progress in metal-supported solid oxide fuel cells - elib - dlr

41
Progress in Metal-Supported Solid Oxide Fuel Cells G. Schiller German Aerospace Center (DLR) Institute of Technical Thermodynamics International Symposium on Energy Materials: Opportunities and Challenges (ISEM-2011), March 1-2, 2011, Kolkata, India

Upload: others

Post on 09-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Progress in Metal-Supported Solid Oxide Fuel Cells

G. Schiller

German Aerospace Center (DLR) Institute of Technical Thermodynamics

International Symposium on Energy Materials: Opportunities and Challenges (ISEM-2011), March 1-2, 2011, Kolkata, India

Page 2: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Outline

Introduction

Development of metal-supported SOFC by applying sintering techniques

Ceres Power

Lawrence Berkeley National Lab

Risoe / Topsoe Fuel Cells

Development of metal-supported cells by applying plasma depositiontechniques

German Aerospace Center (DLR)

Conclusions

Page 3: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Development of Metal-Supported Cells

LSM + YSZ

YSZ

Ni+YSZNi+YSZ

YSZ

LSM + YSZ

Ni+YSZ

YSZ

LSCF CGO

FeCr

YSZ/SSZ

LSCF CGO

Ni+YSZ

ESC ASC ASC MSC

Improved power density

Improved long-term stability

Reduced operating temperature

Advantages of MSC:

• High robustness with resistance against shock and transient conditions• High resistance against thermal and redox cycling• Good integration into interconnects (bipolar plates)• Low cost of metal support, cell materials (thin layers) and sealing

Page 4: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Early Metal-Supported SOFC Work – 1960s-1970s

1964 Shell Oil, Williams et al US 3,464,861

Temperature: 700-800°CFuel: hydrogen, methanol, and kerosene

115 mW/cm2 at 750°C

- Flame-sprayed ZrO2 electrolyte- Sintered austenitic stainless steel support

1970 Tannenberger et al US 3,525,646

- Plasma-sprayed cell layers- Sintered metal support

Page 5: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Developments in MSC Technology

1990s:Fuji Electric, Japan Plasma sprayed ZrO2 electrolyte, MCrAlY supportDLR, Germany Plasma sprayed cells on porous metal support

2000s:Ceres Power, GB Wet processing of CGO electrolyte, stainless steel support,

dense CGO after 1000 °C firing, operation at 500-600 °CLNBL, USA Colloidal spray electrolyte deposition (10-20 µm), co-sintered

YSZ,infiltrated electrodes, porous stainless steelRisoe/Topsoe, Denmark Co-fired half-cell, infiltrated nanostructured electrodes,

tape cast powder metal porous supportIkerlan, Spain Tubular, co-sintered YSZElringKlinger, Germany Plasma sprayed layers on porous metal substrate (DLR)Plansee, Austria Wet powder processing and sintering (FZJ)

Page 6: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Requirements for Metal Substrate Supports

High electrical conductivityAdapted thermal expansion coefficient (10-1210-6 K-1)High corrosion stability in oxidising und reducing, moistatmosphereSufficient mechanical stabilityHigh gas permeability (porosity > 40 Vol. %)Flat surface area for plasma sprayed functional layers

Page 7: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Ferritic Alloys Studied for Porous Metallic Substrates

26% Cr, < 0.03% Al, < 0.03% Si, Mo, Ti, Mn, Y2O3PlanseeIT 14

22% Cr, 0.12% Al, 0.1% Si, 0.41% Mn, 0.16% Ni, 0.05% Ti, 0.08% La

ThyssenKruppCroFer22 APU

16% Cr, 0.01% Al, 0.29% Si, 0.56% Mn, 0.05% CNippon SteelSUS 430 Na

16% Cr, 0.13% Al, 0.29% Si, 0.13% Mn, 0.05% CNippon SteelSUS 430 HA

21% Cr, 0.08% Al, 0.43% Si, 0.47% Mn, 0.02% CHitachi MetalsZMG 232

22% Cr, 5% Al, 0.1% YTechneticsFeCrAIY

19% Cr, 5.5% Al, 0.5% Si, 0.5% Mn, 0.05% CThyssenKruppCrAl20 5 (1.4767)

