protection basics_r2 (1)

90
1 GE Consumer & Industrial ultilin Protection Fundamentals By Craig Wester, John Levine

Upload: hassanaagib

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 1/90

1GE Consumer & Industrial

ultilin

Protection Fundamentals

By

Craig Wester, John Levine

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 2/90

2GE Consumer & Industrial

ultilin

Outline

• Introductions• Tools

 – Enervista Launchpad

 – On – Line Store – Demo Relays at ISO / Levine

• Discussion of future classes

• Protection Fundamentals• ANSI number handout, Training CD’s

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 3/90

3GE Consumer & Industrial

ultilin

Introduction

• Speakers: – Craig Wester – GE Multilin Regional Manager

 – John Levine – GE Multilin Account Manager

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 4/90

4GE Consumer & Industrial

ultilin

Objective

• We are here to help make your job easier.This is very informal and designed aroundISO Applications. Please ask question.

We are not here to “preach” to you. • The knowledge base on GE Multilin

Relays varies greatly at ISO. If you have aquestion, there is a good chance there are3 or 4 other people that have the samequestion. Please ask it.

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 5/90

5GE Consumer & Industrial

ultilin

Tools

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 6/90

6GE Consumer & Industrial

ultilin

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 7/90

7GE Consumer & Industrial

ultilin

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 8/90

8GE Consumer & Industrialultilin

Demo Relays with Ethernet

• Working with James McRoy and Dave

Curtis

• SR 489

• SR 750

• G30

• MIF II• Training CD’s 

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 9/90

9GE Consumer & Industrialultilin

Demo Relays at L-3

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 10/90

10GE Consumer & Industrialultilin

Future Classes• GE Multilin Training will be the 2nd Friday of

every month. We will cover: – March – Basics, Enervista Launchpad, ANSI numberand what they represent, Uploading, downloading,Training CD’s, etc. 

 –  April – 489 Relay

 – May – MIF II relay – June - 750 Relay

 – July - UR relay basic including Enervista Engineer

 –  August – UR F60 and F35 relays

 – September – G30 and G60 including Transformer andGenerator in same zone

 – October – Communications and security

 – November - Neutral Grounding Resistors

 – December – Ct’s and PT’s 

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 11/90

11GE Consumer & Industrialultilin

Protection Fundamentals

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 12/90

12GE Consumer & Industrialultilin

Desirable Protection Attributes

• Reliability: System operate properly – Security: Don’t trip when you shouldn’t 

 – Dependability: Trip when you should

• Selectivity: Trip the minimal amount to clear thefault or abnormal operating condition

• Speed: Usually the faster the better in terms ofminimizing equipment damage and maintaining

system integrity• Simplicity: KISS

• Economics: Don’t break the bank 

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 13/90

13GE Consumer & Industrialultilin

Selection of protective relays requires compromises:• Maximum and Reliable protection at minimum

equipment cost

• High Sensitivity to faults and insensitivity to maximum

load currents

• High-speed fault clearance with correct selectivity

• Selectivity in isolating small faulty area

• Ability to operate correctly under all predictable power

system conditions

Art & Science of Protect ion

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 14/90

14GE Consumer & Industrialultilin

• Cost of protective relays should be balancedagainst risks involved if protection is not

sufficient and not enough redundancy.

• Primary objectives is to have faulted zone’sprimary protection operate first, but if there are

protective relays failures, some form of

backup protection is provided.

• Backup protection is local (if local primary

protection fails to clear fault) and remote (if

remote protection fails to operate to clear

fault)

Art & Science of Protect ion

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 15/90

15GE Consumer & Industrialultilin

Primary Equipment & Components

• Transformers - to step up or step down voltage level

• Breakers - to energize equipment and interrupt fault current

to isolate faulted equipment

• Insulators - to insulate equipment from ground and other

phases

• Isolators (switches) - to create a visible and permanent

isolation of primary equipment for maintenance purposes

and route power flow over certain buses.

• Bus - to allow multiple connections (feeders) to the same

source of power (transformer).

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 16/90

16GE Consumer & Industrialultilin

Primary Equipment & Components• Grounding - to operate and maintain equipment safely

•  Arrester - to protect primary equipment of sudden

overvoltage (lightning strike).

• Switchgear – integrated components to switch, protect,

meter and control power flow

• Reactors - to limit fault current (series) or compensate for

charge current (shunt)

• VT and CT - to measure primary current and voltage and

supply scaled down values to P&C, metering, SCADA, etc.

• Regulators - voltage, current, VAR, phase angle, etc.

