proteiinianalyysi 52930 (2 ov)

84
Proteiinianalyysi 52930 (2 ov) Liisa Holm

Upload: abiba

Post on 24-Jan-2016

52 views

Category:

Documents


0 download

DESCRIPTION

Proteiinianalyysi 52930 (2 ov). Liisa Holm. Organisaatio. Luennot & Laskuharjoitukset 30.3.-28.4.2005, ke, to 14-16, LS 2012 http://www.bioinfo.biocenter.helsinki.fi:8080/downloads/teaching/spring2005/proteiinianalyysi/index.html Tentti Bonusta aktiivisuudesta laskuharjoituksissa - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Proteiinianalyysi 52930 (2 ov)

Proteiinianalyysi 52930 (2 ov)

Liisa Holm

Page 2: Proteiinianalyysi 52930 (2 ov)

Organisaatio

• Luennot & Laskuharjoitukset – 30.3.-28.4.2005, ke, to 14-16, LS 2012– http://www.bioinfo.biocenter.helsinki.fi:8080/d

ownloads/teaching/spring2005/proteiinianalyysi/index.html

• Tentti– Bonusta aktiivisuudesta laskuharjoituksissa

• Oheislukemisto– Lesk: Introduction to bioinformatics. Oxford

University Press.

Page 3: Proteiinianalyysi 52930 (2 ov)

Aikataulu 30.3. ke Luento

31.3. to Luento

6.4. ke Laskuharjoitus 1

7.4. to Luento

13.4. ke Laskuharjoitus 2

14.4. to Luento

20.4. ke Laskuharjoitus 3

21.4. to Luento

27.4. ke Laskuharjoitus 4

28.4. to Tentti

Page 4: Proteiinianalyysi 52930 (2 ov)

Kurssin tavoitteet

• miten proteiinisekvenssejä luetaan

• proteiinien luokittelujärjestelmät

• sekvenssi – rakenne – funktio

• evoluutio

Page 5: Proteiinianalyysi 52930 (2 ov)

Muut kurssit

• Esitiedot: – Geneettinen bioinformatiikka 1-2 ov

• sekvenssivertailu• fylogeniapuut

• Soveltaminen:– Proteiinianalyysin harjoitustyöt 3 ov

• webbityökalujen käyttö

Page 6: Proteiinianalyysi 52930 (2 ov)

Johdanto

Page 7: Proteiinianalyysi 52930 (2 ov)

Proteiinien merkitys• Proteiinit tekevät kaiken työn solussa ja

ovat osallisina:– Geenisäätelyssä– Metaboliassa– Signaloinnissa– Tukirangassa– Kuljetuksessa– Solunjakautumisessa

http://www.websters-online-dictionary.org/definition/english/ce/cell.html

Page 8: Proteiinianalyysi 52930 (2 ov)

Structural proteins

• Collagen

1K6F http://www.aw-bc.com/mathews/ch06/fi6p13ad.htm

Page 9: Proteiinianalyysi 52930 (2 ov)

Actin and muscles

Page 10: Proteiinianalyysi 52930 (2 ov)

Enzymes

• Catalytic triad: Asp, Ser, His

1CHO

Page 11: Proteiinianalyysi 52930 (2 ov)

Transcription factors

1L3L

Ligand

DNA

Page 12: Proteiinianalyysi 52930 (2 ov)
Page 13: Proteiinianalyysi 52930 (2 ov)

Mistä proteiinit tulevat?

• DNA > RNA > proteiini– geneettinen koodi

• DNAn emäskolmikko koodaa yhtä aminohappoa• 20 aminohappoa

– lineaarinen sekvenssi• tyypillinen pituus 100-400 aminohappoa• keskimäärin noin 150 aminohappoa

Page 14: Proteiinianalyysi 52930 (2 ov)

Suuri yllätys …

DNA:n rakenne on hyvin säännölinenWatson & Crick (1953)

Page 15: Proteiinianalyysi 52930 (2 ov)

Myoglobiini

1mbn

Proteiinin rakenteesta puuttuu symmetriaKendrew & Perutz (1957)

Page 16: Proteiinianalyysi 52930 (2 ov)

Proteiinit ovat erikoislaatuisia polymeerejä:

• Tietyllä proteiinilla on aina sama aminohapposekvenssi– Proteiinin sekvenssi määräytyy DNA-

sekvenssin perusteella

• Tietyllä proteiinilla on aina uniikki kolmiulotteinen rakenne.– Proteiinin rakenne määräytyy

aminohapposekvenssin perusteella.

