process and characterization of composite by rtm - ipt process and characterization of composite by...

47
1 Process and Characterization of Composite by RTM Maria Odila Hilário Cioffi [email protected] Fatigue and Aeronautic Materials Research Group

Upload: buihuong

Post on 20-Oct-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

1

Process and Characterization

of Composite by RTM

Maria Odila Hilário Cioffi

[email protected]

Fatigue and Aeronautic Materials Research Group

2 2

Fatigue and Aeronautic Materials Research Group

3 3

Fatigue and Aeronautic Materials Research Group

18 Researchers

21 Students

1 Technician

Fatigue and Aeronautic Materials Research Group

4

Project

General Objectives:

– Development of an

experimental

methodology to

produce aeronautical

components by resin

transfer molding

process;

– Substitution of Al7050-

T7451 alloy by non-

crimp fabric

(NCF)/epoxy system

(RTM6) composites;

Fatigue and Aeronautic Materials Research Group

EMBRAER Landing Gear

HYDRAULICCYLINDERS

SHOCKABSORBER

SHAFT

STALK

Fatigue and Aeronautic Materials Research Group

5

Project

General Objectives:

– Development of an

experimental

methodology to

produce aeronautical

components by resin

transfer molding

process;

– Substitution of Al7050-

T7451 alloy by non-

crimp fabric

(NCF)/epoxy system

(RTM6) composites;

Fatigue and Aeronautic Materials Research Group

EMBRAER Landing Gear

HYDRAULICCYLINDERS

SHOCKABSORBER

SHAFT

STALK

Fatigue and Aeronautic Materials Research Group

6

Project

General Objectives:

– Development of an

experimental

methodology to

produce aeronautical

components by resin

transfer molding

process;

– Substitution of Al7050-

T7451 alloy by non-

crimp fabric

(NCF)/epoxy system

(RTM6) composites;

Fatigue and Aeronautic Materials Research Group

EMBRAER Landing Gear

HYDRAULICCYLINDERS

SHOCKABSORBER

SHAFT

STALK

Properties

Materials

Al 7050-T7451 NC2/RTM6

Elastic Modulus 65 GPa 60 GPa

Yield Strength 429 MPa 530 MPa

Ultimate Tensile Strength 502 MPa 665 MPa

Elongation 10 % 2 %

Fatigue and Aeronautic Materials Research Group

7

Project

General Objectives:

– Development of an

experimental

methodology to

produce aeronautical

components by resin

transfer molding

process;

– Substitution of Al7050-

T7451 alloy by non-

crimp fabric

(NCF)/epoxy system

(RTM6) composites;

Fatigue and Aeronautic Materials Research Group

EMBRAER Landing Gear

HYDRAULICCYLINDERS

SHOCKABSORBER

SHAFT

STALK

Properties

Materials

Al 7050-T7451 NC2/RTM6

Elastic Modulus 65 GPa 60 GPa

Yield Strength 429 MPa 530 MPa

Ultimate Tensile Strength 502 MPa 665 MPa

Elongation 10 % 2 %

Materials change will provide a reduction

of 59% weight for the component.

Fatigue and Aeronautic Materials Research Group

8

400

420

440

460

480

500

10000 100000 1000000

Delamination

Rupture

N (cycles)

Str

ess (

MP

a)

Fatigue Tests

SxN Curve. NC2/RTM6Composite.

Results

Fatigue and Aeronautic Materials Research Group

9

400

420

440

460

480

500

10000 100000 1000000

Delamination

Rupture

N (cycles)

Str

ess (

MP

a)

Fatigue Tests

SxN Curve. NC2/RTM6Composite.

Results

hackles

cusps

Fatigue and Aeronautic Materials Research Group

10

Process

Matrix

• Toughness

• Kinetic Study

Reinforcement

• Stitching

• Drapability

• Permeability

Process

• Process Parameters influence

• Cure cycle

Composites

• Acoustic inspection Microscopy

Fatigue and Aeronautic Materials Research Group

11

Matrix Toughness:

Impregnation Map of NCF/RTM6 composite

3-D construction C-scan Map:

NCF/RTM6 composite

Fatigue and Aeronautic Materials Research Group

12

Matrix Toughness:

Impregnation Map of NCF/RTM6 composite

3-D construction C-scan Map:

NCF/RTM6 composite

Fatigue and Aeronautic Materials Research Group

13

Toughness:

Matrix

HPBA polymer was more

efficient due to molecule

higher free volume and

suitable physical interaction

with epoxy system

Sea-island

Fatigue and Aeronautic Materials Research Group

14

Matrix • Kinetic reaction – Prism EP2400

Dynamic DSC for 2, 5 e 10°C Isothermal coversion Curve

• Dynamic DSC for different heating rates;

• Simulation of isothermals by isoconversional method;

• The difference between the theoretic and experimental method is associated

by autocatalytic and n order kinetic reactions

Fatigue and Aeronautic Materials Research Group

15

Matrix • kinetic study – Prism EP2400

Experimental curves of rate and isothermal

conversion at 170, 175 e 180ºC.