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 17/90

17GE Consumer & Industrialultilin

Types of Protection

Overcurrent•  Uses current to determine magnitude of fault – Simple

 – May employ definite time or inverse time curves

 – May be slow – Selectivity at the cost of speed (coordination stacks)

 – Inexpensive

 – May use various polarizing voltages or ground current

for directionality – Communication aided schemes make more selective

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 18/90

18GE Consumer & Industrialultilin

Instantaneous Overcurrent Protection (IOC) &

Definite Time Overcurrent

• Relay closest to fault operates

first• Relays closer to source

operate slower

• Time between operating forsame current is called CTI(Clearing Time Interval)

Distribution

Substation

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 19/90

19GE Consumer & Industrialultilin

(TOC) Coordination

• Relay closest to fault operates

first• Relays closer to source

operate slower

• Time between operating forsame current is called CTI

Distribution

Substation

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 20/90

20GE Consumer & Industrialultilin

• Selection of the curves

uses what is termed as a

“ time multiplier ” or

“time dial” to effectively

shift the curve up or

down on the time axis

• Operate region lies

above selected curve,

while no-operate region

lies below it

• Inverse curves can

approximate fuse curve

shapes

Time Overcurrent Protection (TOC)

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 21/90

21GE Consumer & Industrialultilin

Multiples of pick-up

Time Overcurrent Protection

(51, 51N, 51G)

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 22/90

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 23/90

24GE Consumer & Industrialultilin

Differential

• Note CT polarity

dots

• This is athrough-current

representation

• Perfect

waveforms, nosaturation

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 24/90

25GE Consumer & Industrialultilin

Differential

• Note CT

polarity dots

• This is aninternal fault

representation

• Perfectwaveforms, no

saturation

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 25/90

26GE Consumer & Industrialultilin

Types of Protection

Voltage• Uses voltage to infer fault or abnormal

condition

• May employ definite time or inverse time

curves• May also be used for undervoltage load

shedding – Simple

 – May be slow

 – Selectivity at the cost of speed (coordinationstacks)

 – Inexpensive

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 26/90

27GE Consumer & Industrialultilin

Types of Protection

Frequency• Uses frequency of voltage to detect power

balance condition

• May employ definite time or inverse time

curves• Used for load shedding & machinery

under/overspeed protection – Simple

 – May be slow

 – Selectivity at the cost of speed can be expensive

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 27/90

28GE Consumer & Industrialultilin

Types of Protection

Power• Uses voltage and current to determine

power flow magnitude and direction

• Typically definite time – Complex

 – May be slow

 – Accuracy important for many applications

 – Can be expensive

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 28/90

29GE Consumer & Industrialultilin

Types of Protection

Distance (Impedance) – Uses voltage and current to determine impedance of

fault

 – Set on impedance [R-X] plane

 – Uses definite time – Impedance related to distance from relay

 – Complicated

 – Fast

 – Somewhat defined clearing area with reasonableaccuracy

 – Expensive

 – Communication aided schemes make more selective

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 29/90

30GE Consumer & Industrialultilin

Impedance

• Relay in Zone 1 operates first

• Time between Zones is calledCTI

Source

A  B 

21  21 

T 1 

T 2 

Z A 

Z B 

X  Z L 

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 30/90

Generation-typically at 4-20kV

Transmission-typically at 230-765kV

Subtransmission-typically at 69-161kV

Receives power from transmission system and

transforms into subtransmission level

Receives power from subtransmission system

and transforms into primary feeder voltage

Distribution network-typically 2.4-69kV

Low voltage (service)-typically 120-600V

Typical

Bulk

PowerSystem

33GE Consumer & Industrialultilin

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 31/90

34GE Consumer & Industrialultilin

1. Generator or Generator-Transformer Units

2. Transformers

3. Buses

4. Lines (transmission and distribution)5. Utilization equipment (motors, static loads, etc.)

6. Capacitor or reactor (when separately protected)

Unit Generator-Tx zone

Bus zone

Line zone

Bus zone

Transformer zone Transformer zone

Bus zone

Generator

~

XFMR Bus Line Bus XFMR Bus Motor

Motor zone

Protection Zones 

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 32/90

35GE Consumer & Industrialultilin

1. Overlap is accomplished by the locations of CTs, the key source forprotective relays.

2. In some cases a fault might involve a CT or a circuit breaker itself, which

means it can not be cleared until adjacent breakers (local or remote) are

opened.

Zone A Zone B

Relay Zone A

Relay Zone B

CTs are located at both sides of CB-fault between CTs is cleared from both remote

sides

Zone A Zone B

Relay Zone A

Relay Zone B

CTs are located at one side of CB-fault between CTs is sensed by both relays,

remote right side operate only. 