18% Cr, 0.9% Al, 0.9% Si, 0.69% Mn, 0.06% CThyssenKruppFerrochrom (1.4742)

CompositionSupplierAlloy

Page 8: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Cross Section of a Metal-Supported Cell of Ceres Power

Lit.: Ceres Power, Electrochemical Society Proceedings, Vol. 2005-07, 113-122 (2005)

Page 9: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Development of Power Densities of Cells of Ceres Power (16 cm²) at 570 °C in Operation with H2 + 3 % H2O/Air

Lit.: Ceres Power, Proceedings 2005 Fuel Cell Seminar, 49-52 (2005)

Page 10: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Electrochemical Performance Data of Metal-SupportedCells of Ceres Power

Operation with reformate gas (73,8 % H2, 7,1 % CO, 12,1 % CO2, 7 % H2O)600 °C: max. 500 mW/cm²570 °C: Operation over 2500 hours without degradation

Thermal CyclingRT 600 °C RT: 500 cycles without degradation

Stack Operation10 Layers (40 Cells)585 °C: 100 W at operation with reformate (55 % H2)

1000 hours of operation without degradation8 Layers (32 Cells):Thermal Cycling (RT/600 °C): 26 Cycles without degradationLong-term Operation: 2000 hours without degradation (1000 h with reformate)

Page 11: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

I-V Characteristics and Power Density of a 40-Cells-Stack (10 Layers) in Operation with H2+3% H2O/Air at 570 °C and 600 °C

Lit.: Ceres Power, Proceedings 2005 Fuel Cell Seminar, 49-52 (2005)

Page 12: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

LBNL Design: Co-Sintered YSZ Electrolyte

Colloidal spray electrolyte deposition - inexpensive- thin 10-20m electrolyte

- high performance at low temp.

Stainless steel current collector

Dense YSZ

Stainless steel support

Porous YSZ

Lit.: M. Tucker et al., ECS Transactions, 25(2) 673-680 (2009)

Porous stainless steel current collector on anode AND cathode side- rugged- no expensive wire or mesh- no contact paste or compliant interconnect

Page 13: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Cosintering Fabrication Issues

Dense YSZ

FeCr Metal Support

Ni/YSZ Anode Layer

FeCr Ni

1. 1300°C Reducing atmosphere

Cathode LayerDense YSZ

FeCr Metal Support

Ni/YSZ Anode Layer

- Interdiffusion of Ni and FeCrPoor CTE match, lifetime of support add barrier layer, but still:

- Coarsening of NiPoor performance of anode

- Low processing temperature limits choice of cathode- LSCF or SSC- worst choices for Cr tolerance

- need coated current collector and BOP steel parts

move to Ceria-based anode move to infiltrated electrode architecture

Lit.: M. Tucker et al., ECS Transactions, 25(2) 673-680 (2009)

2. Add cathode 600-900 °C air

Page 14: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Fuel Cell Fabrication Progress

Dense YSZ

FeCr Metal Support

Ni/YSZ Anode LayerFeCr

Ni

Poor performance of Ni

Generation 1 Co-sintered support and Ni-YSZ

1. 1300°C Reducing atmosphere

Dense YSZ

FeCr Metal Support

Porous YSZ Anode Layer

1. 1300°C Reducing atmosphere

Generation 2Infiltrated catalysts

2. Infiltrate LSM, Ni 600-800°C air

Poor CTE match, lifetime of support

2. Add cathode 600-900°C airCathode Layer

Dense YSZ

FeCr Metal Support

Ni/YSZ Anode Layer

Porous YSZ Cathode Layer

FeCr Metal Current Collector

Dense YSZ

FeCr Metal Support

Ni-YSZ Anode Layer

LSM-YSZ Cathode Layer

FeCr Metal Current Collector

Lit.: M. Tucker et al., Fuel Cell Seminar 2008

Page 15: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

with catalyst

Catalyst Infiltration

Prepare porous YSZ structure

1200-1400°C

Fire to produce nanoparticlesof catalyst on surface of YSZ

LSM (La0.85Sr0.15MnO3)

or

Ni

600-800°C

Fill structure with catalyst precursor solution

0.85 La-nitrate0.15 Sr-nitrate1.0 Mn-nitrate

or

Ni-nitrate

120°C

Lit.: M. Tucker, Fuel Cell Seminar 2008

Page 16: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Infiltrated Catalysts Alleviate Processing Issues