aina = biologinen aina (poikkeuksia löytyy)

Page 17: Proteiinianalyysi 52930 (2 ov)

Ei funktiota ilman rakennetta

• Luonnon proteiinit laskostuvat spesifiseksi kolmiulotteiseksi rakenteeksi– komplementaarinen interaktiopartnerille

• Denaturaatio tuhoaa funktion

Page 18: Proteiinianalyysi 52930 (2 ov)

EvoluutioSekvenssi – Rakenne - Funktio

DNA-sekvenssi

Proteiinin sekvenssi Proteiinin rakenne

Proteiinin funktioLuonnonvalinta

Page 19: Proteiinianalyysi 52930 (2 ov)

Sekvenssi

Page 20: Proteiinianalyysi 52930 (2 ov)

proteiinien identifiointi

• klassinen biokemia– proteiinin puhdistus– molekyylipaino– isoelektrinen piste– CD- ym. spektroskopia – jne.

• laskennallinen analyysi– DNA-sekvenssi geenintunnistus, eksonit/intronit

käännös proteiiniksi– sekvenssivertailut

• post-genomiikka– transkriptioprofilointi, proteiini-proteiini-interaktiot, ym.

Page 21: Proteiinianalyysi 52930 (2 ov)

Historiaa1953 DNA:n rakenne

1955 Ensimmäinen proteiinisekvenssi

1957 Myoglobiinin rakenne

1975 DNA:n sekvensointimenetelmät

1977 X-174 faagin ’genomi’

1995 Haemophilus influenzaen genomi

1996 Hiivan genomi

1998 Sukkulamadon genomi

2000 Ihmisen genomi

2000 Rakennegenomiikkaprojekti

Page 22: Proteiinianalyysi 52930 (2 ov)

Genomit

• DNA-sekvensointi– entsymaattinen synteesi, spesifiset terminaattorit– proteiinisekvenssit johdetaan DNA-sekvenssistä

• ORF, open reading frame• varmennus: linjaus tunnetun EST:n tai cDNA:n tai proteiinin

kanssa• eukaryoottien eksoni-introni-ongelma

• genomiprojektit– noin 136 organismia– eukaryootteja, arkebakteereja ja eubakteereja

Page 23: Proteiinianalyysi 52930 (2 ov)
Page 24: Proteiinianalyysi 52930 (2 ov)

Proteome coverageOrganism Biological Features proteinsS. cerevisiae

(yeast)

Genes for existence as a single-celled organism with the basic structure and organisation of the eukaryotic cell

6231

E. coli

(bacterium)

Genes for growth on external sources of energy, molecular cell transport through cell membrane, metabolic pathways and replication as a single cell

4356 - 5333

C. elegans

(Nematode)

Genes for development by a unique cell lineage, nervous system and reproduction

22515

D. melanogaster

(Fruit fly)

Model for developmental processes by hormones and cell-cell interactions

17341

H. sapiens

(human)

Duplicates many gene functions in other model organisms and in addition includes control of higher brain functions

28814

About 136 complete proteomes deduced from complete genomes.

Page 25: Proteiinianalyysi 52930 (2 ov)

Täydellinen proteomi

• varmuus ”puuttuvista” geeneistä

• kaikki geenit eivät ekspressoidu samaan aikaan ja samassa paikassa

• vaihtoehtoinen silmukointi, post-translationaaliset modifikaatiot: yhdestä geenistä voikin tulla monta proteiinia– glykosylaatio– fosforylaatio

Page 26: Proteiinianalyysi 52930 (2 ov)

Tietokantoja

• EBI – http://www.ebi.ac.uk – http://www.ebi.ac.uk/proteome

• NCBI - Entrez– http://www.ncbi.nlm.nih.gov

• nrdb, ’non-redundant database’– 490.374.618 aminohappoa– 1.504.726 sekvenssiä

Page 27: Proteiinianalyysi 52930 (2 ov)

Rakenne

Page 28: Proteiinianalyysi 52930 (2 ov)

Protein structure

• Primary structure

• Secondary structure

• Super-secondary structure

• Tertiary structure

• Quaternary structure

Page 29: Proteiinianalyysi 52930 (2 ov)

Secondary structure

• backbone– no amino acid side chains

• regular patterns – of hydrogen-bonds– backbone torsion angles

• types of secondary structure

–α-helix–β-sheet–...