Time function fitting experimental curve

• Conversion rates by DSC – autocatalytic model until 50 min for Tcura.

• As the cure progress – n order model .

Fatigue and Aeronautic Materials Research Group

16

Stitching

Tricot Stitching

Chain Stitching

• Stitching influence

•Chain showed a fatigue behavior more uniforme due to the homogeneous stitching

•Higher fatigue behavior was observed when the stitching was tricot but with

premature delaminatin process

Fatigue and Aeronautic Materials Research Group

17

Stitching

Tricot Stitching

Chain Stitching

• Stitching influence

•Chain showed a fatigue behavior more uniforme due to the homogeneous stitching

•Higher fatigue behavior was observed when the stitching was tricot but with

premature delaminatin process

Fatigue and Aeronautic Materials Research Group

18

Reinforcement • Drapability

Fatigue and Aeronautic Materials Research Group

19

Reinforcement • Drapability

Fatigue and Aeronautic Materials Research Group

20

Reinforcement • Drapability

Fatigue and Aeronautic Materials Research Group

21

Reinforcement • Drapability

Fatigue and Aeronautic Materials Research Group

22

Reinforcement • Drapability

Fatigue and Aeronautic Materials Research Group

23

Permeability: experimental X Simulation

Reinforcement

It was also observed the race tracking phenomena for both model and

experimental

Fatigue and Aeronautic Materials Research Group

The same resin front behavior was observed for both until 2/3 fabric

length.

24

Permeability: experimental X Simulation

Reinforcement

Fatigue and Aeronautic Materials Research Group

From this point the fluid become different.

25

Permeability: experimental X Simulation

Reinforcement

Fatigue and Aeronautic Materials Research Group

26

Permeability: experimental X Simulation

Reinforcement

At the end of the fabric length the front is equal again.

The simulation and the mesh model are suitable

Fatigue and Aeronautic Materials Research Group

Total time of injection t = 2342 s (model 4747 elements).

Permeability study → t = 1137 s.

27

Permeability: experimental X Simulation

Reinforcement

Fatigue and Aeronautic Materials Research Group

28

RTM Process

FAPESP processo número 2006/02121-6 - JP

Fatigue and Aeronautic Materials Research Group

29

Process RTM Process parameter influence:

Temperature:

Enough to reduce the resin viscosity in order to promote high

volume fiber impregnation;

High Viscosity produce fiber misalignment.

Pressure:

Enough to improve the impregnation (1.5 – 4.0 bar);

Excessive pressure produce fiber misalignment.

Fiber volume fraction:

Constant throughout the laminate in order to avoid preferential

resin path, which cause dry spots.

Fatigue and Aeronautic Materials Research Group

30

RTM Process Cure cycle:

Set by kinetic study ;

low temperature rate improves the fabric impregnation;

longer periods of low viscosity resin within the first 25 min 50 mPa.s

Fatigue and Aeronautic Materials Research Group

31

Composite Procedure for acoustic microscopy inspection - MIScan

• Ultrasonic inspection

• A-scan and C-scan method

• Transducer 10 MHz probe

• Pulse-echo mode

Equipment Model PSS-600, MUIS32 manufactured by MATEC

A-scan graphic aided to calibrate the patterns of typical composite peaks

Fatigue and Aeronautic Materials Research Group

32

Composite Procedure for acoustic microscopy inspection - MIScan

• Ultrasonic inspection

• A-scan and C-scan method

• Transducer 10 MHz probe

• Pulse-echo mode

Equipment Model PSS-600, MUIS32 manufactured by MATEC

A-scan graphic aided to calibrate the patterns of typical composite peaks

INJEÇÃO

a)

INJEÇÃO

b)

Figura 6.23 – Efeito de race-tracking detectado no ultrassom: a) gate 1; b) gate 2