Dense YSZ

FeCr Metal Support

Porous YSZ Anode Layer

1. Sinter stainless steel and YSZ at1300°C Reducing atmosphere

Porous YSZ Cathode Layer

FeCr Metal Current Collector

2. Infiltrate catalysts at <300°C air

No FeCr/Ni interdiffusionWide choice of catalyst composition

Dense YSZ

FeCr Metal Support

Ni-CeO2-YSZ Anode Layer

LSM-YSZ Cathode Layer

FeCr Metal Current Collector

Easy to infiltrateLSM, LNF, LSCF, CGO, Cu, Ni, Co, many others

Lit.: M. Tucker, Fuel Cell Seminar 2008

Page 17: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

0 500 1000 1500 20000.0

0.2

0.4

0.6

0.8

1.0

Current Density (mA/cm2)

Cel

l Pot

entia

l (V

)

0

200

400

600

800

1000

1200

1400

Pow

er Density (m

W/cm

2)Infiltrated Electrodes Support High Power Density

H2 –3%H2O fuel

650°C

700°C

750°C

TemperatureMax Power (mW/cm2)

Power at 0.7V (mW/cm2)

650°C 982 726700°C >1300 993750°C >1300 >1300

0 100 200 300 400 5000.0

0.2

0.4

0.6

0.8

1.0

Current Density (mA/cm2)

Cel

l Pot

entia

l (V

)

0

50

100

150

200

250

300

350

Pow

er Density (m

W/cm

2)

332mW/cm2

700°C

Air oxidant Pure O2 oxidant

Lit.: M. Tucker, Fuel Cell Seminar 2008

Page 18: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

1.2

Time (h)

Ope

n C

ircui

t Pot

entia

l (V)

0255075100125150175200225250

Pow

er Density (m

W/cm

2)

Performance and Stability Infiltrated Oxide Anode and LSM Cathode

0 200 400 600 800 1000 1200 1400 16000.0

0.2

0.4

0.6

0.8

1.0

1.2

Oxygen

Current Density (mA/cm2)

Cel

l Pot

entia

l (V)

Air

0

100

200

300

400

500

600

Power D

ensity (mW

/cm2)

700°CDry Air/H2-H2O

> 500mW/cm2 at 700°C600 h operation demonstrated

Lit.: M. Tucker, Int. Conf. on Advanced Ceramics and Composites, Daytona Beach 2010

Page 19: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Redox Cycling Tolerance

700°C, switching between H2/H2O and airComplete Ni NiO conversion each cycle

Anode supported cell fails after redox cycling- Electrolyte cracks 20m

Electrolyte surfaceCross section

0 1 2 30

100

200

300

400

500

Anode Supported Cell

Pow

er D

ensi

ty a

t 0.7

V (m

W/c

m2 )

Complete Redox Cycles0 1 2 3

0

100

200

300

400

500

Metal Supported Cell

Anode Supported Cell

Pow

er D

ensi

ty a

t 0.7

V (m

W/c

m2 )

Complete Redox Cycles Metal-supported cell does not fail- Ni is not a structural element

Lit.: M. Tucker, Fuel Cell Seminar 2008

Page 20: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Thermal and Redox Cycling Tolerance

0 1 2 3 4 5 6 7 80

100

200

300

400

500

Redox Cycles

700°C

Pow

er D

ensi

ty a

t 0.7

V (m

W/c

m2 )

Cycle Number

Thermal Cycles

Metal-supported cell tolerates - redox cycling - rapid thermal cycling

Thermal Shock:150-735°C, ~500°C/min

Full Redox:Switch between air and fuelat 700°C

Lit.: M. Tucker et al., ECS Transactions, 25(2) 673-680 (2009)

Page 21: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR
Page 22: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR
Page 23: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR
Page 24: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

SOFC Metal Supported Cell – DLR Concept

30 m

25 m

35 mBipolar plate

Bipolar plate

porous metallic substrateanodeelectrolyte

contact layercathode current collectorcathode active layer

protective coating

not used airoxygen/air

air channel

fuel channel

fuel brazing not used fuel + H O2

(not in scale)