Page 30: Proteiinianalyysi 52930 (2 ov)

α-Helix

β-Sheethydrogen bond pattern: n, n+4

Page 31: Proteiinianalyysi 52930 (2 ov)

β-sheet

http://broccoli.mfn.ki.se/pps_course_96

view from the top view from the side

β-strands

Page 32: Proteiinianalyysi 52930 (2 ov)

Cartoon representation

2TRX 2AAC

Page 33: Proteiinianalyysi 52930 (2 ov)

Supersecondary structures

• local arrangments of secondary structure elements

http://www.expasy.org/swissmod/course/text/chapter2.htm

Page 34: Proteiinianalyysi 52930 (2 ov)

Tertiary structure

1coh

Page 35: Proteiinianalyysi 52930 (2 ov)

Quaternary structure

1coh

Page 36: Proteiinianalyysi 52930 (2 ov)

Protein structure determination

• Protein expression– membrane proteins– aggregation

• X-Ray crystallography

• NMR (nuclear magnetic resonance)

• Cryo-EM (electron microscopy)

Page 37: Proteiinianalyysi 52930 (2 ov)

Structures by X-ray crystallography

➔Crystallize protein

• Collect diffraction patterns

• Improve iteratively:– Calculate electron density map

• Phase problem

– Fit amino acid trace through map

Page 38: Proteiinianalyysi 52930 (2 ov)

X-ray crystallography

• Crystallization

• “An art as much as a science”Charges

http://crystal.uah.edu/~carter/protein/crystal.htm

Page 39: Proteiinianalyysi 52930 (2 ov)

Diffraction and electron density maps

Diffraction pattern

X-ray source Crystal

Intensities

Page 40: Proteiinianalyysi 52930 (2 ov)

Iterative refinement

http://www.sci.sdsu.edu/TFrey/Bio750/Bio750X-Ray.html

Higher resolution =more accurate positioning of atoms

Resolution

Page 41: Proteiinianalyysi 52930 (2 ov)

NMR

• Create highly concentrated protein solution

• Record spectra

• Assign peaks to residues

• Calculate constraints

• Compute structure

Page 42: Proteiinianalyysi 52930 (2 ov)

NMR spectra

1D 2D

http://www.cryst.bbk.ac.uk/PPS2/projects/schirra/html/2dnmr.htm

Page 43: Proteiinianalyysi 52930 (2 ov)

Distance constraints from NMR

• From the sequence– Topology– Bond angles– Bond lengths

• From the NMR experiment– Torsion angles– Distance constraints HαR

CO

H

CO

Torsion angle

Page 44: Proteiinianalyysi 52930 (2 ov)

Ensemble of structures

SH3-domain

1aey

Page 45: Proteiinianalyysi 52930 (2 ov)

What is the true protein structure?

• X-Ray– “frozen” state of a protein

• crystal contacts✔ large protein structure

• NMR✔ protein in solution– limited in size

Page 46: Proteiinianalyysi 52930 (2 ov)

Molecular complexesvia X-ray

1fjg

30 S subunit of the ribosome

Protein

RNA

Page 47: Proteiinianalyysi 52930 (2 ov)

Cryo-EMSingle particle image reconstruction

Koning et al. (2003)

Bacteriophage MS2

Page 48: Proteiinianalyysi 52930 (2 ov)

Fitting X-Ray structures into density maps

Page 49: Proteiinianalyysi 52930 (2 ov)

GroEL-complex

1gr6

Hemoglobin

Page 50: Proteiinianalyysi 52930 (2 ov)

Protein structure

databases

http://www.wwpdb.org/index.html

Page 51: Proteiinianalyysi 52930 (2 ov)

Molekulaarinen funktio

Page 52: Proteiinianalyysi 52930 (2 ov)

Post-genomic view:Function = interactions

(From left to right, figures adapted from Olsen Group Docking Page at Scripps, Dyson NMR Group Web page at Scripps, and from Computational Chemistry Page at Cornell Theory Center).