Zone Overlap

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 33/90

40GE Consumer & Industrialultilin

1. One-line diagram of the system or area involved

2. Impedances and connections of power equipment, system

frequency, voltage level and phase sequence

3. Existing schemes

4. Operating procedures and practices affecting protection

5. Importance of protection required and maximum allowed

clearance times

6. System fault studies

7. Maximum load and system swing limits

8. CTs and VTs locations, connections and ratios

9. Future expansion expectance

10. Any special considerations for application.

What Info is Required to Apply Protection

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 34/90

C37.2:

Device

Numbers

• Partial listing

41GE Consumer & Industrialultilin

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 35/90

42GE Consumer & Industrialultilin

One Line Diagram

• Non-dimensioned diagram showing how

pieces of electrical equipment are

connected

• Simplification of actual system

• Equipment is shown as boxes, circles and

other simple graphic symbols

• Symbols should follow ANSI or IEC

conventions

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 36/90

43GE Consumer & Industrialultilin

1-Line Symbols [1]

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 37/90

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 38/90

45GE Consumer & Industrialultilin

1-Line Symbols [3]

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 39/90

46GE Consumer & Industrialultilin

1-Line Symbols [4]

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 40/90

47GE Consumer & Industrialultilin

1-Line [1]

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 41/90

1-Line [2]

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 42/90

49GE Consumer & Industrialultilin

3-Line

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 43/90

52GE Consumer & Industrialultilin

CB Trip Circuit (Simplified)

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 44/90

CB C il Ci it M it i

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 45/90

56GE Consumer & Industrial

ultilin

CB Coil Circuit Monitoring:

T with CB Closed; C with CB Opened

CB C il Ci it M it i

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 46/90

57GE Consumer & Industrial

ultilin

CB Coil Circuit Monitoring:

Both T&C Regardless of CB state

Current Transformers

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 47/90

58GE Consumer & Industrial

ultilin

• Current transformers are used to step primary system currents

to values usable by relays, meters, SCADA, transducers, etc.

• CT ratios are expressed as primary to secondary; 2000:5, 1200:5,

600:5, 300:5

• A 2000:5 CT has a “CTR” of 400 

Current Transformers

St d d IEEE CT R l

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 48/90

59GE Consumer & Industrial

ultilin

• IEEE relay class is defined in terms of the voltage a CT

can deliver at 20 times the nominal current rating

without exceeding a 10% composite ratio error.

For example, a relay class of C100 on a 1200:5 CT means that

the CT can develop 100 volts at 24,000 primary amps

(1200*20) without exceeding a 10% ratio error. Maximum

burden = 1 ohm.

100 V = 20 * 5 * (1ohm)

200 V = 20 * 5 * (2 ohms)

400 V = 20 * 5 * (4 ohms)

800 V = 20 * 5 * (8 ohms) 

Standard IEEE CT Relay

 Accuracy

St d d IEEE CT B d (5 A )

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 49/90

61GE Consumer & Industrial

ultilin

Standard IEEE CT Burdens (5 Amp)(Per IEEE Std. C57.13-1993)

Current into the Dot Out of the Dot

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 50/90

62GE Consumer & Industrial

ultilin

Current into the Dot, Out of the Dot

Current out of the dot, in to the dot

Voltage Transformers

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 51/90

63GE Consumer & Industrial

ultilin

VP

VS

Relay

• Voltage (potential) transformers are used to isolate and step

down and accurately reproduce the scaled voltage for the

protective device or relay

• VT ratios are typically expressed as primary to secondary;

14400:120, 7200:120

• A 4160:120 VT has a “VTR” of 34.66 

Voltage Transformers

T i l CT/VT Ci it

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 52/90

64GE Consumer & Industrial

ultilin

Typical CT/VT Circuits

Courtesy of Blackburn, Protective Relay: Principles and Applications

CT/VT Ci it C i G d

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 53/90

65GE Consumer & Industrial

ultilin

CT/VT Circuit vs. Casing Ground

• Case ground made at IT location

• Secondary circuit ground made at first point of

use

Case

Secondary Circuit

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 54/90

66GE Consumer & Industrial

ultilin

Equipment Grounding

 – Prevents shock exposure of personnel

 – Provides current carrying capability for the

ground-fault current

 – Grounding includes design and construction ofsubstation ground mat and CT and VT safety

grounding

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 55/90

67GE Consumer & Industrial

ultilin

System Grounding

 – Limits overvoltages

 – Limits difference in electric potential through local

area conducting objects

 – Several methods

• Ungrounded

• Reactance Coil Grounded

• High Z Grounded• Low Z Grounded

• Solidly Grounded

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 56/90

68GE Consumer & Industrial

ultilin

1. Ungrounded: There is no intentional

ground applied to the system-

however it’s grounded through

natural capacitance. Found in 2.4-

15kV systems.