Plasma Deposition Technology

Thin-Film Cells

Ferritic Substrates and Interconnects

Compact Design with Thin Metal Sheet Substrates

Brazing, Welding and Glass Seal as Joining and Sealing Technology

Page 25: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Vacuum Plasma Spraying of SOFC Cells

Page 26: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Plasma Spray Laboratory at DLR Stuttgart

Page 27: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Plansee AG,Austria

Rhodius,Germany

Technetics,USA

Bekaert,Belgium

Supplier

~ 50~ 90~ 80~ 85Porosity

~ 1,0~ 1,0~ 1,8~ 1,0Thickness

Fe-26Cr (Y2O3)Fe-22Cr-0,5MnFe-22Cr-5Al-0,1YNiMaterial

Sintered plateKnit fabricFoamFeltSubstrate

200μm

300 µm

Porous Metallic Substrates Used for the Plasma SpraySOFC Concept

Page 28: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Morphology of Porous Metal Substrate PM Fe-26Cr-(Mo,Ti,Mn,Y2O3) of Plansee SE

Page 29: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Powders Used for the Spraying of the Cells

Powder NiO ZrO2-7 mol %Y2O3

ZrO2-10 mol%Sc2O3

(La0.8Sr0.2)0.98MnO3

Short name NiO YSZ ScSZ LSMMorphology sintered,

crushedsintered,crushed

sintered,crushed

sintered,spherical

Sizedistribution

10-25 µm 5-25 µm 2-35 µm 20-40 µm

Supplier Cerac,USA

Medicoat,Switzerland

Kerafol,Germany

EMPA,Switzerland

Page 30: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Fe- 22Cr- Substrat

Ni

8YSZ

8YSZ- Elektrolyt

Ni/8YSZ-Anode

Triple phase boundary (TPB)

Ni Fe, CrFe, Cr Ni

Fe, Cr

Fe, Cr

O2-O2 -

O2 -

O2-H2

H2O

e - e-

Fe- 22Cr- Substrate

Ni

8YSZ

8YSZ- Electrolyte

Ni/8YSZ-Anode

Ni Fe, CrFe, Cr Ni

Fe, Cr

Fe, Cr

O2-O2 -

O2 -

O2-H2

H2O

e - e-

Interdiffusion of Fe, Cr and Ni Between Substrate and Anode

8YSZ-Anode

Fe22Cr-Substrat

8YSZ-Anode

Fe22Cr-Substrat

Ni-Diffusion

FeO, Fe2O3

Page 31: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

bipolar plate

bipolar plate

porous metallic substrate

anode

electrolyte

contact layer

cathode current collector

cathode active layer

protective coating

(not in scale)

diffusion protection layer

Experimental Approach For a Diffusion Barrier Layerat the Anode Side

diffusion barrier layer

Requirements

• Porous structure

• Adapted thermal expansion coefficient(tech.= 10-11 x 10-6 K-1)

• High electronic conductivity in reducinganode atmosphere [ = 1-3 S/cm, p(O2) = 10-16 bar ]

•Chemical stability in reducing humid anodegas atmosphere

• Barrier effect for Fe, Cr und Ni species

• Elektrochemical compatibility at celloperation (chemical inert behavioer)

Page 32: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Metallographic Cross Section of MSC Cell

Porously sintered ferrite plate

8YSZ-electrolyte

Ni/8YSZ-anode

La0.7Sr0.15Ca0.15CrO3-barrier layer

8YSZ-electrolyte

LaSrMnO3-cathode

Perovskite-type barrier layer

Page 33: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Electrochemical Performance of VPS Cells With and Without Diffusion Barrier Layer in Operation withSimulated Reformate H2/N2 and Air

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600Current density i [mA/cm²]

Cel

l vol

tage

U [V

]

0

100

200

300

400

500

600

700

Power

den

sity

p [m

W/c

m²]

493 h

1024 h1500 h

MSC without DBLActive cell area: 7.06 cm²

Degradation rate :- 1000 h > 20%1000-1500 h = 40%

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800Current density i [mA/cm²]

Cell v

olta

ge U

[V]