Page 53: Proteiinianalyysi 52930 (2 ov)

Enzymes

• Catalytic triad: Asp, Ser, His

1CHO

Page 54: Proteiinianalyysi 52930 (2 ov)

Mechanism• Enzymes speed up chemical reactions• Enzymes are not consumed by the reaction• Stabilization of the transition state• Charge-relay cascade

Page 55: Proteiinianalyysi 52930 (2 ov)

Convergent evolution in serine proteases

• same reaction• same mechanism• same orientation of

catalytic residues• different structures

– Chymotrypsin:• His-57, Asp-102, Ser-195

– Subtilisin:• Asp-32, His-64, Ser-221

1cho / 1sib

Page 56: Proteiinianalyysi 52930 (2 ov)

Substrate specificity

Perona & Craik (1997)

Page 57: Proteiinianalyysi 52930 (2 ov)

Transcription factors

1L3L

Ligand

DNA

Page 58: Proteiinianalyysi 52930 (2 ov)

Hydrogen bonding pattern

Vannini (2002)

Page 59: Proteiinianalyysi 52930 (2 ov)

Funktion määritys

• Biokemiallinen analyysi

• Geneettinen analyysi, fenotyyppi

• Proteiini-proteiini-interaktio

• Työläitä menetelmiä

• Määritysmenetelmä usein räätälöitävä erikseen jokaiselle funktiolle

Page 60: Proteiinianalyysi 52930 (2 ov)

Evoluutio

Page 61: Proteiinianalyysi 52930 (2 ov)

EvoluutioSekvenssi – Rakenne - Funktio

DNA-sekvenssi

Proteiinin sekvenssi Proteiinin rakenne

Proteiinin funktioLuonnonvalinta

Page 62: Proteiinianalyysi 52930 (2 ov)
Page 63: Proteiinianalyysi 52930 (2 ov)

Application: Finding Homologs

Page 64: Proteiinianalyysi 52930 (2 ov)

Application:Finding Homologues

• Find Similar Ones in Different Organisms• Human vs. Mouse vs. Yeast

– Easier to do Expts. on latter!

(Section from NCBI Disease Genes Database Reproduced Below.)

Best Sequence Similarity Matches to Date Between Positionally ClonedHuman Genes and S. cerevisiae Proteins

Human Disease MIM # Human GenBank BLASTX Yeast GenBank Yeast Gene Gene Acc# for P-value Gene Acc# for Description Human cDNA Yeast cDNA

Hereditary Non-polyposis Colon Cancer 120436 MSH2 U03911 9.2e-261 MSH2 M84170 DNA repair proteinHereditary Non-polyposis Colon Cancer 120436 MLH1 U07418 6.3e-196 MLH1 U07187 DNA repair proteinCystic Fibrosis 219700 CFTR M28668 1.3e-167 YCF1 L35237 Metal resistance proteinWilson Disease 277900 WND U11700 5.9e-161 CCC2 L36317 Probable copper transporterGlycerol Kinase Deficiency 307030 GK L13943 1.8e-129 GUT1 X69049 Glycerol kinaseBloom Syndrome 210900 BLM U39817 2.6e-119 SGS1 U22341 HelicaseAdrenoleukodystrophy, X-linked 300100 ALD Z21876 3.4e-107 PXA1 U17065 Peroxisomal ABC transporterAtaxia Telangiectasia 208900 ATM U26455 2.8e-90 TEL1 U31331 PI3 kinaseAmyotrophic Lateral Sclerosis 105400 SOD1 K00065 2.0e-58 SOD1 J03279 Superoxide dismutaseMyotonic Dystrophy 160900 DM L19268 5.4e-53 YPK1 M21307 Serine/threonine protein kinaseLowe Syndrome 309000 OCRL M88162 1.2e-47 YIL002C Z47047 Putative IPP-5-phosphataseNeurofibromatosis, Type 1 162200 NF1 M89914 2.0e-46 IRA2 M33779 Inhibitory regulator protein

Choroideremia 303100 CHM X78121 2.1e-42 GDI1 S69371 GDP dissociation inhibitorDiastrophic Dysplasia 222600 DTD U14528 7.2e-38 SUL1 X82013 Sulfate permeaseLissencephaly 247200 LIS1 L13385 1.7e-34 MET30 L26505 Methionine metabolismThomsen Disease 160800 CLC1 Z25884 7.9e-31 GEF1 Z23117 Voltage-gated chloride channelWilms Tumor 194070 WT1 X51630 1.1e-20 FZF1 X67787 Sulphite resistance proteinAchondroplasia 100800 FGFR3 M58051 2.0e-18 IPL1 U07163 Serine/threoinine protein kinaseMenkes Syndrome 309400 MNK X69208 2.1e-17 CCC2 L36317 Probable copper transporter

Page 65: Proteiinianalyysi 52930 (2 ov)

Application:Finding Homologues (cont.)