2. Reactance Grounded: Total system

capacitance is cancelled by equal

inductance. This decreases thecurrent at the fault and limits voltage

across the arc at the fault to decrease

damage.

X0 <= 10 * X1

System Grounding

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 57/90

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 58/90

70GE Consumer & Industrial

ultilin

5. Solidly Grounded: There is a

connection of transformer orgenerator neutral directly to station

ground.

Effectively Grounded: R0 <= X1, X0 

<= 3X1, where R is the systemfault resistance

System Grounding

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 59/90

76GE Consumer & Industrial

ultilin

Basic Current Connections:How System is Grounded

Determines How Ground Fault is Detected

Medium/High

Resistance

Ground

Low/No

Resistance

Ground

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 60/90

77GE Consumer & Industrial

ultilin

Substation Types

• Single Supply

• Multiple Supply

• Mobile Substations for emergencies

• Types are defined by number of

transformers, buses, breakers to provide

adequate service for application 

Industrial Substation Arrangements

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 61/90

78GE Consumer & Industrial

ultilin

Industrial Substation Arrangements(Typical)

Industrial Substation Arrangements

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 62/90

79GE Consumer & Industrial

ultilin

Industrial Substation Arrangements(Typical)

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 63/90

Utility Substation Arrangements

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 64/90

81GE Consumer & Industrial

ultilin

Breaker-and-a-half   –allows reduction of

equipment cost by using 3 breakers for

each 2 circuits. For load transfer and

operation is simple, but relaying is

complex as middle breaker is responsible

to both circuits

Utility Substation Arrangements

Bus

1

Bus 2

Ring bus  –advantage that one

breaker per circuit. Also each

outgoing circuit (Tx) has 2 sources

of supply. Any breaker can be taken

from service without disrupting

others.

(Typical)

Utility Substation Arrangements

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 65/90

82GE Consumer & Industrial

ultilin

Double Bus: Upper Main and

Transfer, bottom Double Main bus

Main bus

Aux. bus

Bus 1

Bus 2

   T   i  e

   b  r  e  a   k  e  r

Utility Substation Arrangements

Main

Reserve

Transfer

Main-Reserved and Transfer

Bus: Allows maintenance of any

bus and any breaker

(Typical)

Switchgear Defined

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 66/90

83GE Consumer & Industrial

ultilin

Switchgear Defined•  Assemblies containing electrical switching,

protection, metering and management devices• Used in three-phase, high-power industrial,

commercial and utility applications

• Covers a variety of actual uses, including motor

control, distribution panels and outdoorswitchyards

• The term "switchgear" is plural, even whenreferring to a single switchgear assembly (never

say, "switchgears")• May be a described in terms of use:

 – "the generator switchgear"

 – "the stamping line switchgear"

A Good Day in System

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 67/90

91GE Consumer & Industrial

ultilin

A Good Day in System

Protection…… 

 – CTs and VTs bring electrical info to relays

 – Relays sense current and voltage and declare

fault

 – Relays send signals through control circuits tocircuit breakers

 – Circuit breaker(s) correctly trip

What Cou ld Go Wrong Here????

A Bad Day in System

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 68/90

92GE Consumer & Industrial

ultilin

A Bad Day in System

Protection…… 

 – CTs or VTs are shorted, opened, or their wiring is – Relays do not declare fault due to setting errors,

faulty relay, CT saturation

 – Control wires cut or batteries dead so no signal issent from relay to circuit breaker

 – Circuit breakers do not have power, burnt trip coil

or otherwise fail to trip

Protect ion Systems Typ ical ly are

Designed for N-1

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 69/90

93GE Consumer & Industrial

ultilin

Protection Performance Statistics

• Correct and desired: 92.2%

• Correct but undesired: 5.3%• Incorrect: 2.1%

• Fail to trip: 0.4%

Contribution to Faults

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 70/90

94GE Consumer & Industrial

ultilin

Contribution to Faults

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 71/90

95GE Consumer & Industrial

ultilin

Fault Types (Shunt)

AC & DC Current Components

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 72/90

99GE Consumer & Industrial

ultilin

 AC & DC Current Components

of Fault Current

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 73/90

100GE Consumer & Industrial

ultilin

Variation of current with time

during a fault

Useful Conversions

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 74/90

102GE Consumer & Industrial

ultilin

Useful Conversions

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 75/90

103GE Consumer & Industrial

ultilin

Per Unit System

Establish two base quantities:

Standard practice is to define

 – Base power – 3 phase

 – Base voltage – line to line

Other quantities derived with basic powerequations

Per Unit Basics

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 76/90

104GE Consumer & Industrial

ultilin

Per Unit Basics

Short Circuit Calculations

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 77/90

105GE Consumer & Industrial

ultilin

Short Circuit Calculations

Per Unit System

Per Unit Value = Actual QuantityBase Quantity

 Vpu

  = Vactual

  Vbase 

Ipu  = Iactual 

Ibase 

Zpu  = Zactual Zbase 

Sh t Ci it C l l ti

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 78/90

106GE Consumer & Industrial

ultilin

Short Circuit Calculations

Per Unit System

Short Circuit Calculations

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 79/90

107GE Consumer & Industrial

ultilin

Short Circuit Calculations

Per Unit System – Base Conversion

Zpu  = Zactual Zbase 

Zbase  = kV 2base 

MVA base 

Zpu1 = MVA base1 kV 2

base1 X Zactual

Zpu2 = MVA base2 kV 2

base2 X Zactual

 Zpu2  =Zpu1 x  kV  2base1 x MVA base2 

kV 2base2 MVA base1 

A St d f F lt

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 80/90

120GE Consumer & Industrial

ultilin

 A Study of a Fault……. 

Fault Interruption and Arcing

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 81/90

Fault Interruption and Arcing

121GE Consumer & Industrial

ultilin

A Fl h H d

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 82/90

122GE Consumer & Industrial

ultilin

 Arc Flash Hazard

Arc Flash Mitigation:

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 83/90

123GE Consumer & Industrial

ultilin

Problem Description

 –  An electric arc flash can occur if a conductive object getstoo close to a high-amp current source or by equipment

failure (ex., while opening or closing disconnects, racking

out)

• The arc can heat the air to temperatures as high as 35,000 F, andvaporize metal in equipment

• The arc flash can cause severe skin burns by direct heat exposure

and by igniting clothing

• The heating of the air and vaporization of metal creates a pressure

wave (arc blast) that can damage hearing and cause memory loss(from concussion) and other injuries.

• Flying metal parts are also a hazard.

Methods to Reduce

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 84/90

124GE Consumer & Industrial

ultilin

Methods to Reduce

Arc Flash Hazard

 –  Arc flash energy may be expressed in I2t terms,so you can decrease the I or decrease the t tolessen the energy

 – Protective relays can help lessen the t byoptimizing sensitivity and decreasing clearing time

• Protective Relay Techniques

 – Other means can lessen the I by limiting fault

current• “Non-Protective Relay Techniques” 

Non-Protective Relaying Methods

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 85/90

125GE Consumer & Industrial

ultilin

Non Protective Relaying Methods

of Reducing Arc Flash Hazard

 – System designmodifications increase

power transformer

impedance

•  Addition of phase reactors

• Faster operating breakers

• Splitting of buses

 – Current limiting fuses

(provides partial protection

only for a limited currentrange)

 – Electronic current limiters (thesedevices sense overcurrent and

interrupt very high currents with

replaceable conductor links

(explosive charge)

 –  Arc-resistant switchgear (thisreally doesn't reduce arc flash

energy; it deflects the energy

away from personnel)

 – Optical arc flash protection via

fiber sensors – Optical arc flash protection via

lens sensors

Protective Relaying Methods

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 86/90

126GE Consumer & Industrial

ultilin

of Reducing Arc Flash Hazard

 – Bus differential protection (thisreduces the arc flash energy by

reducing the clearing time

 – Zone interlock schemes where

bus relay selectively is allowed

to trip or block depending onlocation of faults as identified

from feeder relays

 – Temporary setting changes to

reduce clearing time during

maintenance

• Sacrifices coordination

 – FlexCurve for improvedcoordination opportunities

 – Employ 51VC/VR on feeders

fed from small generation to

improve sensitivity and

coordination – Employ UV light detectors with

current disturbance detectors

for selective gear tripping

Arc Flash Hazards

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 87/90

 Arc Flash Hazards

128GE Consumer & Industrial

ultilin

Arc Pressure Wave

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 88/90

 Arc Pressure Wave

129GE Consumer & Industrial

ultilin

Copy of this presentation are at:

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 89/90

133

GE Consumer & Industrialultilin

py p

www.L-3.com\private\Levine

8/10/2019 Protection Basics_r2 (1)

http://slidepdf.com/reader/full/protection-basicsr2-1 90/90

Protection Fundamentals

QUESTIONS?