0

100

200

300

400

500

600

700

800

900

1000

Power

den

sity

[mW

/cm

²]

MSC with DBLActive cell area: 7.06 cm²

Degradation rate :- 1000 h < 1%1000-2300 h = 30%

372 h

1024 h2300 h

Page 34: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Stack Assembly Based on Metal Supported CellStack Assembly Based on Metal Supported Cell

Current MS-SOFC Repeat Unit

90x120 mm² footprint – ca 100 cm² cell area

Counter flow design

Stamped sheet ferritic steel bipolar plate

Welded Fe-Cr substrate

Page 35: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

MSC Stack Integration

Cassette

Plasma coating

Application of seal

Assembly

Stack test

Page 36: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Vortrag > Autor > Dokumentname > Datum

Performance of Plasma Sprayed MSC Single CellPerformance of Plasma Sprayed MSC Single Cell

MSC Cell: 12.5 cm² cell at 800°C; H2/N2 and Air

Page 37: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Performance of 10-Cells Stack

10-Cell Stack: 100 cm² single cells at 800°C; H2/N2; Air

MSC-10-31, 800°C, 29 h10H2+10N2/ 20 Luft (SLPM)

i-V measurement

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

11,0

12,0

0 100 200 300 400 500Current density i [mA/cm²]

Sta

cksp

annu

ng U

[V]

0

100

200

300

400

500

600

Stac

k po

wer

P [W

]

Stack voltageStack power

@ 7,0 VPstack = 250 Wp = 307 mW/cm²FU = 24,8 mol%

p

U

OCV = 10,11 V

Page 38: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Thermal Cycling

15 thermal cycles performed, 12 down to 350 °C and 3 to ambient temperatureDegradation after thermal cycles was 10.3 %

Thermal cyclesMSC-02-17, 800°C

2 H2+2 N2/ 4 Air (SLPM)458 / 1227 h

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300current density i [mA/cm²]

cell

volta

ge U

[mV]

0

50

100

150

200

250

300

350

400

pow

er d

ensi

ty p

[mW

/cm

²]

U1_startU2_startU1_endU2_endp1_startp2_startp1_endp2_end

p

U

Page 39: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Redox Cycling

20 forced redox cycles performed with 50 ml/min O2 on the anode side per layerIncrease of power density after 5 cyclesDegradation of the stack was 9.1 % after 20 redox cycles

Redox cycleMSC-02-17, 800°C

2 H2+2 N2/ 4 Air (SLPM)1227 / 1517 h

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300current density i [mA/cm²]

cell

volta

ge U

[mV]

0

50

100

150

200

250

300

350

400

pow

er d

ensi

ty p

[mW

/cm

²]

U2_startU2_Redox_5

U2_Redox_20

p2_start

p2_Redox_5

p2_Redox_20

p

U

Redox_startcell2: 157 mW/cm²

Redox_5cell2: 177 mW/cm²

Redox_20cell2: 149 mW/cm²

Redox start @ 1,4 VPstack = 28,5 WFU = 14,1 mol%

Redox 5 @ 1,4 VPstack = 33,3 WFU = 16,6 mol%Redox 20 @ 1,4 VPstack = 26,0 WFU = 12,9 mol%

Page 40: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Conclusions

The development of metal-supported cells – both sintered cells with infiltratedelectrodes and plasma sprayed cells – show good progress achieving high power density

Metal-supported cells prove rugged behaviour, such as- fast start / thermal cycling- redox tolerance- mechanical strength

Low-cost materials expect low-cost manufacturing at low and high volume

The development of the metal-supported SOFC concept has a high potential for SOFC application in dynamic operation with multiple thermal and redoxcycles

Metal-supported SOFC is an opportunity to transcend barriers to SOFC commercialisation

Page 41: Progress in Metal-Supported Solid Oxide Fuel Cells - eLib - DLR

Acknowledgment

I‘d like to thank Michael C. Tucker from Lawrence Berkeley National Lab andNiels Christiansen from Topsoe Fuel Cells for providing slides on their MSCdevelopment

I acknowledge the development work of my colleagues at DLR:Dr. Asif AnsarDr. Johannes ArnoldZeynep IlhanPatric Szaboand all co-workers in our Department „Electrochemical Energy Technology“