• Cross-Referencing, one thing to another thing• Sequence Comparison and Scoring• Analogous Problems for Structure Comparison• Comparison has two parts:

(1) Optimally Aligning 2 entities to get a Comparison Score

(2) Assessing Significance of this score in a given Context

Page 66: Proteiinianalyysi 52930 (2 ov)

Mitä hyötyä proteiinien bioinformatiikasta voisi olla?

• kuvitteellinen virusepidemia– DNA-sekvenssi– vertailu tunnettuihin viruksiin [10]– antiviruslääkkeiden kehittely

• virukselle spesifiset proteiinit: replikaatio- tai vaippaproteiinit [01]

– tietokantahaut [15]– homologiamallitus [25] / ab initio [55]

» lääkesuunnittelu, vasta-aineterapia [50]» lääkeaineen biologinen siedettävyys [75]

Page 67: Proteiinianalyysi 52930 (2 ov)

sekvenssi rakenne

Page 68: Proteiinianalyysi 52930 (2 ov)

Aminohappojen ominaisuudet

• Proteiinit ovat itseorganisoituvia lineaarisia heteropolymeerejä, joiden sekvenssi on jalostunut luonnonvalinnassa

• 20 aminohappoa– peptidirunko– sivuketju

• sekvenssi määrää rakenteen

Page 69: Proteiinianalyysi 52930 (2 ov)

Amino Acid Symbol Structure*pK1

(COOH)

pK2

(NH2)pK R Group

Amino Acids with Aliphatic R-Groups

Glycine Gly - G                                       2.4 9.8  

Alanine Ala - A                                               2.4 9.9  

Valine Val - V                                                         2.2 9.7  

Leucine Leu - L                                                                        2.3 9.7  

Isoleucine Ile - I                                                                              2.3 9.8  

Non-Aromatic Amino Acids with Hydroxyl R-Groups

Serine Ser - S                                                           2.2 9.2 ~13

Threonine Thr - T                                                         2.1 9.1 ~13

Amino Acids with Sulfur-Containing R-Groups

Cysteine Cys - C                                                          1.9 10.8 8.3

Methionine Met-M                                                                             2.1 9.3  

Acidic Amino Acids and their Amides

Aspartic Acid Asp - D                                                                    2.0 9.9 3.9

Asparagine Asn - N                                                                     2.1 8.8  

Glutamic Acid Glu - E                                                                                   2.1 9.5 4.1

Glutamine Gln - Q                                                                                      2.2 9.1  

Basic Amino Acids

Arginine Arg - R

                                                                                      

 

1.8 9.0 12.5

Lysine Lys - K                                                                     2.2 9.2 10.8

Histidine His - H                                                                         1.8 9.2 6.0

Amino Acids with Aromatic Rings

Phenylalanine Phe - F                                                                     2.2 9.2  

Tyrosine Tyr - Y                                                                                  2.2 9.1 10.1

Tryptophan Trp-W                                                                               

2.4 9.4  

Imino Acids

Proline Pro - P                                       

2.0 10.6 

Page 70: Proteiinianalyysi 52930 (2 ov)

Aminohappojen ominaisuuksia

Page 71: Proteiinianalyysi 52930 (2 ov)

levels of complexity in folding

Page 72: Proteiinianalyysi 52930 (2 ov)

WHAT DO WE KNOW ABOUT PROTEIN FOLDING?

• water soluable proteins are "globular," tight packed, water excluded from interior, folded up.

• bond lengths and bond angles don't vary much from equilibrium positions.

• structures are stable and relatively rigid. • folding possibilities are limited, both along the backbone chain and

within the side chain groups. • folding motifs are used repetitively. • with similar proteins (say from different organisms) structure tends

to be more conserved than the exact sequence of amino acids. • although sequence must determine structure, it is not yet possible to

predict the entire structure from sequence accurately.• Net stability corresponds to a few hydrogen bonds.

Page 73: Proteiinianalyysi 52930 (2 ov)

Sekundaarirakenne > tutorial

• proteiini on kuin rasvapisara vedessä

• peptidirungon pooliset ryhmät muodostavat vetysidoksia– NH -- O=C

• syntyy säännönmukaisia sekundaarirakenteita

• sivuketju moduloi sekundaarirakennepreferenssejä

Page 74: Proteiinianalyysi 52930 (2 ov)

DSSP

Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features

W. Kabsch & C. Sander

Biopolymers 22, 2577-2637 (1983)

Page 75: Proteiinianalyysi 52930 (2 ov)