Fatigue and Aeronautic Materials Research Group

33

Composite Procedure for acoustic microscopy inspection - MIScan

• Ultrasonic inspection

• A-scan and C-scan method

• Transducer 10 MHz probe

• Pulse-echo mode

Equipment Model PSS-600, MUIS32 manufactured by MATEC

A-scan graphic aided to calibrate the patterns of typical composite peaks

INJEÇÃO

a)

INJEÇÃO

b)

a)

Fatigue and Aeronautic Materials Research Group

Developments

Advanced Composites

Crack propagation in 5HS carbon/epoxy composites

Interlaminar Fracture Toughness Study

Structural composite fatigue life prediction considering

DMA results

Natural composite

Thermoplastics composites obtained by injection

Thermossseting composites by RTM process

Nanobiodegradable composites by electrospinning

Composites development to historic edification application

34

Research

Fatigue and Aeronautic Materials Research Group

RTM linked projects

Projects

Fatigue and Aeronautic Materials Research Group

Projetos

Aquisição dos seguintes equipamentos:

Injetora Radius 2100cc RTM

Molde fechado em aço

Sistema de aquecimento via resistências elétricas

Bomba de vácuo

Microscópio de varredura acústica (MIScan)

Estufa a vácuo, agitadores e balança analítica

CNPq n° 472570/2006-4

FAPESP nº 2006/02121-6

Fatigue and Aeronautic Materials Research Group

Projetos

Figura XX: Sistema de processamento de compósitos por RTM locado no DMT/FEG/UNESP

Fatigue and Aeronautic Materials Research Group

Projetos

Figura XX: Detalhes do molde em aço usando no processamento via RTM

Fatigue and Aeronautic Materials Research Group

Projetos

Figura XX: : Equipamento de ultrassom por imersão em água locado no DMT/FEG/UNESP

Fatigue and Aeronautic Materials Research Group

Projetos

Aquisição dos seguintes equipamentos:

Porosímetro Automático de Mercúrio, modelo Poremaster 33 GT

(Quantachrome Instruments)

Descrição: Realiza medições de tamanho de poros de distribuição em

duas amostras de geração de pressão contínua ou gradual de vácuo

para 33.000 psi.

CNPq n° 483308/2010-2 Titulo do Projeto: PROCESSAMENTO DE COMPÓSITOS VIA RTM:

CONTROLE DE VAZIOS POR DIFERENTES METODOLOGIAS

Fatigue and Aeronautic Materials Research Group

Projetos

Figura XX: Porosímetro Automático de Mercúrio locado no DMT/FEG/UNESP

Fatigue and Aeronautic Materials Research Group

Projetos

Aquisição dos seguintes equipamentos:

Analisador de Densidade Real, Modelo UltraFoam 1200e

(Quantachrome Instruments)

Descrição: Determina o volume real/densidade de sólidos.

CNPq n° 483308/2010-2 Titulo do Projeto: PROCESSAMENTO DE COMPÓSITOS VIA RTM:

CONTROLE DE VAZIOS POR DIFERENTES METODOLOGIAS

Fatigue and Aeronautic Materials Research Group

Projetos

Figura XX: Analisador de Densidade Real locado no DMT/FEG/UNESP

Fatigue and Aeronautic Materials Research Group

Projetos

Aquisição dos seguintes equipamentos:

Cortadeira Metalográfica TechCut-5 (Allied High Tech Products)

Descrição: Cortadeira metalográfica com avanço automático.

CNPq n° 483308/2010-2 Titulo do Projeto: PROCESSAMENTO DE COMPÓSITOS VIA RTM:

CONTROLE DE VAZIOS POR DIFERENTES METODOLOGIAS

Fatigue and Aeronautic Materials Research Group

Projetos

Figura XX: Cortadeira metalográfica locada no DMT/FEG/UNESP

Fatigue and Aeronautic Materials Research Group

Projetos

Aquisição do seguinte equipamento:

Equipamento de Calorimetria Exploratória Diferencial (DSC) com

compensação de potência, modelo DSC 8000 (PerkinElmer)

Descrição: Esse equipamento tem a capacidade de operar em uma

faixa de temperatura de trabalho de -180ºC até 750ºC com taxas de

aquecimento e resfriamento de 1 a 750ºC/min.

CNPq n° 486083/2012-8 Titulo do Projeto: PROCESSAMENTO DE COMPÓSITOS VIA RTM:

CARACTERIZAÇÃO TÉRMICA

Fatigue and Aeronautic Materials Research Group

Projetos

Figura XX: DSC 8000 (equipamento em fase de importação)