

To

tal T

urb

ine

Ou

tpu

t (k

W)

Net

Hea

d (

met

ers)

Motor stator embeddedand sealed into rearcasing cover

Rotor Assemblywith Shaft

Pump Casing

ASSEMBLY OF SCAMP

CONCLUSIONS

• Pump Technology is driven by customerrequirements

– Reliability: Significant improvements in MTBR

– Efficiency: CFD techniques are producing goodresults

– Emission: Novel mechanical designs are beingintroduced