Hydrogen bonds

N H

O C

E ~ q1 q2 [ 1/r(ON) + 1/r(CH) – 1/r(CN) – 1/r(OH)Ideal H-bond is co-linear, r(NO)=2.9 A and E=-3.0 kcal/molCutoffs in DSSP allow 2.2 A excess distance and ±60º angle

-0.20e

+0.20e

-0.42e

+0.42e

Page 76: Proteiinianalyysi 52930 (2 ov)

Elementary H-bond patterns

• n-turn(i) =: Hbond(i,i+n), n=3,4,5

• Parallel bridge(i,j) =: [ Hbond(i-1,j) AND Hbond(j,i+1) ] OR

[ Hbond(j-1,i) AND Hbond(i,j+1) ]

• Antiparallel bridge(i,j) =: [ Hbond(i,j) AND Hbond(j,i) ] OR

[ Hbond(i-1,j+1) AND Hbond(j-1,i+1) ]

Page 77: Proteiinianalyysi 52930 (2 ov)

-N-C-C--N-C-C--N-C-C--N-C-C- H O H O H O H O

-N-C-C--N-C-C--N-C-C--N-C-C--N-C-C- H O H O H O H O H O

-N-C-C--N-C-C--N-C-C--N-C-C-—N-C-C-—N-C-C- H O H O H O H O H O H O

3-turn

4-turn

5-turn

N-turns

Page 78: Proteiinianalyysi 52930 (2 ov)

-N-C-C--N-C-C--N-C-C--N-C-C—N-C-C- H O H O H O H O H O

H O H O H O H O H O-N-C-C--N-C-C--N-C-C--N-C-C—N-C-C-

Parallel bridge

Page 79: Proteiinianalyysi 52930 (2 ov)

-N-C-C--N-C-C--N-C-C--N-C-C- H O H O H O H O

O H O H O H O H -C-C-N--C-C-N--C-C-N--C-C-N-

Antiparallel bridge

Antiparallel beta-sheet is significantly more stable due to the well aligned H-bonds.

Page 80: Proteiinianalyysi 52930 (2 ov)

Cooperative H-bond patterns

• 4-helix(i,i+3) =: [4-turn(i-1) AND 4-turn(i)]

• 3-helix(i,i+2) =: [3-turn(i-1) AND 3-turn(i)]

• 5-helix(i,i+4) =: [5-turn(i-1) AND 5-turn(i)]

• Longer helices are defined as overlaps of minimal helices

Page 81: Proteiinianalyysi 52930 (2 ov)

Beta-ladders and beta-sheets

• Ladder =: set of one or more consecutive bridges of identical type

• Sheet =: set of one or more ladders connected by shared residues

• Bulge-linked ladder =: two ladders or bridges of the same type connected by at most one extra residue on one strand and at most four extra residues on the other strand

Page 82: Proteiinianalyysi 52930 (2 ov)

3-state secondary structure

• Helix

• Strand

• Loop

• Quoted consistency of secondary structure state definition in structures between sequence-similar proteins is ~70 %

• Richer descriptions possible– E.g. phi-psi regions

Page 83: Proteiinianalyysi 52930 (2 ov)

Amino acid preferences for different secondary structure

• Alpha helix may be considered the default state for secondary structure. Although the potential energy is not as low as for beta sheet, H-bond formation is intra-strand, so there is an entropic advantage over beta sheet, where H-bonds must form from strand to strand, with strand segments that may be quite distant in the polypeptide sequence.

• The main criterion for alpha helix preference is that the amino acid side chain should cover and protect the backbone H-bonds in the core of the helix. Most amino acids do this with some key exceptions.– alpha-helix preference:

• Ala,Leu,Met,Phe,Glu,Gln,His,Lys,Arg

Page 84: Proteiinianalyysi 52930 (2 ov)

• The extended structure leaves the maximum space free for the amino acid side chains: as a result, those amino acids with large bulky side chains prefer to form beta sheet structures:– just plain large:Tyr, Trp, (Phe, Met)– bulky and awkward due to branched beta carbon:Ile, Val, Thr– large S atom on beta carbon:Cys

• The remaining amino acids have side chains which disrupt secondary structure, and are known as secondary structure breakers:– side chain H is too small to protect backbone H-bond:Gly– side chain linked to alpha N, has no N-H to H-bond;

rigid structure due to ring restricts to phi = -60: Pro– H-bonding side chains compete directly with backbone H-

bonds: Asp, Asn, Ser• Clusters of breakers give rise to regions known as loops

or turns which mark the boundaries of regular secondary structure, and serve to link up secondary structure segments.